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ABSTRACT of an A element antenna array with element spacing far enough

We propose an iterative blind beamforming strategy for short-burst apart to allow for diversity combining. In contrast,.the receiver in
high-rate DS-CDMA systems. The blind strategy works by creat- thiS Paper has array elements spaced fy (where) is the wave-

ing a set of “training sequences” in the receiver that are used ag€ngth of the carrier) to allow for beamforming. The SBCMACI
input to a semi-blind beamforming algorithm, thus producing a Was first applled in a beamforming-scenario in [4]. As an example
corresponding set of beamformers. The objective then becomes t§' the relative performance of the SBCMACI to other beamform-
find which beamformer gives the best performance (smallest bit'Nd Strategies, consider the result shown in Fig. 1 comparing the
error). Two challenges we face are, to first find a semi-blind al- probability of symbol error for different training lengths (the sim-

gorithm that requires very few training symbols (to minimize the uIation details are not important at this time). Opserve the.signifi-
search time), and then to find an appropriate criterion for pick- cant difference in performance of the SBCMACI in comparison to

ing the beamformer that offers the best performance. Different cOnventional LS beamforming and another semi-blind technique,
semi-blind algorithms and criteria are tested. The recently pro- SBCMA [5]. In this case, the eye diagrams in Fig. 2 show that
posed SBCMACI (Semi-Blind CMA with Channel Identification) With only 3 training symbols the SBCMACI is able to open the
is demonstrated to be ideal because of how few training symbols®Y€: N , .

it needs for convergence. Of the tested criteria, one based on  The number of training symbols required by the SBCMACI is
feedback from the decoder (essentially using trellis information) SO Small that one wonders if it s feasible (or even possible) to per-

is shown to achieve nearly optimal performance. form completely blind beamforming using it. The objective of this
paper is to investigate the answer to this question. The conclusion

is that it is feasible, but the criterion for deciding which training-
sequence to use is critical. Of the four criteria we tested, the one
that incorporated trellis information, through feedback from the
Sdecoder, was found to almost always produce the correct decisions.

1. INTRODUCTION

Semi-blind algorithms have recently been developed for interfer-

ence suppression in asynchronous short-burst DS-CDMA system

showing significant reduction in the required number of training

symbols per burst in comparison to training-only (Least Squares 2. THE SETUP

(LS)) approaches (see [1]). Semi-blind algorithms usually require

much less quasi-stationary data then their blind counterparts (forwe propose a blind strategy that operates according to the setup

example, compare semi-blind CMA with CMA, as demonstrated ghown in Fig. 3. There are three main components: a block

in [2]) making them attractive solutions for wireless systems. Is it \yhich generates “training sequences”, a block which does semi-

possible to retain this desirable feature, yet have no training? Itis, pjind beamforming using both the received data and the generated

if one is willing to trade training for complexity. _ (hypothetical) “training sequence”, and a block which picks the
Considering one extreme, the method presented by Seshadri igequence that trains to give the smallest number of errors.

[3] performs joint data and channel estimation by finding the least- The blocks shown in Fig. 3 fit inside the system shown in Fig.

squares channel estimate between the received signal and every \nich represents ah/-user nonorthogonal coded DS-CDMA

possible input signal that may have been transmitted. The cOmpUygtem  The encoder applies a convolutional code to the data bits

tational complexity of this approach is obviously not feasible, SO ¢5 aach user. Let,.[n] € {0,1} be thenth bit for themth user
sub-optimal procedures were described. The approach we take ig,an, in vector forrr:; =[d ’[0] oo dm[Ng — 1T whereNd’

simpler: create a set of of training-sequences of a certain length inig the number of bits per burst. Let-) andIL, () represent the

the receiver and use these to train a semi-blind algorithm. USiNg o coging and interleaving operations respectively, then as shown
an appropriate criterion, pick the sequence which trains to give the;, Fig. 4,d, = I (e(d)), represents the output of the in-
fewest bit errors. To maintain a reasonable complexity, a semi- g jeaver for thenth user which is then mapped to a 4-QAM al-
blind algorithm that converges quickly is desired. phabet through the following simple differential coding scheme:
The SBMCA, first presented in [1], uses an extremely small (7] = by [r— 1€, b [0] = €998, whereg™ = (dy[2(n—
number of training symbols for convergence. In [1] a dense scat-dlr)'i 19 Jm 2n — 1]) w/”; andgy e,{:l:w/4 lgﬂ/ﬂl o is
*Um - : (0] ) - %0

tering environment was considered, wherein the receiver consiste . ) . J T
9 ' randomly assigned to each user. Differential encoding is used be-

