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BLIND MULTIUSER CHANNEL ESTIMATION IN TIME-VARYING DIRECT
SEQUENCE CODE DIVISION MULTIPLE ACCESS SYSTEMS

ABSTRACT

A multistep linear prediction (MSLP) approach is
presented for blind channel estimation for short-code
DS-CDMA (direct sequence code division multiple ac-
cess) signals in time-varying multipath channels. The
time-varying channel is assumed to be described by a com-
plex exponential basis expansion model (CE-BEM). We
first extend a recently proposed MSLP approach to blind
channel estimation for time-varying SIMO (single-input
multiple-output) systems, to time-varying MIMO systems
in order to define a “signal” subspace. Then the knowl-
edge of the spreading code of a desired user is exploited
in conjunction with the signal subspace to estimate the
time-varying channel of the desired user. Sufficient con-
ditions for channel identifiability are investigated. An illus-
trative simulation example is provided.

1. INTRODUCTION

Consider a short-code DS-CDMA system with M users and
N chips per symbol with the j-th user’s spreading code
denoted by c; = [c;(0),---,¢;(N — 1)]T. Then the j-th
user’s transmitted signal at the chip rate in a baseband
discrete-time model representation is given by [5]-[7]

oo

zi(k) = Y si(n)e(k—nN), j=1,2,---,M, (1)

n=-—oo

where s;(n) is the j-th user’s n-th symbol. In the presence
of a linear dispersive channel where the receiver collects one
sample per chip, the received discrete-time (sampled) signal
Z;(k) due to user j is

Lg—1

(k) = Y @ik —1)g;(k;l) (2)

=0

where g;(k;1), 0 <1 < Ly —1, (response at time k to a unit
input at time k — [) is the effective time-varying channel
impulse response (IR) sampled at the chip interval T.. The
total received signal at chip-rate is the superposition of con-
tributions of all users observed in additive white Gaussian
noise w(k) as

y(k) =Y & (k) +w(k). (3)

The problem is to estimate the time-varying channel
9jo (k;1) of a desired user jo given the noisy data {y(k)}
and the knowledge of the desired user’s spreading code cj,.
There is no training (pilot) signal present and the codes of
other users’ are not known.

This problem has various solutions [5]-[7] in the time-
invariant case when g;(k;l) = g;(I) Vk. In this paper we
consider time-varying multipath channels described by a
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complex exponential basis expansion model (CE-BEM) [1]-
[4]

Q
g5 (k30) = gas (e’ (4)

where g4,;(1) (for ¢ = 1,2,---,Q) are time-invariant. Eqn.
(4) is a basis expansion of g;(k;l) in the time variable k
onto complex exponentials with frequencies {wq}. We as-
sume the knowledge of the basis frequencies. The basis
frequencies are assumed to be the same for all users which
is certainly true in the downlink case.

The paper is organized as follows. The basic baseband
system model is derived in Sec. 2 to yield an MIMO formu-
lation. The proposed solution together with some analysis
are presented in Sec. 3. In Sec. 3.1 the MSLP approach of
[4] to blind channel estimation for time-varying SIMO sys-
tems, is extended to time-varying MIMO systems to define
a signal subspace. In Sec. 3.2 the spreading code of the
desired user is exploited in conjunction with the signal sub-
space to estimate the time-varying channel of the desired
user. Sufficient conditions for channel identifiability are in-
vestigated in Sec. 3.3. An illustrative simulation example
is in Sec. 4.

2. SYSTEM MODEL
From (1)-(4) we have

Q oo
75 (k) —Zew{ > sj<n>hq,j<k—nN>} (5)

where
ha.g(k) =" _ ¢;(m)gq.;(k —m). (6)
m=0
Define
%;(n) := [Z;(nN), Z;(nN+1), ---, Z;(nN+N-1)]". (7)

Then, at the symbol rate, we have

%;(n) = hy(n;D)s;(n —1) (8)
=0

where

Q
hi(n:l) =3 @ hy (1), By = wN,  (9)

q=1

hqyj(l) = [hqyj (lN)a hq,j(lN + 1)6jwqa )
hgi(IN + N — 1)/ =0T (10)

