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ABSTRACT

The near-far problem in a multiuser setting places fundamen-
tal limitations on the performance of CDMA communication
systems. In the past, significant effort has focused on designing
practical, and hence suboptimum, detectors to combat multi-
ple access interference (MAI). However, the optimality in near-
far resistance is generally lost with the suboptimum detectors.
In this paper, one method which can enhance the near-far re-
sistance of the suboptimum detectors under multipath chan-
nels is presented. The proposed method is able to overcome
the shortcomings of existing methods. Computer simulations
confirm the theoretical findings.

1. INTRODUCTION
Direct sequence code division multiple access (DS-CDMA) sys-
tems are among the most promising multiplexing technologies for
the next generation wireless communications systems. In the DS-
CDMA framework, all users transmit data at the same time and
in the same frequency band but use distinct signature waveforms
to allow signal separation at the receiver. Because of the non-
orthogonal signature waveforms among the active mobile users,
DS-CDMA suffer from cochannel interference, which results in
the near-far problem. Significant effort has been focused in the last
two decades on designing multiuser receivers in order to combat
multiple access interference (MAI) and the near-far problem. By
jointly detecting all users’ signals, optimum multiuser detection
for DS-CDMA systems is near-far resistant and can achieve sig-
nificant performance improvement over the conventional single-
user detection. The near-far resistance of the optimum detector
was derived in [1] for single-path AWGN channels. Because of
its nonlinear nature, the computational complexity of the optimum
detector increases exponentially when the number of active users
increase. As a result, many suboptimum receivers have been de-
veloped [2]-[4]. However, it has been shown [5] that the optimum
near-far resistance i.e., the near-far resistance achieved by the op-
timum detector is generally lost with the suboptimum detectors.
Then, how can we enhance the near-far resistance performance of
those suboptimum detectors, especially when power control is dif-
ficult to implement? By examining the structural differences of the
channel matrix between the optimum and suboptimum detectors,
a method was proposed in [6] to almost restore the near-far resis-
tance of the suboptimum detectors under multipath fading channel
situation to that of the optimum one, at least theoretically. How-
ever, that method has some disadvantages and is thus not practical.
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In this paper, a linear smoothing method is proposed which is able
to overcome all disadvantages of the method of [6]. Computer
simulations are performed to verify the theoretical findings.

2. SIGNAL MODELS

Consider an asynchronous DS-CDMA system with J users and
L, chips per symbol with the jth user’s spreading code denoted
by ¢; = [¢;(0), -+, c;j (L. —1)]F. Then, the jth user’s transmit-
ted signal at the chip rate in a baseband discrete-time model rep-
resentation is given by [2] s; (k) = Eb, (n) cj(k—n L), where

bj(n) is the jth user’s nth symbol and at the symbol rate 1/7,
¢j(k) and s; (k) are at the chip rate 1/T, Ts = L.T. In the pres-
ence of a linear multipath channel where the receiver collects one
sample per chip, the received discrete-time sampled signal due to
the user j is z;(n) = EEbJ (k)ci(i — k Le) 95 (n — i — dj),

where g;(n) is the effectlve channel impulse response sampled at
the chip interval and d; is the transmission delay (mod L.) of user
7 in chip periods. Itis straightforward to show that the above equa-
tion is equivalent to z; (n) = Ebj (k) hj(n — k L — dj), where

A Leg .
hi(n) = 3° ¢(i)9i(n
1=0
nature waveform of user j, i.e., code ¢; (n) is “distorted” due to the
multipath effect. The total received signal at the chip rate is the su-

perposition of contributions of all users observed in additive white
J

—1). hj(n) represents the effective sig-

Gaussian noise v(n) as z(n) = Y. ;(n) + v(n). Stack up L.
j=1
samples of z(n) into x(n) = [z(n L), -+, 2(n Le + Le —1)]F

to obtain, at the symbol rate, the MIMO model
7 L]‘ h] (/L Lc)
=2 2 biln—i) : +9(n) =
hj(i Le + Le —1)
J Lj—1 Lp—1

2 2 bi(n—i)h;(i) + Z H(i
j=1 i=0
where L; is the length of the jth user s channel impulse response

A
Lp =

(n—14) +v(n),

and is related to the length of g;(k) and the delay d;.

