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ABSTRACT

In this paper, we develop a new receiver for joint symbol,
channel characteristics and code delay estimation for DS
spread spectrum systems under conditions of multipath
fading. Thisnonlinear estimation problemisextremely com-
plex. An efficient simulation-based algorithm based on par-
ticle filtering is proposed to solve it. The method com-
bines sequential importance sampling, a selection scheme
and a variance reduction technique. An extensive simula
tion study is carried out and demonstrates good performance
of the suggested approach.

1. INTRODUCTION

Direct sequence (DS) spread spectrum systems are robust to
many channel impairments, allow multiuser (CDMA) and
low-detectability signal transmission, and, therefore, are
widely used in different areas of digital communications.
Unlike with many other communication systems, however,
spread spectrum receivers require additional code synchro-
nization, which might be a rather challenging task under
conditions of multipath fading, when severe amplitude and
phase variations take place.

The problem of joint delay and multipath estimation has
been addressed in the literature before (see [6, 7, 9], for
example), and proved to be a difficult one due to its in-
herited nonlinearity. The previously proposed approaches
were mainly based on the use of the Extended Kalman Filter
(EKF). However, many of them concentrated on the chan-
nel parameters and delay estimation only; moreover, in a
number of cases, when EKF methods were applied, the es-
timated parameters were divergent [6].

In this paper, we propose to estimate the channel param-
eters, code delays and symbols jointly using particle filter-
ing techniques, a set of powerful and versatile simulation-
based methodsrecently appearedin theliterature (see[5] for
a survey). These methods have aready been successfully
applied in digital communications for demodulation in fad-
ing channels[2, 5, 11] and detection in synchronousCDMA
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[10, 12]. In this work, however, only the symbols needed
to be imputed since the unknown fading channel character-
istics were integrated out. In DS spread spectrum systems,
onefacesamore complex task involving both discrete (sym-
bols) and continuous-valued (delays) unknown parameters.
We show in this paper that particle filtering allows to solve
efficiently this problem.

The key idea of particle filtering methods is to approx-
imate the posterior distribution of interest by swarms of N
(V. > 1) weighted points in the sample space, called par-
ticles, which evolve randomly in time in correlation with
each other and either give birth to offspring particles or die
according to their ability to represent the different zones of
interest of the state space. These methods are very flexible
and converge asymptotically (N — oo) towards the pos-
terior of interest. The algorithm developed in this paper is
designed so asto make use of the structure of the model, and
incorporates efficient variance reduction strategies based on
Kaman filtering techniques[4]. At each iteration the algo-
rithm has a computational complexity that is linear in the
number of particles, and can easily be implemented on par-
allel processors.

Therest of the paper is organized asfollows. The model
specification and estimation objectives are stated in Section
2. In Section 3, a particle filtering method is devel oped
for joint symbol/channel coefficients/code delay estimation
with simulation results presented in Section 4. Findly, a
conclusionisdrawn in Section 5.

2. PROBLEM STATEMENT AND ESTIMATION
OBJECTIVES

Transmitted waveform. Let us denote for any generic se-
QUENCE Ky, Kij 2 (Kiy Kit1, - -+, ;) andlet d,, bethenth
information symbol, and s(7) be the corresponding analog
bandpass spread-spectrum signal waveform transmitted in
the symbol interval of duration 7';:

swans(7) = Re[ry (dn) PN (1) exp(j27 fo7)],
for (n — 1)Ty < 7 < nTy,
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wherer,, (.) performsthe mapping fromthedigital sequence
to waveforms and corresponds to the modul ation technique
employed, f. denotesthe carrier frequency and PN (1) isa
wide-band pseudo-noise (PN) waveform definedby PN (1) =
S ann(t — hT.). Here, a1y is a spreading code se-
quence! consisting of H chips (with values {4-1}) per sym-
bol, n(r — hT.) is a rectangular pulse of unit height and
duration T, and T is the chip interval satisfying the rela-
tionT.=Ty/H.

Channel model. The signal is passed through a noisy
multipath fading channel which causes random amplitude
and phase variations on the signal. The channel can be rep-
resented by a time-varying tapped-delayed line with taps
spaced Ts seconds apart, where T, is the Nyquist sampling
rate for the transmitted waveform; T = T,./2 due to the
PN bandwidth being approximately 1/7'.. The equivalent
discrete-time impul se response of the channel is given by

hc,t = ENf*l (nf)ét.np

ny=0 Jt
where ¢ is adiscrete time index, Ny is the number of paths

of the channel, ft("f ) are the complex-valued time-varying
multipath coefficients arranged into the vector f;, and d; .,
denotes the Kronecker delta.

