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ABSTRACT

We propose an iterative blind beamforming strategy for short-burst
high-rate DS-CDMA systems. The blind strategy works by creat-
ing a set of “training sequences” in the receiver that are used as
input to a semi-blind beamforming algorithm, thus producing a
corresponding set of beamformers. The objective then becomes to
find which beamformer gives the best performance (smallest bit
error). Two challenges we face are, to first find a semi-blind al-
gorithm that requires very few training symbols (to minimize the
search time), and then to find an appropriate criterion for pick-
ing the beamformer that offers the best performance. Different
semi-blind algorithms and criteria are tested. The recently pro-
posed SBCMACI (Semi-Blind CMA with Channel Identification)
is demonstrated to be ideal because of how few training symbols
it needs for convergence. Of the tested criteria, one based on
feedback from the decoder (essentially using trellis information)
is shown to achieve nearly optimal performance.

1. INTRODUCTION

Semi-blind algorithms have recently been developed for interfer-
ence suppression in asynchronous short-burst DS-CDMA systems
showing significant reduction in the required number of training
symbols per burst in comparison to training-only (Least Squares
(LS)) approaches (see [1]). Semi-blind algorithms usually require
much less quasi-stationary data then their blind counterparts (for
example, compare semi-blind CMA with CMA, as demonstrated
in [2]) making them attractive solutions for wireless systems. Is it
possible to retain this desirable feature, yet have no training? It is,
if one is willing to trade training for complexity.

Considering one extreme, the method presented by Seshadri in
[3] performs joint data and channel estimation by finding the least-
squares channel estimate between the received signal and every
possible input signal that may have been transmitted. The compu-
tational complexity of this approach is obviously not feasible, so
sub-optimal procedures were described. The approach we take is
simpler: create a set of of training-sequences of a certain length in
the receiver and use these to train a semi-blind algorithm. Using
an appropriate criterion, pick the sequence which trains to give the
fewest bit errors. To maintain a reasonable complexity, a semi-
blind algorithm that converges quickly is desired.

The SBMCA, first presented in [1], uses an extremely small
number of training symbols for convergence. In [1] a dense scat-
tering environment was considered, wherein the receiver consisted
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of an� element antenna array with element spacing far enough
apart to allow for diversity combining. In contrast, the receiver in
this paper has array elements spaced by��� (where� is the wave-
length of the carrier) to allow for beamforming. The SBCMACI
was first applied in a beamforming-scenario in [4]. As an example
of the relative performance of the SBCMACI to other beamform-
ing strategies, consider the result shown in Fig. 1 comparing the
probability of symbol error for different training lengths (the sim-
ulation details are not important at this time). Observe the signifi-
cant difference in performance of the SBCMACI in comparison to
conventional LS beamforming and another semi-blind technique,
SBCMA [5]. In this case, the eye diagrams in Fig. 2 show that
with only 3 training symbols the SBCMACI is able to open the
eye.

The number of training symbols required by the SBCMACI is
so small that one wonders if it is feasible (or even possible) to per-
form completely blind beamforming using it. The objective of this
paper is to investigate the answer to this question. The conclusion
is that it is feasible, but the criterion for deciding which training-
sequence to use is critical. Of the four criteria we tested, the one
that incorporated trellis information, through feedback from the
decoder, was found to almost always produce the correct decisions.

2. THE SETUP

We propose a blind strategy that operates according to the setup
shown in Fig. 3. There are three main components: a block
which generates “training sequences”, a block which does semi-
blind beamforming using both the received data and the generated
(hypothetical) “training sequence”, and a block which picks the
sequence that trains to give the smallest number of errors.

The blocks shown in Fig. 3 fit inside the system shown in Fig.
4, which represents an� -user nonorthogonal coded DS-CDMA
system. The encoder applies a convolutional code to the data bits
for each user. Let����� � ��� �� be the�th bit for the�th user,
then in vector form�� � ������� � � � � ���	� � ���� , where	�

is the number of bits per burst. Let
��� and	���� represent the
encoding and interleaving operations respectively, then as shown
in Fig. 4, 
�� � 	��
�����, represents the output of the in-
terleaver for the�th user which is then mapped to a 4-QAM al-
phabet through the following simple differential coding scheme:
����� � �������e��

�

� , ����� � e��
�

� , where��� � � 
�������
��� � � � 
����� � ��� � 
�� and��� � ��
����

���. ��� is
randomly assigned to each user. Differential encoding is used be-
cause the blind algorithm is only able to equalize up to a complex
scalar, thus we need to design the system to be invariant to phase
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rotations. The next step is then spreading with a unique normalized
spreading code����� � �����	�� � � �� � � � � 	��, where	
is the processing gain. The signal is transmitted over a multipath
channel of length�� and received at an� element antenna ar-
ray. Assuming that the inverse signal bandwidth is large compared
to the propagation time across the array, the complex envelopes
of the signals received by different antenna elements from a given
path are identical except for phase and amplitude differences that
depend on the path angle of arrival (AOA), array geometry and the
element pattern. The AOA of the�th multipath signal from the
�th user is��

