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ABSTRACT

A multistep linear prediction (MSLP) approach is
presented for blind channel estimation for short-code
DS-CDMA (direct sequence code division multiple ac-
cess) signals in time-varying multipath channels. The
time-varying channel is assumed to be described by a com-
plex exponential basis expansion model (CE-BEM). We
first extend a recently proposed MSLP approach to blind
channel estimation for time-varying SIMO (single-input
multiple-output) systems, to time-varying MIMO systems
in order to define a “signal” subspace. Then the knowl-
edge of the spreading code of a desired user is exploited
in conjunction with the signal subspace to estimate the
time-varying channel of the desired user. Sufficient con-
ditions for channel identifiability are investigated. An illus-
trative simulation example is provided.

1. INTRODUCTION

Consider a short-code DS-CDMA system with M users and
N chips per symbol with the j-th user’s spreading code
denoted by cj = [cj(0), · · · , cj(N − 1)]T . Then the j-th
user’s transmitted signal at the chip rate in a baseband
discrete-time model representation is given by [5]-[7]

xj(k) =

∞∑

n=−∞
sj(n)cj(k − nN), j = 1, 2, · · · ,M, (1)

where sj(n) is the j-th user’s n-th symbol. In the presence
of a linear dispersive channel where the receiver collects one
sample per chip, the received discrete-time (sampled) signal
x̃j(k) due to user j is

x̃j(k) =

Lg−1∑

l=0

xj(k − l)gj(k; l) (2)

where gj(k; l), 0 ≤ l ≤ Lg − 1, (response at time k to a unit
input at time k − l) is the effective time-varying channel
impulse response (IR) sampled at the chip interval Tc. The
total received signal at chip-rate is the superposition of con-
tributions of all users observed in additive white Gaussian
noise w(k) as

y(k) =

M∑

j=1

x̃j(k) + w(k). (3)

The problem is to estimate the time-varying channel
gj0 (k; l) of a desired user j0 given the noisy data {y(k)}
and the knowledge of the desired user’s spreading code cj0 .
There is no training (pilot) signal present and the codes of
other users’ are not known.

This problem has various solutions [5]-[7] in the time-
invariant case when gj(k; l) = gj(l) ∀k. In this paper we
consider time-varying multipath channels described by a
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complex exponential basis expansion model (CE-BEM) [1]-
[4]

gj(k; l) =

Q∑

q=1

gq,j(l)e
jωqk (4)

where gq,j(l) (for q = 1, 2, · · · , Q) are time-invariant. Eqn.
(4) is a basis expansion of gj(k; l) in the time variable k
onto complex exponentials with frequencies {ωq}. We as-
sume the knowledge of the basis frequencies. The basis
frequencies are assumed to be the same for all users which
is certainly true in the downlink case.

The paper is organized as follows. The basic baseband
system model is derived in Sec. 2 to yield an MIMO formu-
lation. The proposed solution together with some analysis
are presented in Sec. 3. In Sec. 3.1 the MSLP approach of
[4] to blind channel estimation for time-varying SIMO sys-
tems, is extended to time-varying MIMO systems to define
a signal subspace. In Sec. 3.2 the spreading code of the
desired user is exploited in conjunction with the signal sub-
space to estimate the time-varying channel of the desired
user. Sufficient conditions for channel identifiability are in-
vestigated in Sec. 3.3. An illustrative simulation example
is in Sec. 4.

2. SYSTEM MODEL

From (1)-(4) we have

x̃j(k) =

Q∑

q=1

ejωqk

{ ∞∑

n=−∞
sj(n)hq,j(k − nN)

}
(5)

where

hq,j(k) :=

N−1∑

m=0

cj(m)gq,j(k −m). (6)

Define

x̃j(n) := [x̃j(nN), x̃j(nN+1), · · · , x̃j(nN+N−1)]T . (7)

Then, at the symbol rate, we have

x̃j(n) =

L∑

l=0

hj(n; l)sj(n− l) (8)

where

hj(n; l) :=

Q∑

q=1

ejωqnhq,j(l), ωq := ωqN, (9)

hq,j(l) := [hq,j(lN), hq,j(lN + 1)ejωq , · · · ,
hq,j(lN +N − 1)ejωq(N−1)]T . (10)

If we collect N chip-rate measurements of received signal
(from all users) into N -vector y(n), then we obtain, at
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the symbol rate, the MIMO model (additive white Gaus-
sian noise w(n) is defined in a manner similar to y(n)) and
x̃j(n):

y(n) =

M∑

j=1

L∑

l=0

hj(n; l)sj(n− l) + w(n). (11)

Thus, at the symbol rate (in the vector stationary for-
mulation), the frequencies in vector CE-BEM are Nωq
(q = 1, 2, · · · , Q).