We assume here that the channel coefficientsf; and code
delay 6; propagate according to the first-order autoregres-
sive (AR) mode:

fo= Asfi1+Byvi, v KA (0,Ty,), (D)

0y = 011 + 00€, € ESh N(0,1), ()
which correspondsto a Rayleigh uncorrel ated scattering chan-
nel model; here Ay £  diag(ao,...,on,—-1),

B; £ diag(oy, ... ,05n,-1),Witho}, beingthenoise
variance, and «a,,, accounting for the Doppler spread (see
[7] for details and discussion on the use of the higher order
AR).

Recelved signal. The complex output of the channel
sampled at theNyquist rate, (inwhichcaset = 2H (n — 1)+
1,...,2Hn samples correspond to the nth symbol trans-
mitted, i.€. d,, < Yapr(n—1)+1:20n) CaN, thus, be expressed
as

Y = Cldym, 014) + 051, 20 K" NL(0,1), (3

where C(din,014) = Yn/ o fi™s (t=ny) T, = 60,)
and o2 being the noise variance?. The noise sequences ¢,
€ andvt(”f), n=0,...,Ny—1areassumed mutually inde-
pendent and independent of the initial states

fo ~ N (foan,o) 00 ~ N (90,-’39,0) .

1The extension to a multiuser DS CDMA transmission is straightfor-
ward, see [10, 12], for example.

2The case of non-Gaussian noise can be easily treated using the tech-
niques presented in [11].

Estimation objectives. The symbols d,,, which are
assumed i.i.d., the channel characteristics f; and the
code delay 6; are unknown for n,t > 0. Our am is
to obtain sequentialy in time an estimate of the joint
posterior probability density of these parameters
D (d1.n, f0:28n, O0.20n | Y1.28n) , @nd some of its character-
istics, such as E (di.n|y1:2mn), E (fo:2mn| y1:20m) and
E (0o:20n| y1:2m7) In paticular. This problem, unfortu-
nately, does not admit any analytical solution and, thus, ap-
proximate methods must be employed. One of the meth-
ods that has proved to be useful in practiceis particlefilter-
ing, and in the next chapter we propose a receiver based on
the use of these techniques for joint estimation of symbols,
channel coefficients and code delay in DS spread-spectrum
systems.

3. PARTICLE FILTERING ALGORITHM

A draightforward application of the particle filtering
methods focuses on the estimation of the joint
posterior distribution p (dl:na dfo;QHn, dao;an| yl;QHn) =
P (di:n, fo.2mn, 00:20n| Y1:28n) dfo:2ndO0:2mn.  In oUF
case, however, this problem can be reduced to
one of sampling from a lower-dimensional posterior
p (dlzn, d00:2Hn| y1:2Hn)- This is based on the fact thaI,
conditional upon the sequences d;.,, dfo.oun, the proba
bility density p (fo.2mn | Y1:28n, d1:n, d90.21,) CaN be com-
puted using the Kalman filter associated with the Eq.(1, 3)
(%e [11 31 4])1 andv thereforev p (fO:QHn| yl:QHn) can be ap-
proximated by a random mixture of Gaussian distributions,
thus leading to an increased algorithm efficiency:

FORRI0)

N
P (fo2mn| y1:2mm) = 2 im1 P(fo2mn | y12mn s dians 00.900)

Strictly speaking, we are interested in estimating the infor-
mation symbols only and the tracking of the channel is nat-
urally incorporated into the proposed algorithm. However,
following this approach, the MM SE (conditional mean) es-
timates of fading coefficients can, of course, be obtained if
necessary.

We can now proceed with the estimation of
p (d1:n, dBo:2mn | Y1:28n) using particle  filtering
techniqgues. The method is based on the following

. . N

remark. Suppose N particles {dﬂ,@fﬁmn}ﬂ can be
easily simulated according to an arbitrary ‘convenient
importance distribution 7(dy.,,, dfo.25n| Y1) (Such that
p(dlzn;dHO:QHn“Jl:n) >0 |mp||es 71'(dl:’r7,7d6():2H'n,|yl:n)
> 0). Then, using theimportance sampling identity, an esti-
mate of p (d1.n, d0o.25n| y1.20x) 1S given by the following
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point mass approximation:
ﬁ (dlzna daO 2Hn| Yi1: 2Hn)

~(1
= Zil Bl o))

(dl:na daO:ZHn) )

where & ") are the so-called importance weights
o wl) (i (dg 05 Q"H’ Y QH")
1Iin — N ] i .
Z] 1 ngf)v (dg n) 90 )2nH Y1 2Hn)

An additional condition of = (df)n, o an‘ Y1 QHn) having

to admit 7 (dgﬁ)n_l, 9( 02H(n_1) ‘ Y1:2H (n— 1)) asamarginal
distribution alows to propagate this estimate sequentially
in time without subsequently modifying the past simulated
trgjectories; wy., = wi.,—1wy, inthiscase. Also a selec-
tion procedure introduced at each time step helps to avoid
the degeneracy of the algorithm by discarding particleswith
low normalized importance weights and multiply those with
high ones (see [3, 4, 10] for the details of the agorithm).
Given for the (n — 1)th symbol N particles

