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ABSTRACT

In this paper, we develop a new receiver for joint symbol,
channel characteristics and code delay estimation for DS
spread spectrum systems under conditions of multipath
fading. This nonlinear estimation problem is extremely com-
plex. An efficient simulation-based algorithm based on par-
ticle filtering is proposed to solve it. The method com-
bines sequential importance sampling, a selection scheme
and a variance reduction technique. An extensive simula-
tion study is carried out and demonstrates good performance
of the suggested approach.

1. INTRODUCTION

Direct sequence (DS) spread spectrum systems are robust to
many channel impairments, allow multiuser (CDMA) and
low-detectability signal transmission, and, therefore, are
widely used in different areas of digital communications.
Unlike with many other communication systems, however,
spread spectrum receivers require additional code synchro-
nization, which might be a rather challenging task under
conditions of multipath fading, when severe amplitude and
phase variations take place.

The problem of joint delay and multipath estimation has
been addressed in the literature before (see [6, 7, 9], for
example), and proved to be a difficult one due to its in-
herited nonlinearity. The previously proposed approaches
were mainly based on the use of the Extended Kalman Filter
(EKF). However, many of them concentrated on the chan-
nel parameters and delay estimation only; moreover, in a
number of cases, when EKF methods were applied, the es-
timated parameters were divergent [6].

In this paper, we propose to estimate the channel param-
eters, code delays and symbols jointly using particle filter-
ing techniques, a set of powerful and versatile simulation-
based methods recently appeared in the literature (see [5] for
a survey). These methods have already been successfully
applied in digital communications for demodulation in fad-
ing channels [2, 5, 11] and detection in synchronous CDMA

[10, 12]. In this work, however, only the symbols needed
to be imputed since the unknown fading channel character-
istics were integrated out. In DS spread spectrum systems,
one faces a more complex task involving both discrete (sym-
bols) and continuous-valued (delays) unknown parameters.
We show in this paper that particle filtering allows to solve
efficiently this problem.

The key idea of particle filtering methods is to approx-
imate the posterior distribution of interest by swarms of N
(N � 1) weighted points in the sample space, called par-
ticles, which evolve randomly in time in correlation with
each other and either give birth to offspring particles or die
according to their ability to represent the different zones of
interest of the state space. These methods are very flexible
and converge asymptotically (N → ∞) towards the pos-
terior of interest. The algorithm developed in this paper is
designed so as to make use of the structure of the model, and
incorporates efficient variance reduction strategies based on
Kalman filtering techniques [4]. At each iteration the algo-
rithm has a computational complexity that is linear in the
number of particles, and can easily be implemented on par-
allel processors.

The rest of the paper is organized as follows. The model
specification and estimation objectives are stated in Section
2. In Section 3, a particle filtering method is developed
for joint symbol/channel coefficients/code delay estimation
with simulation results presented in Section 4. Finally, a
conclusion is drawn in Section 5.

2. PROBLEM STATEMENT AND ESTIMATION
OBJECTIVES

Transmitted waveform. Let us denote for any generic se-
quence κt, κi:j � (κi, κi+1, . . . , κj)

T, and let dn be the nth
information symbol, and s(τ ) be the corresponding analog
bandpass spread-spectrum signal waveform transmitted in
the symbol interval of duration Td:

strans(τ ) = Re[rn(dn)PN(τ ) exp(j2πfcτ)],
for (n − 1)Td < τ ≤ nTd,
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where rn(.) performs the mapping from the digital sequence
to waveforms and corresponds to the modulation technique
employed, fc denotes the carrier frequency and PN(τ ) is a
wide-band pseudo-noise (PN) waveform defined by PN(τ) =∑H

h=1 ahη(τ − hTc). Here, a1:H is a spreading code se-
quence1 consisting of H chips (with values {±1}) per sym-
bol, η(τ − hTc) is a rectangular pulse of unit height and
duration Tc, and Tc is the chip interval satisfying the rela-
tion Tc = Td/H .