Assume that gj(k; l) = 0 for l > Lg − 1 (in addition to
gj(k; l) = 0 for l < 0) ∀k (i.e. multipath spread is Lg chips).
Let Lg ≤ mN . It then follows that

h̃j(n) :=
[

hTj (n; 0) hTj (n+ 1; 1) · · · hTj (n+m;m)
]T

=

Q∑

q=1

Γq,nCjgq,j (12)

where

Γq,n := diag{ejωqnN , ejωq(nN+1), · · · , ejωq(nN+N+mN−1)},
(13)

(Cj is ((m+ 1)N) × (mN), gq,j is (mN)× 1)

Cj :=




cj(0) 0 · · · 0

cj(1) cj(0)
. . . 0

...
. . .

. . .
...

cj(N − 1)
. . .

. . . cj(0)

0 cj(N − 1)
. . .

...
...

. . .
. . .

...
0 0 · · · cj(N − 1)
...

... · · ·
...

0 0 · · · 0




,

(14)

gq,j :=




gq,j(0)
gq,j(1)

...
gq,j(mN − 1)


 . (15)

It follows that hj(n; l) = 0 for l < 0 or l > (m+1). Finally,
we may write (11) as

y(n) =

L∑

l=0

H(n; l)s(n − l)
︸ ︷︷ ︸

=:x(n)

+w(n), (16)

H(n; l) := [ h1(n; l) h2(n; l) · · · hM (n; l) ] , (17)

s(n) := [ s1(n) s2(n) · · · sM (n) ]
T
. (18)

3. MULTI-STEP LINEAR PREDICTORS
(MSLP) BASED SOLUTION

3.1. Multi-Step Linear Predictors [4]

Assume the following:

(H1) N > M .

(H2) There exists a time-varying left inverse {G(n; l)}Kl=0

such that ∀n and ∀k
∑K

l=0
G(n; l)H(n − l; k − l) =

IMδ(k) where G(n; l) is M ×N and K <∞.

(H3) The information sequences {sj(k)}Mj=1 are zero-mean,
mutually independent and temporally white. Take
E{|sj(k)|2} = 1 by absorbing any non-identity cor-
relation of sj(k) into the channel.

(H4) {w(k)} is zero-mean with E{w(k + τ )wH(k)} =
σ2
wINδ(τ ) where IN is the N ×N identity matrix and

the superscript H is the Hermitian operator (complex
conjugate transpose).

It is not too hard to establish (see [3],[8] for the SIMO case)

(H2′) implies (H2) with K = K.

(H2′) Consider the [N(K + 1)] × [M(K + L + 1)] “time-
varying Sylvester” matrix TK;n(H) associated with
time-varying MIMO impulse response {H(n; l)}, de-
fined as

TK;n(H) :=



H(n;0) H(n;1) · · · H(n;L) · · · 0
0 H(n-1;0) · · · H(n-1;L-1) · · · 0
...

. . .
. . .

. . .
0 0 · · · H(n-K;0) · · · H(n-K;L)


 .

(19)
Assume that N > M , and TK;n(H) is of full column
rank ∀K ≥ML− 1 and ∀n.

Rewrite noise-free part of (16) as (d ≥ 1)

x(n) = e(n|n − d) + x̂(n|n − d) (20)

where

e(n|n− d) :=

d−1∑

l=0

H(n; l)s(n− l), (21)

x̂(n|n − d) :=

L∑

l=d

H(n; l)s(n− l). (22)

As in [4], it then follows that {x(n)} can be decomposed as
in (20)-(22) such that

E{e(n|n − d)xH(n−m)} = 0 ∀m ≥ d, (23)

and

x̂(n|n−d) =

K∑

i=1

A
(d)
i;nx(n−i−d+1) for some K ≤ K+L.

(24)
Mimicking [4] and using (20)-(24), we have, for m = d, d+
1, · · · , K + d− 1,

Rxx(m;n) =

K∑

i=1

A
(d)
i;nRxx(m−i−d+1;n−i−d+1), (25)

where
Rxx(m;n) := E{x(n)xH(n−m)}. (26)

In a matrix formulation, we may write (Kd := K + d− 1)

[A
(d)
1;n, · · · , A

(d)
M;n]R(n−d+1)

xxK = [Rxx(d;n), · · · , Rxx(Kd; n)]

(27)

where R(n)
xxK denotes an [NK]× [NK] matrix with its ij-th

block element as Rxx(j − i; n − i). Note that R(n)
xxK is not
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necessarily full rank, therefore, the coefficients A
(d)
i;ns are

not necessarily unique. A minimum norm solution to (27)
may be obtained as

[A
(d)
1;n, · · · , A

(d)
K;n]

= [Rxx(d;n), · · · , Rxx(K + d− 1;n)][R(n−d+1)
xxK ]# (28)

where the superscript # denotes the pseudoinverse.
Consider multistep linear predictors for steps d =

1, 2, · · · , d+ 1. For d ≥ 2, define

ed(n) := e(n|n−d)−e(n|n−d+1) = H(n; d−1)s(n−d+1)
(29)

where we have used (21). Consider the [N(d+ 1)]−vector

E(n) :=

[
eT (n|n − 1)

... eT2 (n + 1)
... · · ·

... eT
d+1

(n+ d)

]T
.