If we collect N chip-rate measurements of received signal
(from all users) into N-vector y(n), then we obtain, at
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the symbol rate, the MIMO model (additive white Gaus-
§ia(n ?oise w(n) is defined in a manner similar to y(n)) and
X;(n):

(11)

n) =33 hy(n;D)s;(n — 1) + w(n).

j=1 1=0

Thus, at the symbol rate (in the vector stationary for-
mulation), the frequencies in vector CE-BEM are Nwg
(¢=1,2,-

Assume that g](k l)=0forl > Ly — 1 (in addition to
gi(k;1) =0 for I < 0) VEk (i.e. multlpath spread is Ly chips).
Let Ly < mN. It then follows that

(H2'

flj(n) = [ th(n; 0) h]T(n—l— 1;1) h;‘-r(n—l— m;m) ]T
Q
= qu,ncqu,j (12)
q=1
where
Fq n = diag{ejw"nN, ejwq(nN+1)7 . e,jwq(nN+N+mN—1)}7
(13)
(Cjis (m+1)N) x (mN), gq,; is (mN) x 1)
r ¢(0) 0 0 7
c;(1) ¢ (0) 0
¢ (N —1) ¢ (0)
C; = . ,
0 Cj (N — 1)
0 0 (N —1)
L0 0 0
(14)
gq,j(o)
9,5 (1)
8q,j ‘= : (15)
gq,j(mN - 1)

It follows that hj(n;l) =0for I < 0or ! > (m+1). Finally,
we may write (11) as

y(n) =Y Hml)s(n - 1) +w(n), (16)
=0
=:x(n)
H(n;l) := [ hi(n;l) ha(n;0) har(n;l) ], (17)
s(n) i=[ s1(n)  s2(n) su(n) |7, (18)

MULTI-STEP LINEAR PREDICTORS
(MSLP) BASED SOLUTION

3.1. Multi-Step Linear Predictors [4]
Assume the following;:

(H1) N > M.

3.

(H2) There exists a time-varying left inverse {G(n; l)}{(_zo
such that Vn and V& 325 G(ns)H(n — Lk — 1) =
In6(k) where G(n;1) is M x N and K < oo.

The information sequences {s;(k)})L, are zero-mean,

mutually independent and temporally white. Take

E{|s;(k)|?} = 1 by absorbing any non-identity cor-

relation of s;(k) into the channel.

(H4) {w(k)} is zero-mean with E{w(k + 7)w'(k)} =
o2 Ind(7) where Iy is the N x N identity matrix and
the superscript H is the Hermitian operator (complex
conjugate transpose).

It is not too hard to establish (see [3],[8] for the SIMO case)
(H2') implies (H2) with K = K.

) Consider the [N(K + 1)] x [M(K + L + 1)] “time-
varying Sylvester” matrix 7x.,(H) associated with
time-varying MIMO impulse response {H(n;l)}, de-

(H3)

fined as
Trn(H) =
H(n;0) H(n;l) H(n;L) 0
0 H(n10) H(n-1:L-1) 0
0 0 H(n-K;0) H(n-K:L)

Assume that N > M, and Tx;»(H
rank VK > ML — 1 and Vn.

Rewrite noise-free part of (16) as (d > 1)

) is of full column

x(n) = e(n|n — d) +X(njn — d) (20)
where

e(n|n —d) ZHnl (n—1), (21)

X(n|n — d) ZHnl (n—1). (22)

As in [4], it then follows that {x(n)} can be decomposed as

n (20)-(22) such that
E{e(n|n — d)x"(n—m)} = 0 Vm >d, (23)
and
X(njn—d) ZA( ) (n—i—d+1) for some K <K+L.
(24)
Mlmlokmg [4] and using (20)-(24), we have, for m =d,d +
K +d-—
R..(m;n) ZA(d)Rm m—i—d+1;n—i—d+1), (25)
where .
Rz (m;n) == E{x(n)x" (n —m)}. (26)
In a matrix formulation, we may write (Kq:= K +d — 1)
AL, s ARG = Rew(din), o, Rae(Kasn)]
(27)

where R;Y;)K denotes an [N K] x [N K] matrix with its ¢j-th
block element as Rux(j — ¢;n — ¢). Note that R;M( is not