Channel model. The signal is passed through a noisy
multipath fading channel which causes random amplitude
and phase variations on the signal. The channel can be rep-
resented by a time-varying tapped-delayed line with taps
spaced Ts seconds apart, where Ts is the Nyquist sampling
rate for the transmitted waveform; Ts = Tc/2 due to the
PN bandwidth being approximately 1/Tc. The equivalent
discrete-time impulse response of the channel is given by

hc,t =
∑Nf−1

nf=0 f
(nf )
t δt,nf

,

where t is a discrete time index, Nf is the number of paths

of the channel, f
(nf )
t are the complex-valued time-varying

multipath coefficients arranged into the vector f t, and δt,nf

denotes the Kronecker delta.
We assume here that the channel coefficients ft and code

delay θt propagate according to the first-order autoregres-
sive (AR) model:

ft = Af ft−1 + Bfvt,vt
i.i.d.∼ Nc

(
0, INf

)
, (1)

θt = γθt−1 + σθεt, εt
i.i.d.∼ N (0, 1) , (2)

which corresponds to a Rayleigh uncorrelated scattering chan-
nel model; here Af � diag(α0, . . . , αNf−1),
Bf � diag(σf,0, . . . , σf,Nf−1), with σ2

f,nf
being the noise

variance, and αnf
accounting for the Doppler spread (see

[7] for details and discussion on the use of the higher order
AR).

Received signal. The complex output of the channel
sampled at the Nyquist rate, (in which case t = 2H (n − 1)+
1, . . . , 2Hn samples correspond to the nth symbol trans-
mitted, i.e. dn ↔ y2H(n−1)+1:2Hn) can, thus, be expressed
as

yt = C(d1:n, θ1:t) + σεt, εt
i.i.d.∼ Nc (0, 1) , (3)

where C(d1:n, θ1:t) =
∑Nf−1

nf =0 f
(nf )
t s ((t − nf )Ts − θt)

and σ2 being the noise variance2. The noise sequences εt,

εt and v
(nf )
t , n = 0, . . . , Nf−1 are assumed mutually inde-

pendent and independent of the initial states

f0 ∼ Nc

(
f̂0,Pf ,0

)
, θ0 ∼ N

(
θ̂0, Pθ,0

)
.

1The extension to a multiuser DS CDMA transmission is straightfor-
ward, see [10, 12], for example.

2The case of non-Gaussian noise can be easily treated using the tech-
niques presented in [11].

Estimation objectives. The symbols dn, which are
assumed i.i.d., the channel characteristics ft and the
code delay θt are unknown for n, t > 0. Our aim is
to obtain sequentially in time an estimate of the joint
posterior probability density of these parameters
p (d1:n, f0:2Hn, θ0:2Hn| y1:2Hn) , and some of its character-
istics, such as E (d1:n| y1:2Hn) , E ( f0:2Hn| y1:2Hn) and
E (θ0:2Hn| y1:2Hn) in particular. This problem, unfortu-
nately, does not admit any analytical solution and, thus, ap-
proximate methods must be employed. One of the meth-
ods that has proved to be useful in practice is particle filter-
ing, and in the next chapter we propose a receiver based on
the use of these techniques for joint estimation of symbols,
channel coefficients and code delay in DS spread-spectrum
systems.

3. PARTICLE FILTERING ALGORITHM

A straightforward application of the particle filtering
methods focuses on the estimation of the joint
posterior distribution p (d1:n, df0:2Hn, dθ0:2Hn| y1:2Hn) =
p (d1:n, f0:2Hn, θ0:2Hn| y1:2Hn) df0:2Hndθ0:2Hn. In our
case, however, this problem can be reduced to
one of sampling from a lower-dimensional posterior
p (d1:n, dθ0:2Hn| y1:2Hn). This is based on the fact that,
conditional upon the sequences d1:n, dθ0:2Hn, the proba-
bility density p ( f0:2Hn| y1:2Hn, d1:n, dθ0:2Hn) can be com-
puted using the Kalman filter associated with the Eq.(1, 3)
(see [1, 3, 4]), and, therefore, p ( f0:2Hn| y1:2Hn) can be ap-
proximated by a random mixture of Gaussian distributions,
thus leading to an increased algorithm efficiency:

p ( f0:2Hn| y1:2Hn) =
∑N

i=1 p( f0:2Hn| y1:2Hn, d
(i)
1:n, θ

(i)
0:2Hn)