This work was partially supported by an Ontario Graduate Scholarship cause the blind algorithm is only able to equalize up to a complex
(OGS). scalar, thus we need to design the system to be invariant to phase
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rotations. The next step is then spreading with a unique normalized2 correspond to a synchronous non-coded DS-CDMA system with
spreading code,,[n] € {£1/VN},n=0,--- , N—1, whereN M=4L=2A=5 N =7andSNR = 10dB (SNR £

is the processing gain. The signal is transmitted over a multipath 10log,,(1/02)), meaning thak, = 8. Given the phase ambigu-
channel of lengthL,, and received at anl element antenna ar- iy of the blind beamformer the number of training sequences of
ray. Assuming that the inverse signal bandwidth is large compared|ength N, that give unique outputs ¢V, So047 = 16384

to the propagation time across the array, the complex envelopesyaining sequences of length 8 will need to be searched (in the in-
of the signals received by different antenna elements from a givengpnite SNR case) if the LS algorithm is to be used. From Fig. 1
path are identical except for ph_ase and amplitude differences thatye see that many more sequences need to be searched when SNR
depend on the path angle of arrival (AOA), array geometry and thejs finjte (at least!® of length 16 in this case). On the other hand,
element p_att(;:rn. The A[\OA of th&h[multlpath S'g'fal ;rc_)m the  from Figures 1 and 2 we see that should be at least 3 for the
mth user is9;, anda(©;,) = [a1(Oy,), -+ ,aa(O:)]" is the SBCMACI to work. This means that onl? = 16 different se-

corresponding array response vector. ) ) quences need to be generated and used by the SBCMACI to create
The received signal is sampled at the chip rate, to yield the 16 gifferent beamformers. The SBCMACI requires significantly
following discrete-time signal at thith antenna element: less training symbols than the signal space dimensions because of
M Np—1 enhanced initialization through semi-blind channel identification
ri[n] = Z Z bon [K] g [0 — K] + vi[n] 1) [1, 5]. The SBCMA [5] is similar to the SBCMACI but does not
oy S perform channel estimation.

It is the job of the “Choose Best Sequence” block in Fig. 3 to
where N, is the number of symbols per burst[n] is additive  find the beamformer that yields the fewest number of errors. Once
white complex Gaussian noise of variance that's done, the recovered symbols from the selected beamformer

Lo—1 are sent to the differential decoder to recover the transmitted (de-
gh k] = Z ai((ﬂﬁn)ﬁm[l]cm [k —1] @) sired) bits. Looking at Fig. 1 we can see that if another semi-blind

algorithm were used, such as the SBCMA, then aldbut 65536
different sequences would need to be tested to get the same results.
L, is the number of resolvable multipath components fontik From the above discussion it is obvious that performance of
user ands,, [I] are complex Gaussian random variables. The re- this blind scheme depends greatly on two factors: 1. Ability of the
ceived signal, corresponding to tiéh symbol can be written in - semi-blind algorithm to open the eye with very few training sym-
vector form as follows: bols, and 2. Ability to choose the best beamformer of4fie!

T T different possibilities. The SBCMACI is needed to satisfy the first
r(k) = [G(L=1),--+, GO [b(k=L+1)", -, b(k)"] +V3$k) point. Inporder to satisfy the second, we tried four difffgrent cri-
) teria. Three are distance measures that compute the squared error
between the output of the beamformer and either the source al-

1=0

where,(L — 1)N > max(L.,)

T T
11'52 :1[1‘]1Tké(,l-)--_,[r/;8€)) ] e ]8)]_ ol el phabet, the source modulus, or the generated training sequence.
0= ; IN] ig1 S [7(l+17)}g\7]v[—1] . AN, -+ gA[(+ The other criterion uses the demapped and decoded outputs of the
%mN —E]]%mb(kf: [l; g[;c”] o [k]]’T ar;gm 7 Im beamformer (see Fig. 4) to compute the number of bits that have
v(k) = [v &k):r ¢A(,’€)T]z’1 f (k) . kN, - -, va[(k+ been flipped by the decoder. If interference suppression by the
1)N — 1]]% T T ¢ oo semi-blind algorithm is not successful then the deinterleaved bits

ill not satisfy the constraints imposed by the encoder’s trellis and

uselg (T/?)mp?rg?:g;’ng?ﬁ%; gar? g ;Baggﬁg?gnltiﬁt:’elneurrr:]ebnet; Othe number of bits corrected (flipped) by the decoder will be large.
' ' So the beamformer whose output yields the smallest number of