(30)
Using (21) and (30), we have

E(n) =




H(n; 0)
H(n+ 1; 1)

...
H(n+ d− 1; d− 1)

H(n + d; d)


 s(n) =: H̃

d
(n)s(n).

(31)
By (20) and (29) it follows that

ed(n+d−1) =

K∑

i=1

A
(d−1)
i;n+d−1x(n−i+1)−

K∑

i=1

A
(d)
i;n+d−1x(n−i)

= A
(d−1)
1;n+d−1x(n)+

K−1∑

i=1

D
(d,d−1)
i;n+d−1x(n−i)−A

(d)
K;n+d−1x(n−K)

(32)
where

D
(d,d−1)
i;n+d−1 := A

(d−1)
i+1;n+d−1 −A

(d)
i;n+d−1 , i = 1, 2, · · · , K − 1.

(33)
Using (29)-(33) we have

E(n) = DnX(n) (34)

where

X(n) :=

[
xT (n)

... xT (n − 1)
... · · ·

... xT (n−K)

]T
(35)

is a [N(K + 1)]−column vector and Dn is a [N(d + 1)] ×
[N(K + 1)] matrix composed of D

(d,d−1)
i;n s and A

(d)
i;ns for

1 ≤ d ≤ d+ 1. By (31), (34) and (H3), it follows that

REE(0;n) = E{E(n)EH(n)} = H̃d(n)H̃H

d
(n) (36)

= DnR(n+1)

xx(K+1)D
H
n . (37)

It has been shown in [4] that given noisy measurements
y(n), one can consistently estimate noise variance σ2

w under
(H4), using the correlation function of y(n). Therefore, one
can estimate the correlation function of the noise-free data
x(n) from that of the noisy data. In the following discussion
it is assumed that such is the case. Calculate REE(0;n) as

REE(0;n) = Dn
[
R(n+1)

yy(K+1) − σ
2
wIN(K+1)

]
DHn . (38)

3.2. Code-Constrained Solution
Pick d = m. Then by (12) and (31), we have

H̃m(n) = [h̃1(n), h̃2(n), · · · h̃M (n)]. (39)

Define (j = 1, 2, · · · ,M)

g̃j := [gT1,j , gT2,j , · · · gTQ,j ]
T , (40)

Γ̃nj := [Γ1,n,j , Γ2,n,j , · · · ΓQ,n,j ], (41)

Γq,n,j := Γq,nCj , q = 1, 2, · · · , Q. (42)

Then h̃j(n) = Γ̃nj g̃j where Γ̃nj is known for j = 1, the
desired user.

Let

Dn
[
R(n+1)

yy(K+1) − σ
2
wIN(K+1)

]
DHn

= [Usn Unn]
[

Λsn
Λnn

]
[Usn Unn]H (43)

where Λsn = diag (λ1n, · · · , λMn) contains the M largest
eigenvalues in descending order, Usn = [u1n · · · uMn] con-
tains the M corresponding orthonormal eigenvectors defin-
ing the signal subspace, Λnn = αnIN(m+1)−M (αn → 0),

and Unn =
[
u(M+1)n · · · u(Nm+N)n

]
contains the Nm +

N−M orthonormal eigenvectors corresponding to the noise
subspace (ideally eigenvalues equaling zero).

By orthogonality of H̃m(n) to sp{Unn}, it follows that

h̃Hj (n)uln = g̃Hj Γ̃Hnjuln = 0, l = M + 1, · · · , Nm+N, ∀j.
(44)

Pick P time points n ∈ N := {n0, n0 + l, · · · , n0 + (P − 1)l}
for some l ≥ 1. Then for the desired user (j = 1), (44)

is satisfied for n ∈ N where Γ̃n1 is known. Therefore, an
estimate of the desired user’s multipath channel coefficients
g̃1 can be obtained (up to a time-invariant scale factor) by
minimizing the cost

g̃H1

(∑

n∈N
Γ̃Hn1

[
Nm+N∑

l=M+1

ulnuHln

]
Γ̃n1

)
g̃1 =: g̃H1 Ag̃1 (45)

subject to the constraint g̃H1 g̃1 = 1. The solution (up to a
scale factor) is given by the eigenvector corresponding to the
smallest eigenvalue of the matrix A. Once g̃1 is estimated,
we can obtain g1(n; l) via (4), (15) and (40).