Strictly speaking, we are interested in estimating the infor-
mation symbols only and the tracking of the channel is nat-
urally incorporated into the proposed algorithm. However,
following this approach, the MMSE (conditional mean) es-
timates of fading coefficients can, of course, be obtained if
necessary.

We can now proceed with the estimation of
p (d1:n, dθ0:2Hn| y1:2Hn) using particle filtering
techniques. The method is based on the following

remark. Suppose N particles
{
d
(i)
1:n, θ

(i)
0:2Hn

}N

i=1
can be

easily simulated according to an arbitrary convenient
importance distribution π(d1:n, dθ0:2Hn| y1:n) (such that
p(d1:n, dθ0:2Hn| y1:n) > 0 implies π(d1:n, dθ0:2Hn| y1:n)
> 0). Then, using the importance sampling identity, an esti-
mate of p (d1:n, dθ0:2Hn| y1:2Hn) is given by the following
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point mass approximation:

p̂ (d1:n, dθ0:2Hn| y1:2Hn)
=

∑N
i=1 w̃

(i)
1:nδ

(d
(i)
1:n,θ

(i)
0:2nH)

(d1:n, dθ0:2Hn) ,

where w̃
(i)
n are the so-called importance weights

w̃
(i)
1:n =

w
(i)
1:n∑N

j=1 w
(j)
1:n

, w
(i)
1:n ∝

p
(

d
(i)
1:n, θ

(i)
0:2nH

∣∣∣ y1:2Hn

)

π
(

d
(i)
1:n, θ

(i)
0:2nH

∣∣∣ y1:2Hn

) .

An additional condition of π
(

d
(i)
1:n, θ

(i)
0:2nH

∣∣∣ y1:2Hn

)
having

to admit π
(

d
(i)
1:n−1, θ

(i)
0:2H(n−1)

∣∣∣ y1:2H(n−1)

)
as a marginal

distribution allows to propagate this estimate sequentially
in time without subsequently modifying the past simulated
trajectories; w1:n = w1:n−1wn in this case. Also a selec-
tion procedure introduced at each time step helps to avoid
the degeneracy of the algorithm by discarding particles with
low normalized importance weights and multiply those with
high ones (see [3, 4, 10] for the details of the algorithm).

Given for the (n − 1)th symbol N particles{
d
(i)
1:n−1, θ

(i)
0:2H(n−1)

}N

i=1
distributed approximately accord-

ing to p
(
d1:n−1, dθ0:2H(n−1)

∣∣ y1:2H(n−1)

)
, the general par-

ticle filtering receiver, proceeds as follows:

Particle Filtering Algorithm

Sequential Importance Sampling Step

• For i = 1, . . . , N , sample (d̃(i)
n , θ̃

(i)

2H(n−1)+1:2Hn) ∼
π(dn, θ2H(n−1)+1:2Hn

∣∣ d
(i)
1:n−1, θ

(i)
0:2H(n−1), y1:2Hn).

• For i = 1, . . . , N , evaluate the importance
weights w

(i)
n up to a normalizing constant.

• For i = 1, . . . , N , normalize w
(i)
n to obtain w̃

(i)
n .

Selection Step

• Multiply/discard particles with respect to
high/low w̃

(i)
n to obtain N unweighted particles

(d(i)
1:n, θ

(i)
1:2Hn).

The choice of the importance distribution and a selec-
tion scheme is discussed in [4]; depending on the one cho-
sen, the computational complexity of the algorithm varies.
If, say, the prior is taken to be the importance distribution,
as in this paper, i.e.