1r<nja<xJL], hi(G) = [ hi(iLe) hi(iLe+ Lo 1) 17,
H(l) 2 [h (1), -, hy (D], B() = [b1(0), - -, bs ()], and v(n)

is the noise vector and defined in a manner similar to x(n).
Furthermore, by stacking up IV successive x(n) vectors of the

received data (where N is called the smoothing factor), the dis-

crete time MIMO model for the dispersive CDMA channel can be
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represented as follows

xn (n) = Hb(n) + v(n) @
where
X%(n) = [xH(n) xH(n+N—1)]
H(L, 1) --- H(0) 0
w=| L
0 <o H(Lnp-1) --- H(0)
b?(n) = [ b"(n—rLy+1) b (n+N-1) ]
vim) = [ v%(n) A+ N-1) ]

The following assumptions will be made throughout this paper.

1. The symbols b;(n) are uncorrelated in time, with variance
Aj, for each j. b;(n) and b;(n), 7 # j are also uncorrelated.

2. The channel matrix  in (1) is of full column rank (known
as the identifiability condition in the blind multiuser detec-
tion/equalization literature [2]-[4]).

3. NEAR-FAR RESISTANT DETECTORS
In order to make expressions more clear, some relevant results of
[5]-[7] are reviewed here. The optimum detector processes one
entire transmission block (a packet) at a time. Since the transmis-
sion before and after a particular block is zero, following (1) the
channel matrix H for the optimum detector is

H(0) ®
A= | Hi-1)  H©) @
O  H@Ii-

Note that this matrix is of dimension (L + Ly —1) L. xJL where
L is the number of symbols in a packet (each symbol is sampled
L, times). H of (1) has a resemblance to H of (2). If the left and
right L, — 1 block columns are cut out, H would have the same
structure as 7. However, the dimension of % is much larger than
that of the resulting H (L >> N).

Since the near-far resistance is calculated by the channel ma-
trix [7], it was shown in [6] that if one can in this way make the
channel matrix A of the suboptimum detector to have the same
form as the optimum detector H (2), the near-far resistance of the
suboptimum detector can almost achieve the optimum near-far re-
sistance (ideally) regardless of the dimension difference between
these two matrices. Therefore, the key to enhance near-far resis-
tance of those suboptimum detectors is to change H of (1) to be of
the same form as # of (2). [6] presented a simple method which
can achieve this goal. The basic idea of [6] is summarized as fol-
lows. From (1), in the absence of the noise, the received signal
vector can be rewritten as

[ #1 Mo Ha ]| bo(n)

bz(’n)

xw(n)

bl(n) ]

Hobo(n) + [ H1 Ha | [ E;EZ; ] 3)

where o has the same structure as # in (2) but with a
much lower dimension, and #; is a block Toeplitz matrix
with its first row and first column as [H(Lj —1),---,H(1)]

and [H" (L, —1),0,-- -,O]T respectively. 7{» is also a block
Toeplitz matrix with its first row and first column as [0, - - -, 0]
and [0,---,0,H”(0),---, HT (L, —2)]T respectively. As men-
tioned before, in order to enhance the near-far resistance, (3)
should be made to

xn (n) = Hobo(n) 4

One simplest way to achieve (4) is to let by (n) and bz (n) be zero.
This is equivalent to zero bit insertion (or isolation) at both ends of
each small block of symbols. However, any performance gain on
the near-far resistance using the zero bit insertion is accompanied
by three disadvantages: i) the new transmission requires partial
synchronization of all transmitters; ii) the bit rate of all informa-
tion sequences is reduced. iii) each information symbol in a de-
tection block needs its own detector. Thus the computational com-
plexity to estimate all the detectors could be high, especially when
the number of information bits in one detection block is large. A
method which can eliminate these three disadvantages is presented
next.