� and����
�� � �����

�
��� � � � � �����

���
� is the

corresponding array response vector.
The received signal is sampled at the chip rate, to yield the

following discrete-time signal at the�th antenna element:

�	��� �


�
���

�����
���

������
	
���� �� � �	��� (1)

where	
 is the number of symbols per burst,�	��� is additive
white complex Gaussian noise of variance��,

�	���� �

�����
���

�	��
�
����������� � �� (2)

�� is the number of resolvable multipath components for the�th
user and����� are complex Gaussian random variables. The re-
ceived signal, corresponding to the�th symbol can be written in
vector form as follows:

���� � �������� � � � ����������������� � � � � ������ �������
(3)

where,��� ��	 � �������
���� � ������

� � � � � � ������ �� , ����� � �����	 �� � � � � ����� �
��	 � ���� ,���� � ������� � � � ��
����,
����� � ������	 �� � � � � ���������	���� � � � � �����	 �� � � � � �������
��	 � ���� , ���� � ������� � � � � �
 ����� , and
���� � ������

� � � � � ������� �� ,����� � �����	 �� � � � � ������
��	 � ���� .

In some cases, depending on the channel length, number of
users (� ), processing gain (	 ), and number of antenna elements
(�), it might be necessary to process more than one received vector
at a time in order to estimate the�th symbol. In general, stacking
� consecutive symbols, the vector that will be processed,�����, is
written as

����� � ������� � ����� (4)

where,
����� � ������ � � � � � ��� � �� ��� �� ,
����� � ���� � �� ��� � � � � ���� � �� ��� �� ,
����� � ������ � � � � ���� � �� ��� �� , and

�� �

�
��
��� � �� � � � ���� � � � �

...
. . .

. . .
. . .

...
� � � � ���� �� � � � ����

�
��

It is assumed that�� has full column rank. Thus,� (called the
smoothing factor) must satisfy the following inequality

� �
�
���� ��

�	 ��

	
(5)

Therefore, the dimensionality of the signal subspace,�, be-
comes� � ��� � � � ��. The results shown in Figures 1 and

2 correspond to a synchronous non-coded DS-CDMA system with

� � �, � � �, � � �, 	 � � and��� � ���� (���
�
�

�����
��
������), meaning that� � �. Given the phase ambigu-

ity of the blind beamformer the number of training sequences of
length	� that give unique outputs is�����. So �� � ��
��
training sequences of length 8 will need to be searched (in the in-
finite SNR case) if the LS algorithm is to be used. From Fig. 1
we see that many more sequences need to be searched when SNR
is finite (at least��� of length 16 in this case). On the other hand,
from Figures 1 and 2 we see that	� should be at least 3 for the
SBCMACI to work. This means that only�� � �� different se-
quences need to be generated and used by the SBCMACI to create
16 different beamformers. The SBCMACI requires significantly
less training symbols than the signal space dimensions because of
enhanced initialization through semi-blind channel identification
[1, 5]. The SBCMA [5] is similar to the SBCMACI but does not
perform channel estimation.

It is the job of the “Choose Best Sequence” block in Fig. 3 to
find the beamformer that yields the fewest number of errors. Once
that’s done, the recovered symbols from the selected beamformer
are sent to the differential decoder to recover the transmitted (de-
sired) bits. Looking at Fig. 1 we can see that if another semi-blind
algorithm were used, such as the SBCMA, then about�� � ���
�
different sequences would need to be tested to get the same results.

From the above discussion it is obvious that performance of
this blind scheme depends greatly on two factors: 1. Ability of the
semi-blind algorithm to open the eye with very few training sym-
bols, and 2. Ability to choose the best beamformer of the�����

different possibilities. The SBCMACI is needed to satisfy the first
point. In order to satisfy the second, we tried four different cri-
teria. Three are distance measures that compute the squared error
between the output of the beamformer and either the source al-
phabet, the source modulus, or the generated training sequence.
The other criterion uses the demapped and decoded outputs of the
beamformer (see Fig. 4) to compute the number of bits that have
been flipped by the decoder. If interference suppression by the
semi-blind algorithm is not successful then the deinterleaved bits
will not satisfy the constraints imposed by the encoder’s trellis and
the number of bits corrected (flipped) by the decoder will be large.
So the beamformer whose output yields the smallest number of
flips is chosen. This method of picking the best beamformer can
be thought of as a further semi-blind enhancement where now we
incorporate knowledge of the convolutional code and interleaver.