IV -438




necessarily full rank, therefore, the coefficients AE;‘QS are

not necessarily unique. A minimum norm solution to (27)
may be obtained as

[A(d)

Lno *

d

= [Ruo(d;n), -, Roal(K +d — 1;n)][RUSTIIF (28)

where the superscript # denotes the pseudoinverse.
Consider multistep linear predictors for steps d =

1,2,---,d+1. For d > 2, define
€eq(n) := e(njn—d)—e(nln—d+1) = H(n; d—l)s(n—d—i—l%

(29
where we have used (21). Consider the [N(d + 1)]—vector

E(n):=|e"(njn—1):8(n+1): - &5, (n+d) ] .
(30)
Using (21) and (30), we have
H(n;0)

H(n+1;1)

E(n) = ;

H(n+d—1;d—1)
H(n +d; d)

(31

By (20) and (29

K
d—1 ‘ d .
ZAE n+d) 1 X(n— Z+1)_ZAE;72+d—1X(n_Z)

) it follows that

a(n+d—1)
i=1
d d,d d
= Ag nid 1 +Z D7<, n+dl lx n— 7’) Ag(;)n#»dflx(n_K)
(32)
where
dyd—1 d—1) d .
DI = Al e — Al i=120 KL
(33)
Using (29)-(33) we have
E(n) = DoX(n) (34)
where
T
X(n) = |x"(n):x"(n=1): - :x"(n-K) (35)
is a [N(K 4 1)]—column vector and D, is a [N(d + 1)] x

[N(K + 1)] matrix composed of Dg;d,;d_l)s and Agd,zs for
1<d<d+1. By (31), (34) and (H3), it follows that

Ree(0;n) = E{E(n)EH(n)} = flg(n)f{f’(n) (36)
= DR D (37)

It has been shown in [4] that given noisy measurements
y(n), one can consistently estimate noise variance o2 under
(HA4), using the correlation function of y(n). Therefore, one
can estimate the correlation function of the noise-free data
x(n) from that of the noisy data. In the following discussion
it is assumed that such is the case. Calculate Rgg(0;n) as

REE(OJl) — D |:R(n+1)

2 H
yy(K+1) OwIN(K+1) Dn . (38)

3.2. _Code-Constrained Solution
Pick d = m. Then by (12) and (31), we have

Hoa(n) = [ (n), Bo(n), - Bu(m)].  (39)

Define (5 =1,2,---, M)
g =gl 825 - 804" (40)
f"“j = [Fl,n,j, FQ,n,j, te FQ,’nqj]v (41)

Fq,"d = Fq,an, q= 1,2, Q (42)

Then hj(n) = T'»;g; where T'y; is known for j = 1, the
desired user.
Let

(n+1)
[Ryy(K+1)

0'12411N(K+1):| Df

= [Usn Unn] [ Aen } Uon Unn]® (43)

where Asp, = diag (Ain, -+, Amn) contains the M largest
eigenvalues in descending order, Usp, = [U1n -+ Unn] con-
tains the M corresponding orthonormal eigenvectors defin-
ing the signal subspace, Ann = anln@mi1)—m (@n — 0),

and Upn = [u<M+1>n u(Nm+N)n] contains the Nm +

N — M orthonormal eigenvectors corresponding to the noise
subspace (ideally eigenvalues equaling zero).

By orthogonality of H,,(n) to sp{Unx}, it follows that

W (n)yw, =g’ T w, =0, I=M+1,---,Nm+ N, Vj.

44
Pick P time points n € N := {no,no +1, -+, no+ (P — 1)l
for some ! > 1. Then for the desired user (j = 1), (44
is satisfied for n € N where I',; is known. Therefore, an
estimate of the desired user’s multipath channel coefficients
g1 can be obtained (up to a time-invariant scale factor) by
minimizing the cost

Nm—+N
il (Z f"rI;Il [ Z ulnull;ll‘| f‘nl) gl = g{{Agl (45)

neN I=M+1

subject to the constraint g, = 1. The solution (up to a
scale factor) is given by the eigenvector corresponding to the
smallest eigenvalue of the matrix A. Once g is estimated,
we can obtain g;(n;!) via (4), (15) and (40).