4. LINEAR SMOOTHING METHOD
Another approach to achieve (4) is to use the linear smoothing
method (also known as the two-sided linear prediction method).
In the absence of noise , construct a data vector

X1 (0 — M) _ t~’1(") A
Y(n) = xn(n) =M | bo(n) | =#b(n) (5)
X (n+N) ba(n)

where x s, (n) is defined in the same way as (1), and H is shown
at the top of the next page. Decompose H as follows

- T
#=[QQ;Q;] ©)
where Q,, Q, and Q, have NL., ML, and M>L. rows re-
spectively. Due to the structure of (6), the matrix [Qfo]T has
(N — Lp +1) J zero columns in the middle. Striking those zero

columns out, it is straightforward to show that the full column rank
of the matrix [Q Q7 | " is guaranteed since # in (L) has full col-
umn rank. This property will be needed in the following linear
smoothing step.

Define an NL. dimensional two-sided prediction error or
smoothing error vector

em)=[-P1 T —P>|Y(n @)

where Py, Tand P are NL, x M1L., NL, x NL. and NL, x
M, L. respectively. Performing least squares minimization on (7)
gives the following result

Propostion 1 The optimal solution to the linear smoothing prob-
lem (7) resultsin

[-P1 I  —Py |H=[0 H, 0] (8
and the smoothing error is

e(n) = Hobo(n) ©)
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r H(L, —1) H(0) 0 O 7
) 0 H(L; —1) H(0)
H= 0 0 Ha Ho Ho 0 cee 0
H(L, 1) HO) - 0
L @) H(Ly, -1) H(0) |

Proof: Using (5) (6) and (7), we have

E{em)e(m)}=[ -P1 I A

Q
- P2:| Qo

_pff
[ Q" qf Qf]l I ]
—Pg

=(Q, - P1Q, - P2Q,) A (Q' - QI'P{' — QJ'P{) (10)

where A is a diagonal matrix with the diagonal elements being the
powers of the symbols of the users. Minimizing E {e(n) ¢” (n) }

over P; and P then gives
H
(3]7a-tm r[g]) 0w

and
_ Q | _q _
@-[» P][&]-a-[x 0O x)
=[ x Ho x | (12

Due to the full column rank property of the non-zero part

of the matrix [ 81 ] in (12) those rows of the matrix
? H
(QO — [ P, P> ] [ 81 ]) corresponding to the non-
2
Q,

zero part of must be zero. In other words, the correspond-

Q,
ing entries in x of (12) should be all zeros. Thus (8) is obtained.
Furthermore,

[-P1 I Py |Ym)=[-P1 1 —P, |
Q, ] bi(n)

: [ Qo ] b(n)=[ O Ho O ]| bo(n) |=Hobo(n)(13)
Q2 bz(n)

Hence, (9) is obtained. m|

Define the data correlation matrix

Ri1 Ri2 Ras
R = E{y(n)yH(n)} = [ Rz Ra: Ras ] (14)
Ra: Rs2 Ras
where Ri1, Ra2 and Rasz are M; L., NL. and M» L. square ma-
trices respectively. Then, it is well known that the optimal solution
for the linear least squares optimization problem (7) is [4]

+
Rll R13

(P Pl=[Ra R ]| R0 R

(15)

where (-)* denotes pseudoinverse.

This linear smoothing step is used as a pre-processing stage.
Once the smoothing error (9) is obtained, it is then used as the
new data in any subsequent suboptimum detector. Clearly, neither
information rate reduction nor partial synchronization is needed.

