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ABSTRACT

In this paper we present a novel Turbo Equalization structure for
Space-Time Coded systems. It is based on performing channel
equalization via a Decision Feedback Equalizer (DFE) designed
using a novel Maximum Likelihood criterion. The resulting opti-
mization problem is solved using the Space-Alternating General-
ized EM (SAGE) algorithm. This results in expressions for the for-
ward and backward filters of the DFE that take large benefit from
the more and more refined estimations of the transmitted symbols
iteratively obtained by the outer decoder.

1. INTRODUCTION

Space-Time Coding (STC) refers to those signal processing and/or
coding techniques specifically designed for wireless communica-
tion systems that employ multielement antennas at both transmis-
sion and reception [1]. These systems have the ability to increase
the capacity of multipath wireless channels at no extra bandwidth
or power consumption.

Recently, Tarokhet al. [2] have investigated the design of
space-time trellis (STT) codes that perform extremely well but at
the cost of a relatively high complexity. Indeed, Maximum Like-
lihood (ML) decoding of this type of codes is typically accom-
plished by means of a Viterbi-like algorithm [2] whose complex-
ity grows exponentially with the number of the states of the code.
The problem of decoding complexity aggravates when transmitting
over channels that introduce time dispersion since in this case the
complexity of the Viterbi algorithm also grows exponentially with
the Inter-Symbol Interference (ISI) spread rendering this type of
decoders impractical even in moderately dispersive environments.

An appealing alternative is to perform Space-Time decoding
according to the Turbo principle. In the recent years, the so-called
Turbo codes [3] have produced an enormous impact on the design
of digital transmission systems due to their astonishing high per-
formance. Turbo codes are constituted by two component codes
concatenated, serially or parallelly, via an interleaver. Decoding
is carried out by a suboptimal but extremely powerful scheme in
which theMaximum A Posteriori(MAP) probabilities of the orig-
inal symbols are obtained for each component code and then ex-
changed in an iterative fashion.

Usually, equalization is carried out by means of the Bahl-Cocke-
Jelinek-Raviv (BCJR) algorithm [4]. For STC systems, its com-
plexity grows exponentially in both the number of transmitting an-
tennas and the channel ISI. So it is interesting to consider sub-
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optimal and reduced-complexity algorithms for equalization when
channel ISI is large. A reasonable and simple approach is to use a
Decision Feedback Equalizer (DFE) to compensate both co-channel
and intersymbol interferences. The utilization of DFE in Turbo
Equalization was first addressed in [5] for a single antenna system
but considering a MMSE criterion.

In this paper we will consider a novel approach to Decision
Feedback Turbo Equalization for STC systems. Our main contri-
bution is to consider a DFE designed using an alternative criterion
that comes from applying the Maximum Likelihood (ML) principle
to obtain the coefficients of both the forward and backward filters.
We show how this kind of DFE takes a large benefit of a Turbo
Equalization structure, since in the computation of the filter coef-
ficients one can make use of the more and more refineda priori
log-probabilities about the transmitted symbols fed back from the
ST channel decoder through the iterative decoding process.

The remainder of the paper is organized as follows. Section 2
presents the signal model. Section 3 describes the way we obtain
the DFE parameters using the ML principle. Since we arrive at
an optimization problem with no closed-form solution, we show in
Section 4 how to apply an iterative method, the Space-Alternating
Generalized EM (SAGE) algorithm, to compute the solution. Sec-
tion 5 explains how to fit the proposed DFE into a Turbo Equaliza-
tion structure. Computer simulations showing the performance of
the proposed equalizer and comparing it with the optimum MAP
detector are detailed in Section 6. Finally, Section 7 is devoted to
the conclusions.

2. SIGNAL MODEL

Figure 1 shows the block diagram of the transmitter side of a STC
system. The information bearing sequenceu = [u(0), u(1), ..., u(K−
1)]T , whereK is the total number of transmitted bits, is encoded
with a ST encoder to produce a sequence of vectors

c̃ = [cT (0) cT (1) · · · cT (K − 1)]T

with c(k) = [c1(k), c2(k), ..., cN (k)]T , beingN the number of
transmitting antennas. This encoded sequence is interleaved and
constellation mapped to produce the sequence of symbols to be
fed into the channel,̃s = [sT (0) sT (1) · · · sT (K − 1)]T , where
s(k) = [s1(k), s2(k), ..., sN (k)]T is the vector of symbols trans-
mitted at timek. The channel is caracterized as a MIMO system
which introduces dispersion in both the spatial and temporal di-
mensions.