3. SELECTION CRITERIA

Using only the received data vectors,	 � ������� � � � � ���	
 �
���, the generated training sequence of length	�, ���tr��

����

��� ,
and the spreading code for the desired user,
�, the beamformer
(weight vector)�� (� � �� � � � � �����) is computed by

�� � ����� 
�

� ���tr�	� 
�� (6)

where� ��� is some optimization scheme (SBCMACI [1], SBCMA
[5], LS, etc.). This setup is similar to that used by Kuzminskiy in
[6]. Among the����� different weight vectors, the desired!� is
chosen as follows

!� ���� � �� � ����� 
�

�� (7)

where�� is some criterion. We tried the following four different
criteria for deciding on the correct weight vector:
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1. Distance from the source alphabet:

��� �
�

	


�����
	��

�� 
�
�	��

� ������ ��	�� (8)

where �� � �
�� �� � 
�� ��� �

2. Distance from the source modulus:

��� �
�

	


�����
	��

�	��
� �����	 � ��� (9)

3. Distance from the generated training sequence:

�	� �
�

	�

�����
	��

	��
� ������ ��tr���	� (10)

4. Number of flipped bits:
Let ���� represent the differential encoding operation, then
!
�� � �������

� 	�� �, and !�� � 
���	��� �!
���� rep-
resent the outputs of the differential decoder and convolu-
tional decoder respectively. The number of bits that have
been flipped by the decoder,��� is the number of bits that

are different between!
�� and	��
�!����.

4. SIMULATION EXAMPLES

In this section we present a few simulation results demonstrat-
ing the performance of the proposed scheme. We assume a syn-
chronous coded CDMA system as shown in Fig. 4. All users
use the same rate 1/2 constraint length 5 convolutional code (with
generators 23, and 35 in octal notation), but have different in-
terleavers which are generated randomly. Spreading codes are
generated randomly as well. The receiver employs a circular an-
tenna array with equally spaced elements (���), thus������ �
�"�#��� ��

�
���� $�%��

�
� � �
��� � � � � "�#��� ��

�
���� $�%��

�
� �

��
�
���, where���� � � �

��
. AOAs are generated randomly for

each user between 0 and�
 radians.
Figure 5 is an example of how the criteria for training sequence

selection performs when the SBCMACI is used. The system pa-
rameters are� � �, 	� � ���, 	 � �, � � �, SNR=5 dB,
� � �, and� � �. The vertical axis of each plot represents the
value of��. From top to bottom the results correspond to using
criteria 1, 2, 3 and 4 respectively.�� and the number of bit errors
in each case is��:[11,90],��:[11,90],�	:[6,25], and��:[13,0]. So
in this example,�� (minimum number of flipped bits) gave the
smallest number of errors. It is also interesting to note that in this
case the beamformer with index 6 (which yields 25 bit errors and
was picked by�	) was trained using the correct first 3 symbols
of the data burst but did not yield the smallest number of errors.
This means that the blind scheme can outperform the semi-blind
scheme if the proper criterion is used.

Figure 6 is a comparison of the probability of bit error (esti-
mated using 5000 iterations) when the four different criteria are
used in conjunction with the SBCMACI. Same simulation param-
eters as before. We see that again�� outperforms the other three.
Assume that from the 16 different beamformers we were always
able to pick the beamformer that yields the smallest number of
errors, then the probability of error curve that would result from

this scheme is a lower bound on all possible criteria. This curve
is shown, called “SB: Optimum” on the plot, and it is seen that��

comes very close to achieving this bound. If, from the 16 different
beamformers, we were always able to pick the beamformer that
was trained from the correct first three symbols of the data burst
then the performance we would achieve is actually worse then that
achieved through�� and this is shown with the curve labelled “SB:
Training”. Finally, we plotted the performance of the Wiener filter
which is implemented assuming perfect knowledge of the channels
for all users.

5. CONCLUDING REMARKS

We have shown how it is possible to use a semi-blind technique,
the SBCMACI, to perform blind beamforming in DS-CDMA sys-
tems subject to ISI and MAI. The results show that performance
is very dependent on the choice of selection criterion and that if
the decoder assists in the selection process then it is possible to
get near optimum performance using the blind scheme. In fact, the
blind scheme outperformed the original semi-blind technique. The
complexity of this scheme is the major concern. It is only appli-
cable to relatively small values of	� and small alphabet sizes.
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Fig. 4. Coded CDMA System with Blind Beamforming for Inter-
ference Suppression.
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