3.3. Identifiability

Now we investigate the conditions (in addition to (H1)-
(H4)) under which the solution of Sec. 3.2 will yield the
desired solution. With no loss of generality, assume that
the desired user is 7 = 1 . Consider

(H5) The [N(m 4+ 1)] x [mNQ + M — 1] matrix
[Co1 © ho(n) har(n)] has rank equal
to rank(T'n1) + M — 1 ¥V n € N.  Moreover,

L g0a])=Q.
Lemma: Suppose that mNQ-vector g minimizes g © Ag’
(see (45)) subject to g #g’ = 1. If P > 2Q and (H5) holds

true, then g’ = g1 for some 3 # 0 where g satisfies (15)
for j = 1.

rank([gl,l g2,1 e

Proof: By construction I'nig = Z]Nil ajnh;(n) which
implies f’nl(”—alngl) = Z;VLQ ozjnflj (n) Vn. Hence under
(H5), nl(g —amg) =0 = Lmg = oszh(n) for n €
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N. Tt follows from (12)-(15) and (40)-(42) that T g =
Q

Jwgn o/ . /o
g1 € 71" 8cq where for some (mN) x 1 ggs,

g, = diag{1, e ... wamMNTN=D1 gl (46)

Thus we have the system of equations
Q —
Z e]wq"g/cq = ainhi(n), neN, (47)
q=1

where the unknowns are g/,s and a1ns. By [4, Lemma 1] we
have a unique solution (up to a scale factor) to (47) if P >

2Q and rank([gl; @ g2 ¢ - 8Lo))=Q. Note that (47) is
satisfied for gl, = diag{1,e’*s, ... e“a(mNEN=D1Cyg, ;.
Hence, the rank condition on gg1s in (H5) leads to the
desired solution. 0O

Remark: It is seen from the rank condition on gq,1s
in (H5) that if @ is “large” and the multipath spread is
“small,” the rank condition may not be fulfilled. A possible
way to alleviate this is to use multiple sensors (receive an-
tenna array) in addition to spreading — this is an interesting
topic for future research 0O.

4. SIMULATION EXAMPLE

We consider the case of M (=2 or 5) users, each transmit-
ting 4-QAM signals, and short-codes with N (=8 or 16)
chips per symbol (M = 2 when N = 8 and M = 5 when
N = 16). The spreading codes were randomly generated
binary (£1, with equal probability) sequences. For multi-
path channels we took Ly = 4 (multipath spread of 4 chip
intervals, assuming a synchronous system) and Q = 2 with

_ 2m

== (48)

w1 IO7 w2

Using the model (4), the coefficients g;4(l) were randomly
generated for each [ (mutually independent, complex Gaus-
sian, independent real and imaginary parts each with zero-
mean and unit variance — Rayleigh fading). The channels
were the same for each user (downlink) and were randomly
generated in each run (i.e. were different in different Monte
Carlo runs).

Normalized mean-square error in estimating the channel
coefficients gq,j,(l) of the desired user jo = 1, averaged
over 100 Monte Carlo runs, was taken as the performance
measure for channel identification. It is defined as (before
Monte Carlo averaging)

L— ~
& Yozt 9050 () = B ()]}
L—1
ot Do 190,30 (M)
(49)

Complex white zero-mean Gaussian noise was added to the
received signal from the M users. The SNR refers to the
symbol SNR of the desired user, which was user jo = 1, and
it equals the energy per symbol divided by Ny (= one-sided
power spectral density of noise = 202}). In the equal-
power case (0dB MUISs), all users have the same power; in
the near-far case (10dB MUIs), the desired user power is
10 dB below that of other users. The results of averaging
over 100 Monte Carlo runs are shown in Fig. 1 for various
SNR’s for a record length of 1000 symbols. The proposed
approach works well.

ming {
NCMSE :=
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Fig. 1. Normalized channel MSE (49) for desired user

jo =1: based on 1000 symbols per run, 100 Monte Carlo
runs.
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