Figure 2 shows the block diagram of a ST Turbo receiver. Af-
ter matched-filtering and sampling at symbol rate, it is obtained a
sequence of observations̃x = [xT (0) xT (1) · · · xT (K − 1)]T ,
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Fig. 1. Transmitter model

where the observations corresponding to thek-th sampling inter-
val,x(k), have the form

x(k) = Hz(k) + g(k), k = 0, 1, ..., K − 1 (1)

whereH = [H(m−1) H(m−2) · · · H(0)] represents the overall
dispersive MIMO channel with memory lengthm. Each matrix
H(i) contains the fading coefficients that affect the symbol vector
s(k − i). The vectorz(k) results from stacking the source vectors
s(k), i.e.,z(k) = [sT (k − m + 1) sT (k − m + 2) · · · sT (k)]T .
The componentg(n) is a vector of independent samples of white
Gaussian noise.

Fig. 2. Receiver model

The MAP ST equalizer computes the logarithm of thea poste-
riori probabilities ofs(k) conditioned to the overall sequence of
observations, i.e.,L[s(k)|x̃], from the set of available observa-
tions, x̃, and the sequence ofa priori log-probabilities about the
source symbol vectors,L[s(k)]. Whatever kind of MAP equal-
izer is employed, it can always be shown that thea posteriorilog-
probabilities take the formL[s(k)|x̃] = L[s(k)] + Le[s(k)]. Only
the latter term, calledextrinsic information in the Turbo coding
literature, is forwarded to the decoder to avoid statistical depen-
dences with the results of the previous iteration. Similarly, the
MAP ST decoder computes thea posterioriprobabilities for both
source symbols,u(k), and coded symbol vectors,c(k). The latter
are forwarded to the equalizer via an interleaver after substracting
its a priori component.

Optimum MAP detection can be carried out by the BCJR (Bahl-
Cocke-Jelinek-Raviv) algorithm [4], which exactly computes thea
posteriori log-probabilitiesL[s(k)|x̃]. Let ek = (sk−1, s(k), sk)
be a transition of the finite-state machine that describes the ISI
channel, wheresk−1 is the previous state,s(k) = Lin[ek] the

input, s(k) = Lout[sk−1, s(k)] the associated output andsk the
next state. Having in mind that

L[s(k)|x̃] = L[s(k), x̃] + hs (2)

wherehs is the constant that makesP [s(k)|x̃] being a probability
density, the algorithm reduces to compute

L[s(k), x̃] = log
∑

ek:Lin[ek]=s(k)

exp L[ek, x̃] (3)

The problem behind optimum MAP detection is that the complex-
ity of the BCJR algorithm is exponential in both the number of
transmitting antennas and the channel ISI. To overcome this prob-
lem we present a suboptimal scheme that esentially computesL[s(k)|x̃]
after removing the co-channel and the intersymbol interferences
via a DFE designed using a novel criterion explained in subsequent
sections.

3. DECISION FEEDBACK EQUALIZER BASED ON THE
MAXIMUM LIKELIHOOD PRINCIPLE

Let us consider the following model for our DFE

y(k) = WHxm(k) + VH ŝv(k), k = 0, 1, ..., K − 1 (4)

wherey(k) = [y1(k) y2(k) · · · yN (k)]T is the filtered vector,W
the forward filter,V the backward filter,xm(k) = [xT (k) xT (k+
1) · · · xT (k+m−1)]T the observations that contain information
about the transmitted symbol vectors(k), andŝv(k) = [ŝT (k −
m+1) ŝT (k−m+2) · · · ŝT (k−1)]T estimations of the symbols
that interfere with symbols(k).

In order to derive the expression of the equalizer filters, we
will start considering that there exist linear filtersW∗ andV∗ that
completely remove co-channel and intersymbol interferences. Un-
der such assumption, we have

y(k) = s(k) + gf (k), k = 0, 1, ..., K − 1 (5)

wheregf (k) is the channel AWGN. For simplicity reasons, we will
assume thatE[gf (k)gf (k−n)H ] = σ2

fIδ(n) which enables us to
write the pdf of the filtered vectory(k) as follows [6]

fy(k);Θ∗(y(k)) = Es(k)

[
fy(k)|s(k);Θ∗(y(k))

]
∝ Es(k)

[
exp

{
− 1

σ2
f

‖y(k)− s(k)‖2

}]
whereΘ∗ = [W∗,V∗] represents the optimum filter coefficients.
The joint pdf of the filtered vectors̃y = [yT (0) yT (1) · · · yT (K−
1)]T is the product of marginal densities, i.e.,

fỹ;Θ∗(ỹ) =

K−1∏
k=0

fy(k);Θ∗(y(k))

∝
K−1∏
k=0

Es(k)

[
exp

{
− 1

σ2
f

‖y(k)− s(k)‖2

}]
The optimum filter coefficients can now be estimated according to
the Maximum Likelihood principle

Θ̂ = arg max
Θ∗

log fỹ;Θ∗(ỹ)

= arg max
Θ∗

K−1∑
k=0

log Es(k)

[
exp

{
− 1

σ2
f

‖y(k)− s(k)‖2

}]
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This is an optimization problem without closed-form solution. In
the next section we will show how can be solved using an iterative
method termed the SAGE algorithm.