3.3. Identifiability
Now we investigate the conditions (in addition to (H1)-
(H4)) under which the solution of Sec. 3.2 will yield the
desired solution. With no loss of generality, assume that
the desired user is j = 1 . Consider

(H5) The [N(m + 1)] × [mNQ + M − 1] matrix

[Γ̃n1

... h̃2(n)
... · · ·

... h̃M (n)] has rank equal

to rank(Γ̃n1) + M − 1 ∀ n ∈ N . Moreover,

rank([g1,1

... g2,1

... · · ·
... gQ,1])=Q.

Lemma: Suppose that mNQ-vector g̃′ minimizes g̃
′HAg̃′

(see (45)) subject to g̃
′H g̃′ = 1. If P ≥ 2Q and (H5) holds

true, then g̃′ = βg̃1 for some β 6= 0 where g̃1 satisfies (15)
for j = 1.

Proof: By construction Γ̃n1g̃
′ =

∑M

j=1
αjnh̃j(n) which

implies Γ̃n1(g̃′−α1ng̃1) =
∑M

j=2
αjnh̃j(n) ∀n. Hence under

(H5), Γ̃n1(g̃′ − α1ng̃1) = 0 ⇒ Γ̃n1g̃
′ = α1nh̃1(n) for n ∈
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N . It follows from (12)-(15) and (40)-(42) that Γ̃n1g̃
′ =∑Q

q=1
ejωqng′cq where for some (mN)× 1 g′qs,

g′cq = diag{1, ejωq , · · · , ejωq(mN+N−1)}C1g
′
q. (46)

Thus we have the system of equations

Q∑

q=1

ejωqng′cq = α1nh̃1(n), n ∈ N , (47)

where the unknowns are g′cqs and α1ns. By [4, Lemma 1] we
have a unique solution (up to a scale factor) to (47) if P ≥

2Q and rank([g′c1
... g′c2

... · · ·
... g′cQ])=Q. Note that (47) is

satisfied for g′cq = diag{1, ejωq , · · · , ejωq(mN+N−1)}C1gq,1.
Hence, the rank condition on gq,1s in (H5) leads to the
desired solution.

�

Remark: It is seen from the rank condition on gq,1s
in (H5) that if Q is “large” and the multipath spread is
“small,” the rank condition may not be fulfilled. A possible
way to alleviate this is to use multiple sensors (receive an-
tenna array) in addition to spreading – this is an interesting
topic for future research

�
.

4. SIMULATION EXAMPLE

We consider the case of M (=2 or 5) users, each transmit-
ting 4-QAM signals, and short-codes with N (=8 or 16)
chips per symbol (M = 2 when N = 8 and M = 5 when
N = 16). The spreading codes were randomly generated
binary (±1, with equal probability) sequences. For multi-
path channels we took Lg = 4 (multipath spread of 4 chip
intervals, assuming a synchronous system) and Q = 2 with

ω1 = 0, ω2 =
2π

50
. (48)

Using the model (4), the coefficients gjq(l) were randomly
generated for each l (mutually independent, complex Gaus-
sian, independent real and imaginary parts each with zero-
mean and unit variance – Rayleigh fading). The channels
were the same for each user (downlink) and were randomly
generated in each run (i.e. were different in different Monte
Carlo runs).

Normalized mean-square error in estimating the channel
coefficients gq,j0 (l) of the desired user j0 = 1, averaged
over 100 Monte Carlo runs, was taken as the performance
measure for channel identification. It is defined as (before
Monte Carlo averaging)

NCMSE :=
minβ

{∑Q

q=1

∑L−1

m=0
‖gq,j0 (m)− βĝq,j0 (m)‖2

}

∑Q

q=1

∑L−1

m=0
‖gq,j0 (m)‖2

(49)
Complex white zero-mean Gaussian noise was added to the
received signal from the M users. The SNR refers to the
symbol SNR of the desired user, which was user j0 = 1, and
it equals the energy per symbol divided by N0 (= one-sided
power spectral density of noise = 2σ2

w}). In the equal-
power case (0dB MUIs), all users have the same power; in
the near-far case (10dB MUIs), the desired user power is
10 dB below that of other users. The results of averaging
over 100 Monte Carlo runs are shown in Fig. 1 for various
SNR’s for a record length of 1000 symbols. The proposed
approach works well.
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j0 =1: based on 1000 symbols per run, 100 Monte Carlo
runs.
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