5. SIMULATIONS

Simulation examples are presented to illustrate our arguments. In
all of the simulations, the channel response of each user is ran-

Lg
domly generated by [8] g(t) = >~ aqp (¢t — 74) Where Lg is the
q=1

total number of multipaths; 7, is the associated delay of the gth
path; a4 is the attenuation of the gth path; p(¢) is the raised-cosine
pulse function with a roll-off factor of 0.5. g(t) is then sampled
and truncated to length Ly. The user delay d;, the multipath delay
74, and the number of multipath components L, are uniformly dis-
tributed within [0, L. — 1], [0, (L. — 1)T¢], and [1, 30], respec-
tively. a4 is generated according to the Gaussian distribution with
zero mean and unit variance. Gold sequence of length L, = 31
is used. All input symbols are drawn from a BPSK constellation
and then multiplied by various magnitude factors to generate the
near-far situations. The first user is the desired user. The near-far
ratio is defined as 101log,, A;/A: fori # 1, where A; is the de-
sired user’s power, and all other users have the same power A;.
L, is 30 chips in all simulations. Two methods (Subspace method
[2] and linear-prediction method [3]) are implemented for com-
parison. For the signal subspace in [2], the rank was determined
by taking empirically selected thresholds. All results are based on
100 Monte Carlo runs unless specified. The user codes, channel
and user delays are randomly generated in each Monte Carlo run.
The optimum near-far resistance is calculated according to [6].
Example 1: Performance in near-far resistance

The simulations are set in a 10 user channel case with 0 dB
and 10 dB near-far ratios. The detector length NV is 5, and M; =
M, = 2. 1000 symbols were used to estimate various detectors.
According to [6], the practical near-far resistance of the desired

. . . . eH |2 .
user in all simulated algorithms is calculated as n = M in

the noise free situation, where f is the suboptimum detector and
H, is one column in the channel matrix # corresponding to the
desired symbol. The results are presented in Figure 1. It can be
seen that the linear smoothing method has a performance gain on
the near far resistance. Furthermore, it can also be seen that when
more symbols were used to estimate the detector, the performance
on near-far resistance becomes better in all simulated algorithms.
Example 2: Performance in output SINR

In this example we present the output signal to interference plus
noise ratio (SINR) of the proposed linear smoothing method under
various input signal to noise ratio (SNR). The definitions of SNR
and SINR can be found in [3]. The simulations’ environments are
the same as those of Example 1. After calculating the suboptimum
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Fig. 1. Near-far resistance vs different symbol length under differ-
ent near-far ratio, random channels. O: Optimum [6]; *: Linear
prediction using smoothing error (LSLP); x: Linear prediction
(LP); o: Subspace method using smoothing error (LSSS); <: Sub-
space method (SS).
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Fig. 2. Output SINR vs input SNR under different near-far ra-
tio for random channels. O: Linear prediction (LP); o: Subspace
method (SS); v: Linear prediction using smoothing error (LSLP);
=. Subspace method using smoothing error (LSSS).

detectors based on the given data record (1000 symbols in our sim-
ulations), the obtained suboptimum detectors were then applied to
calculate the output SINR. The results are presented in Figure 2.
Performance gains using the linear smoothing method is clear.
Example 3: Performancein BER

In this example we present the bit error rate (BER) of the pro-
posed linear smoothing method under various input SNR. The
simulations’ environments are the same as those of Example 1.
MMSE detectors were used for comparison. After calculating the
detectors based on the given data record (500 symbols), the ob-
tained detectors were then applied to an independent record of
length 2000 symbols to calculate the BER. The averaged BER is
based on 500 independent Monte Carlo runs. The results are pre-
sented in Figure 3. It is clear that the linear smoothing method
significantly improves the BER performance for medium and high
SNR situations (> 3 dB SNR).
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107} ‘i ﬁ\b .
SVTTER
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Fig. 3. Bit error rate vs input SNR under different near-far ratio
(NFR) for random channels. x: Linear prediction (LP); o: Sub-
space method (SS); A: Linear prediction using smoothing error
(LSLP); o: Subspace method using smoothing error (LSSS).
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