(4), itmight be necessary to process more than one received Vecmﬁips is chosen. This method of picking the best beamformer can

atc?);[':rsnee(::,lrli\(/)erdserr:l))slitlrt.?]aet\e/éztﬂg]r fg;?g\(l)l:l llg g?ggi sé:;cli(Slng be thought of as a further semi-blind enhancement where now we
® y ' P o), incorporate knowledge of the convolutional code and interleaver.

written as
ru(k) = Gubu(k) + vy (k) 4)

where, 3. SELECTION CRITERIA

— T T
E“ ((]Z))_—[[rb(?lz 7L+7 ‘ig’fp"' ® _bl(;g ]+ : T Using only the received data vecto®, = [r,(0), - ,r, (N, —
v“(k) _ (k)T ,v( ! +M7— 1)T]¥ and 1)], the generated training sequence of lengh {b{"r}iitfl,
K o ' and the spreading code for the desired usgt, the beamformer
G(L-1) --- G(0) 0 (weight vecton'W, (k =1, --- ,4™ 1) is computed by
G, = : S W, = arg r%‘i,nF(b{“r,X,cm) (6)

0 . GL-1) - G(0)

whereF (-) is some optimization scheme (SBCMACI [1], SBCMA
It is assumed tha&,, has full column rank. Thusy (called the [5], LS, etc.). This setup is similar to that used by Kuzminskiy in

smoothing factor) must satisfy the following inequality [6]. Among the4™:~! different weight vectors, the desirad is
chosen as follows
S [ME -1 5 .
mZ |\ AN ®) W =W, k =agminp @)
Therefore, the dimensionality of the signal subspagehe- wherep;, is some criterion. We tried the following four different

comesk = M(p + L — 1). The results shown in Figures 1 and criteria for deciding on the correct weight vector:
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1. Distance from the source alphabet:
1 Ny—1
1 . H .
Pk A ; mlm(|Wk ru(i) —al), (8)
where a € {ed T T
2. Distance from the source modulus:
1 Ny—1
pi= x> (IWilru(@)] = 1)° )
Nb =0
3. Distance from the generated training sequence:
1 N¢—1
ph=xp 2 IWilm @) - (10
=0
4. Number of flipped bits:

Let f(-) represent the differential encoding operation, then

dp = Y (WEX)T), andd, = e~ '(I1;,}(dx)) rep-
resent the outputs of the differential decoder and convolu-
tional decoder respectively. The number of bits that have
been flipped by the decodes; is the number of bits that

are different betweed;, andIL,,, (e(dy)).

4. SIMULATION EXAMPLES

In this section we present a few simulation results demonstrat-

ing the performance of the proposed scheme. We assume a sy!
chronous coded CDMA system as shown in Fig. 4. All users

use the same rate 1/2 constraint length 5 convolutional code (with

generators 23, and 35 in octal notation), but have different in-

terleavers which are generated randomly. Spreading codes are

generated randomly as well. The receiver employs a circular an
tenna array with equally spaced elementg), thusa(0,)
[exp(—j ZTant cos(©, —27)),- -+, exp(—jZETant cos(0), —
Z))], wherer,,; = A7-. AOAs are generated randomly for
each user between 0 afd radians.

Figure 5 is an example of how the criteria for training sequence

selection performs when the SBCMACI is used. The system pa-

rameters aré/ = 4, Ny = 200, N = 7, A = 5, SNR=5 dB,

p =1, andL = 2. The vertical axis of each plot represents the
value of p,. From top to bottom the results correspond to using
criteria 1, 2, 3 and 4 respectivel¥, and the number of bit errors

in each case ig*:[11,90], p*:[11,90], p*:[6,25], andp*:[13,0]. So

in this example p? (minimum number of flipped bits) gave the
smallest number of errors. It is also interesting to note that in this
case the beamformer with index 6 (which yields 25 bit errors and
was picked byp®) was trained using the correct first 3 symbols

this scheme is a lower bound on all possible criteria. This curve
is shown, called “SB: Optimum” on the plot, and it is seen {fat
comes very close to achieving this bound. If, from the 16 different
beamformers, we were always able to pick the beamformer that
was trained from the correct first three symbols of the data burst
then the performance we would achieve is actually worse then that
achieved througlp? and this is shown with the curve labelled “SB:
Training”. Finally, we plotted the performance of the Wiener filter
which is implemented assuming perfect knowledge of the channels
for all users.