4. THE SAGE ALGORITHM

The Space-Alternating Generalized-EM (SAGE) algorithm [7] is a
variation of the EM algorithm, less complex and with faster conver-
gence, that is useful when the set of parameters to be estimated can
be partitioned into disjoint subsets. Using the usual terminology
employed in the EM algorithm, we define the “complete” data set
asỹe = [sT (0) yT (0) sT (1) yT (1) · · · sT (K−1) yT (K−1)]T ,
being the “incomplete” data set the observationsỹ.

Before proceeding with the application of the SAGE algorithm,
it should be mentioned that the noise variance after filtering,σ2

f ,
has to be considered as a parameter to be estimated since it is a
function ofW∗, which is nota priori known. Therefore, we rede-
fine our set of parameters asΘ∗ = [W∗,V∗, σ

2
f ], whereW∗, V∗

andσ2
f are considered disjoint through the estimation process. Ac-

cording to the SAGE algorithm formulation, the (i+1)-th estimate
of W∗ is obtained by solving the following optimization problem

Ŵi+1 = arg max
W∗

Eỹe|ỹ;[Ŵi,V̂i,σ̂2
f,i

]

[
log fỹe;[W∗,V̂i,σ̂2

f,i
](ỹe)

]
(6)

After some calculus we arrive at

Ŵi+1 = arg min
W∗

K−1∑
k=0

xH
m(k)W∗W∗

Hxm(k)

+ xH
m(k)W∗V̂

H
i ŝv(k) + ŝH

v (k)V̂H
i WH

∗ xm(k)

− xH
m(k)W∗Eii[s(k)]− Eii[s

H(k)]WH
∗ xm(k)

(7)

where

Eij [g(s(k))] = Es(k)|y(k);[Ŵi,V̂j ,σ̂2
f,i

] [g(s(k))] (8)

beingg(s(k)) an arbitrary function ofs(k). Note that this expec-
tation can be computed using Bayes’ rule as

Eij [g(s(k))] =

Es(k)

[
g(s(k)) exp

{
− 1

σ̂2
f,i
‖yij(k)− s(k)‖2

}]
Es(k)

[
exp

{
− 1

σ̂2
f,i
‖yij(k)− s(k)‖2

}]
(9)

where
yij(k) = ŴH

i xm(k) + V̂H
j ŝv(k) (10)

Equation (7) represents a quadratic optimization problem with an
exact solution given by

Ŵi+1 = R̂−1
x (R̂xs − R̂xvV̂i) (11)

where

R̂x =

K−1∑
k=0

xm(k)xH
m(k) (12)

R̂xs =

K−1∑
k=0

xm(k)Eii

[
sH(k)

]
(13)

R̂xv =

K−1∑
k=0

xm(k)sH
v (k) (14)

OnceŴi+1 has been computed, we obtain the (i+1)-th estimation
of V∗ solving the following optimization problem

V̂i+1 =

arg max
V

Eỹe|ỹ;[Ŵi+1,V̂i,σ̂2
f,i

]

[
log fỹe;[Ŵi+1,V∗,σ̂2

f,i
](ỹe)

]
(15)

Again, this is a quadratic optimization problem with the following
exact solution

V̂i+1 = R̂−1
v (R̂vs − R̂H

xvŴi+1) (16)

where

R̂v =

K−1∑
k=0

ŝv(k)ŝH
v (k) (17)

R̂vs =

K−1∑
k=0

ŝv(k)Ei+1i

[
sH(k)

]
(18)

(19)

Finally, givenŴi+1 andV̂i+1, we can computêσ2
f,i as

σ̂2
f,i =

arg max
σ2

f

Eỹe|ỹ;[Ŵi+1,V̂i+1,σ̂2
f,i

]

[
log fỹe;[Ŵi+1,V̂i+1,σ2

f,i
](ỹe)

]
(20)

whose solution is

σ̂2
f,i =

1

KN

K−1∑
k=0

Ei+1i+1

[
‖yi+1i+1(k)− s(k)‖2] (21)

5. DECISION FEEDBACK TURBO EQUALIZER

As mentioned in Section 2, the MAP ST equalizer must compute
L[s(k)|x̃]. In our DFE we compute these log-probabilities after
removing co-channel and intersymbol interferences from the ob-
servations, i.e.,L[s(k)|x̃] ≈ L[s(k)|ỹ]. Taking into account the
structure ofy(k) given by (5) and using Bayes’ rule, we have

L[s(k)|ỹ] = L[s(k)|y(k)] = L[y(k)|s(k)] + L[s(k)]− L[ỹ]

= − 1

σ2
f

‖y(k)− s(k)‖2 + L[s(k)] + hs (22)

wherehs is the constant that makesP [s(k)|ỹ] being a pdf. Clearly,
the extrinsic information to be forwarded to the outer decoder is
Le[s(k)] = − 1

σ2
f
‖y(k)− s(k)‖2.