. . N
{dgf)n_ 1,05 H(n1) } _, distributed approximately accord-

ingtop (dlzn—l, dbo:211(n—1) } y1:2H(n—1)) , thegeneral par-
ticle filtering receiver, proceeds as follows:

Particle Filtering Algorithm
Sequential Importance Sampling Step

e Fori=1,... N, sample( " ,02H(n D41:2Hn) ~

7T(dn7 92H(n71)+1:2Hn| dl;n,_17 oél)QH(n 1) s Y1: 2Hn)

e For i = ,IN, evaluate the importance
weights w?) up to a normalizing constant.

o

e Fori=1,...,N, normalize wﬁl to obtain

Selection Sep

e Multiply/discard particles with respect to

high/low wﬁf) to obtain N unweighted particles
(diin: Oz

The choice of the importance distribution and a selec-
tion scheme is discussed in [4]; depending on the one cho-
sen, the computational complexity of the algorithm varies.
If, say, the prior is taken to be the importance distribution,
asin this paper, i.e.

(dn792H(n 1)+12H’n‘d1n 1,902H(n 1) ylen):
p(dn) TT725; ot (n—1)+1 P(0e| Oi—1),

then w,, becomes

wn o P (Y2H(n—1)+1:20n | Y120 (n—1)> d1:n, Oo:28n)
2Hn
= Ht:QH(n—l)—i—l D (yt| dl:na 90:tv yl:tfl) )

and requires evaluation of 2H one-step Kalman filter up-
dates for each symbol. As far as the selection step is con-
cerned, a stratified sampling [8] employed here can be im-
plementedin O (V) operations.

Sequential Importance Sampling
(prior as an importance distribution)

e Fori=1,... ,N,
sample cAlEf) ~ p(dyn),
(2)

wy =1,
Fort=2H(n—1)+1,...
~(i)
sample (68, ") ~ p(0:] 01—1),
perform one-step Kalman filter update

(w( =wp (yel diin, Oo:t, Y1:6—1))-

,2Hn,

e Fori=1,...,N, normalize wff) to obtain u?ff).

If H islong, it is useful to resample the particles at in-
termediate stepsbetweent = 2H(n— 1)+ 1andt = 2Hn.
One can a'so use Markov chain Monte Carlo (MCMC) steps
s0 asto rejuvenate the particleand in particular d .

We would aso like to note that, of course, using the
prior distribution in our case can be inefficient, as no infor-
mation carried by observations is used to explore the state
space. Further research should concentrate on devel opment
suboptimal importance distributions, perhaps, on a case by
case basis, so as to reduce the variance of the importance
weights and thus increase the efficiency of the procedure.

4. SSIMULATION RESULTS

The agorithm presented above was applied to performjoint
symbols/channel coefficients/code delay estimation for DS
spread spectrum systems with H = 15, Ny = 4 (modula-
tion scheme 2 P.S K) and the multipath channel response as
in[7, channel B]. The AR parameterswerealsoset asin[7],

i.e a,, =0.999,7 = 0.999, O'fn = 0.001, o3 = 0.001,

and corresponded to the case of nearly constant coefficients
and constant delay.

AsitisshowninFig. 1, the algorithm exhibits good bit-
error-rate (BER) performance even for just N = 100 parti-
cles (pilot symbol rateis 1 : 30). A tracking error trajectory
O251m — 025, for 100 information symbols (corresponding
to 1500 chips and 3000 channel samples) and an average
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signal to noise ratio (SNR) equal to 15 dB is presented in
Fig. 2. Fig. 3 aso illustrates the mean-square delay error
MSEFE asafunction of SNR:
1 & S \2
MSE = N, Z (92Hn - 92Hn) ,

" n=1

where N,, isalength of the symbol sequence, V,, = 1000.
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Fig. 1. Bit error rate.
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Fig. 3. Mean-square delay error via SNR.

5. CONCLUSION

In this paper, we propose the application of particlefiltering
techniquesto achallenging problem of joint symbols, chan-
nel coefficients and code delay estimation for DS spread
spectrum systems in multipath fading. The algorithm is de-
signed to make use of the structure of the model, and incor-
porates efficient variance reduction techniques. An exten-
sive simulation study demonstrates the good performance
of the method. In addition, the tracking of the channdl is
naturally incorporated in the proposed algorithm, and the
estimates of the channel coefficients can be obtained if re-
quired. The algorithm also can be easily simplified to con-
sider just channel coefficients and code delay estimation.
The extension to a multiuser DS CDMA transmission is
straightforward. Future research should concentrate on the
development of suboptimal importance distributions capa-
ble of increasing the algorithm efficiency.
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