5. CONCLUDING REMARKS

We have shown how it is possible to use a semi-blind technique,
the SBCMACI, to perform blind beamforming in DS-CDMA sys-
tems subject to ISI and MAI. The results show that performance
is very dependent on the choice of selection criterion and that if
the decoder assists in the selection process then it is possible to
get near optimum performance using the blind scheme. In fact, the
blind scheme outperformed the original semi-blind technique. The
complexity of this scheme is the major concern. It is only appli-
cable to relatively small values df; and small alphabet sizes.

6. REFERENCES

[1] R.A. Pacheco and D. Hatzinakos, “Semi-blind spatio-
temporal equalization and multiuser detection for DS-CDMA
systems,” in2001 |IEEE Third Workshop on Sig. Proc. Ad-
vances in Wireless Comm. (SPAWC' 01), 2001, pp. 126-129.

rr2] A.M. Kuzminskiy, “Finite amount of data effects in spatio-
temporal filtering for equalization and interference rejection
in short burst wireless communications3gnal Processing,
vol. 80, no. 10, pp. 1987-1997, October 2000.

Nambi Seshadri,S Haykin, ed., Blind Deconvolution, chap-
ter Joint data and channel estimation using blind trellis search
techniques, pp. 259-286, Prentice Hall, 1994.

Ivan R.S. Casella, E.S. Sousa, and P.J.E. Jeszensky, “Semi-
blind beamspace-time interference cancellation using sub-
space channel identification for DS-WCDMA systems,” in
PIMRC, 2002, pp. 1972-1976.

R.A. Pacheco and D. Hatzinakos, “Semi-blind strategies for
interference suppression in DS-CDMA system§bmitted
to |[EEE Trans. on Communications, 19 pages, 2002.

-(3]

(4]

(5]

[6] A.M. Kuzminskiy and D. Hatzinakos, “Semi-blind estimation
of spatio-temporal filter coefficients based on a training-like
approach,” IEEE Sgnal Proc. Letters, vol. 5, pp. 231-233,
Sept. 1998.

of the data burst but did not yield the smallest number of errors.
This means that the blind scheme can outperform the semi-blind

scheme if the proper criterion is used.

Figure 6 is a comparison of the probability of bit error (esti-
mated using 5000 iterations) when the four different criteria are
used in conjunction with the SBCMACI. Same simulation param-
eters as before. We see that agairoutperforms the other three.

Assume that from the 16 different beamformers we were always
able to pick the beamformer that yields the smallest number of

errors, then the probability of error curve that would result from
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Probability of Error Comparison for Different Beamforming Strategies
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Fig. 4. Coded CDMA System with Blind Beamforming for Inter-
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Fig. 1. Probability of symbol error comparison of different semi- % 2 4 6 8 10 12 14 16

blind algorithms. The relatively small number of training symbols 03 ‘ ‘ ‘ ‘ ‘ ‘ ‘
required by the SBCMACI leads one to wonder if it can be used to  ._°?

perform completely blind interference suppression. SNR0dB, o1y 1
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Fig. 2. Eye Diagrams: N; — Same parameters as in Fig. 5. Picking the best Beamformer: Top to Bottom, re-

Fig.1. From left to right, eye diagrams correspond to outputs S

ults for p' to p* respectively. [Minima, # of bit errors]:

from Wiener filter, SBCMACI, SBCMA, and LS respectively. The p':[11,90]p*:[11,90]p*:[6,25],":[13,0]. N; = 3, Ny = 200,

corresponding Symbol Error Rates computed for each figure was:M =4, A=5,L =2, SNR=5dB.
0.513x1073, 4.2x1073, 0.194, and 0.325 respectively.
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Fig. 3. Blind algorithm consists of three main components: Block - ‘ ‘ ‘ ‘ ‘
which generates training sequences, block which does semi-blind 6 7 8 N B) 10 1 12

recovery of the received data, block which picks the correct data

sequence.

Fig. 6. Probability of Error ComparisoniV; = 3, Ny = 200,
M =4, A=5L=2.
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