Let us make some comments about how the information pro-
vided by the decoder is used in our DFE. It is apparent from (9)
that thea priori values,L[s(k)], fed back from the decoder play a
key role in computing the DFE parameters. Thus, in each decod-
ing iteration, one (or more) iterations of the SAGE algorithm can
be performed in order to obtain more refined estimations ofW∗,
V∗ andσ2

f . Furthermore, the backward filterV∗ can be fed with
estimations of the transmitted symbols that come from the decoder,
since they are supposed to be more accurate than those obtained at
the output of the equalizer. For instance, if BPSK is used, we can
estimate the transmitted symbols byŝ(k) = sign

{
Es(k)[s(k)]

}
.
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Fig. 3. Comparison between Optimum MAP Detector and DF ML-
Based SAGE Equalizer

6. SIMULATION RESULTS

Computer simulations were carried out to illustrate the performance
of the proposed ST equalizer. Figure 3 shows a comparison be-
tween the results obtained with the optimum MAP detector and
those obtained with the DF SAGE Equalizer for a dispersive chan-
nel with memorym = 2. The chosen modulation format is BPSK
and the number of transmitting and receiving antennas isN = L =
2. The ST encoder is a rate 1/2 full diversity convolutional binary
code given by the generator matrixG = [46, 72] in octal represen-
tation [1]. The interleaver size is20800 bits. Data are processed in
blocks of size233 out of whichM = 25 symbols correspond to a
deterministic pilot sequence that is knowna priori at the receiver.
For the channel coefficients, we have assumed a spatially uncorre-
lated, Rayleigh distributed, flat fading model where the elements in
matrixH are constituted by i.i.d. complex Gaussian random vari-
ables. The channel changes in each transmitted block. We have
considered that in each decoding iteration, only one iteration of the
SAGE algortihm is performed to obtain a more refined estimate of
the equalizer parameters. Figure 3 shows how the Bit-Error-Rate
(BER) diminishes through decoding iterations when the DF ML-
Based SAGE Equalizer is employed. In this case Optimum MAP
Detection does not yield significant improvement in BER beyond
the 3rd decoding iteration. At the twelveth iteration, the difference
with respect to the optimum MAP detector is about 2.1 dB for a
BER of10−3 and about 2.7 dB for a BER of10−4.

Figure 4 shows the performance of the DF ML-Based Equal-
izer in a more severe ISI environment where the channel memory
is m = 5. Data are processed in blocks of size248 out of which
the pilot sequence occupiesM = 40 symbols. The remaining sim-
ulation parameters are the same that were used in Figure 3.

7. CONCLUSIONS

We have presented a novel Turbo equalization structure for Space-
Time Coded systems based on performing channel equalization via
a Decision Feedback Equalizer (DFE). The computational cost of

Fig. 4. Performance Results of the DF ML-Based SAGE Equalizer
in a severe ISI scenario

our approach is considerably less than the optimum MAP detec-
tor whereas simulation results show that the performance is only
slightly worse.

8. REFERENCES

[1] A. R. Hammons, H. El Gamal, “On the theory of space-time
codes for PSK modulation”, inIEEE Trans. on Comm., vol.
46, no. 2, pp. 524-542, March 2000.

[2] V. Tarokh, N. Seshadri, A. R. Calderbank, “Space-Time codes
for high data rate wireless communication: performance cri-
terion and code construction”, inIEEE Trans. on Inf. Theory,
vol. 44, no. 2, pp. 744-765, March 1998.

[3] C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon
limit error correcting coding and decoding: Turbo codes”,
in Proc. ICC’93, pp. 1064-1070, Geneva, Switzerland, May
1993.

[4] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, “A soft-
input soft-output APP module for iterative decoding of con-
catenated codes”, inIEEE Commun. Lett., vol. 1, pp. 22-24,
January 1997.

[5] C. Laot, A. Glavieux, J. Labat, “Turbo Equalization: Adap-
tive Equalization and Channel Decoding Jointly Optimized”,
in IEEE Journal on Selected Areas In Comm., vol. 19, pp.
1744-1752, September 2001.
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