π(dn, θ2H(n−1)+1:2Hn

∣∣ d1:n−1, θ0:2H(n−1), y1:2Hn) =
p(dn)

∏2Hn
t=2H(n−1)+1 p(θt| θt−1),

then wn becomes

wn ∝ p
(
y2H(n−1)+1:2Hn

∣∣ y1:2H(n−1), d1:n, θ0:2Hn

)
=

∏2Hn
t=2H(n−1)+1 p (yt| d1:n, θ0:t, y1:t−1) ,

and requires evaluation of 2H one-step Kalman filter up-
dates for each symbol. As far as the selection step is con-
cerned, a stratified sampling [8] employed here can be im-
plemented in O (N) operations.

Sequential Importance Sampling
(prior as an importance distribution)

• For i = 1, . . . , N ,

sample d̃
(i)
n ∼ p(dn),

w
(i)
n = 1,

For t = 2H(n − 1) + 1, . . . , 2Hn,

sample (θ̃
(i)

t ) ∼ p(θt| θt−1),

perform one-step Kalman filter update
(w(i)

n = w
(i)
n p (yt|d1:n, θ0:t, y1:t−1)).

• For i = 1, . . . , N , normalize w
(i)
n to obtain w̃

(i)
n .

If H is long, it is useful to resample the particles at in-
termediate steps between t = 2H(n− 1)+1 and t = 2Hn.
One can also use Markov chain Monte Carlo (MCMC) steps
so as to rejuvenate the particle and in particular dn.

We would also like to note that, of course, using the
prior distribution in our case can be inefficient, as no infor-
mation carried by observations is used to explore the state
space. Further research should concentrate on development
suboptimal importance distributions, perhaps, on a case by
case basis, so as to reduce the variance of the importance
weights and thus increase the efficiency of the procedure.

4. SIMULATION RESULTS

The algorithm presented above was applied to perform joint
symbols/channel coefficients/code delay estimation for DS
spread spectrum systems with H = 15, Nf = 4 (modula-
tion scheme 2PSK) and the multipath channel response as
in [7, channel B]. The AR parameters were also set as in [7],
i.e. αnf

= 0.999, γ = 0.999, σ2
f,nf

= 0.001, σ2
θ = 0.001,

and corresponded to the case of nearly constant coefficients
and constant delay.

As it is shown in Fig. 1, the algorithm exhibits good bit-
error-rate (BER) performance even for just N = 100 parti-
cles (pilot symbol rate is 1 : 30). A tracking error trajectory
θ2Hn − θ̂2Hn for 100 information symbols (corresponding
to 1500 chips and 3000 channel samples) and an average
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signal to noise ratio (SNR) equal to 15 dB is presented in
Fig. 2. Fig. 3 also illustrates the mean-square delay error
MSE as a function of SNR:

MSE =
1

Nn

Nn∑
n=1

(
θ2Hn − θ̂2Hn

)2

,

where Nn is a length of the symbol sequence, Nn = 1000.
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Fig. 1. Bit error rate.
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Fig. 2. The error in delay estimation. SNR=15 dB.
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Fig. 3. Mean-square delay error via SNR.

5. CONCLUSION

In this paper, we propose the application of particle filtering
techniques to a challenging problem of joint symbols, chan-
nel coefficients and code delay estimation for DS spread
spectrum systems in multipath fading. The algorithm is de-
signed to make use of the structure of the model, and incor-
porates efficient variance reduction techniques. An exten-
sive simulation study demonstrates the good performance
of the method. In addition, the tracking of the channel is
naturally incorporated in the proposed algorithm, and the
estimates of the channel coefficients can be obtained if re-
quired. The algorithm also can be easily simplified to con-
sider just channel coefficients and code delay estimation.
The extension to a multiuser DS CDMA transmission is
straightforward. Future research should concentrate on the
development of suboptimal importance distributions capa-
ble of increasing the algorithm efficiency.
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