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ABSTRACT optimal and reduced-complexity algorithms for equalization when
channel ISl is large. A reasonable and simple approach is to use a

ISn t:c'se %?nﬁir (v:v(()e dz:jezegteamgov?tl ;LULZOSE dqléillzaet:?orlrrs]?guctgg:;ﬁ; ecision Feedback Equalizer (DFE) to compensate both co-channel
pace- Y : P 9 nd intersymbol interferences. The utilization of DFE in Turbo

eq_uallzatlon via a_DeC|S|o_n F_eedbacl_< Equahzer (DFE). deS|gr_1e qualization was first addressed in [5] for a single antenna system
using a novel Maximum Likelihood criterion. The resulting opti- but considering a MMSE criterion

mization problem is splved using the Space-AIterrlating General- In this paper we will consider a novel approach to Decision
ized EM (SAGE) algo_rlthm. This results in expressions for th_e for- Feedback Turbo Equalization for STC systems. Our main contri-
ward and backward filters of the DFE that take large benefit from bution is to consider a DFE designed using an alternative criterion

gthe (ara?\?é?y%ﬁaﬁzr(jeg;ftlﬂg%l?ts;ngggzrc’f the transmitted symbol§hat comes from applying the Maximum Likelihood (ML) principle
) to obtain the coefficients of both the forward and backward filters.
We show how this kind of DFE takes a large benefit of a Turbo
1. INTRODUCTION Equalization structure, since in the computation of the filter coef-
ficients one can make use of the more and more refinpdori
Space-Time Coding (STC) refers to those signal processing and/ojpg-probabilities about the transmitted symbols fed back from the
coding techniques specifically designed for wireless communica-ST channel decoder through the iterative decoding process.
tion SyStemS that employ multielement antennas at bOth tl’ansmis- The remainder of the paper is Organized as follows. Section 2
sion and reception [1]. These systems have the ability to increasgresents the signal model. Section 3 describes the way we obtain
the capacity of muIFipath wireless channels at no extra bandwidthihe DEE parameters using the ML principle. Since we arrive at
or power consumption. an optimization problem with no closed-form solution, we show in

Recently, Tarokhet al. [2] have investigated the design of Section 4 how to apply an iterative method, the Space-Alternating
space-time trellis (STT) codes that perform extremely well but at Generalized EM (SAGE) algorithm, to compute the solution. Sec-
the cost of a relatively high complexity. Indeed, Maximum Like- tjon 5 explains how to fit the proposed DFE into a Turbo Equaliza-
lihood (ML) decoding of this type of codes is typically accom- tjon structure. Computer simulations showing the performance of
plished by means of a Viterbi-like algorithm [2] whose complex- the proposed equalizer and comparing it with the optimum MAP
ity grows exponentially with the number of the states of the code.detector are detailed in Section 6. Finally, Section 7 is devoted to
The problem of decoding complexity aggravates when transmittingthe conclusions.
over channels that introduce time dispersion since in this case the
complexity of the Viterbi algorithm also grows exponentially with
the Inter-Symbol Interference (ISI) spread rendering this type of 2. SIGNAL MODEL
decoders impractical even in moderately dispersive environments. _. ) . )

An appealing alternative is to perform Space-Time decoding Figure 1 shows the bI_ock dlagram of the transmitter side of a STC
according to the Turbo principle. In the recent years, the so-calledYSteM: The information bearing sequence [1(0), u(1), ..., u(K —
Turbo codes [3] have produced an enormous impact on the desigﬁ),] , WwhereK is the total number of transmitted bits, is encoded
of digital transmission systems due to their astonishing high per-Vith @ ST encoder to produce a sequence of vectors
formance. Turbo codes are constituted by two component codes
concatenated, serially or parallelly, via an interleaver. Decoding
is carried out by a suboptimal but extremely powerful scheme in
which theMaximum A Posterior(MAP) probabilities of the orig-

&=1[c"(0)cT@) - (K - 1)

with c(k) = [c1(k), c2(k), ..., en (k)]T, being N the number of
inal bol btained f h t cod 4 th transmitting antennas. This encoded sequence is interleaved and
inal Symbols are obtained for €ach component code and then €xz,stejation mapped to produce the sequence of symbols to be

changed in an iterative fashion. fed i he ch _ 1T T1) ... sT(K — 1T wh
Usually, equalization is carried out by means of the BahI-Cockeée(z)mio [21?]:) iz?ke)ﬁ N LSN ((]S))]:i ié t)he vef:to(r of syr)rlb(,)lvsv trez;ﬁs_

Jelinek-Raviv (BCJR) algorithm [4]. For STC systems, its com- mitted at timek. The channel is caracterized as a MIMO system

plexity grows exponentially in both the number of transmitting an-  nich introduces dispersion in both the spatial and temporal di-
tennas and the channel ISI. So it is interesting to consider sub-mensions

This work has been supported by Ministerio de Ciencia y Tecialog Figure 2 shows the block diagram of a ST Turbo receiver. Af-

of Spain and FEDER funds from the European Union under grant numbetter matched-filtering and sampling at symbol rate, it is obtained a
TIC2001-0751-C04-01 sequence of observatiofis= [x7(0) x* (1) --- xT(K —1)]7,
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input, s(k) = Lout[sk—1,s(k)] the associated output and the
next state. Having in mind that

Lis(k)|X] = L[s(k),X] + hs (2)

c(k) b1k [Constellation
Interleaver
Mapper
(k) b>(k) [Constellation
Interleaver
Mapper

ufl) | ST Multipath
encoder | | Channel L[s(k),x] = log Z exp Llek, X] (3)
e:Linleg]=s(k)

whereh, is the constant that makd¥s(k)|x] being a probability
density, the algorithm reduces to compute

The problem behind optimum MAP detection is that the complex-
en(k) by(l) ¢ lati ity of the BCJR algorithm is exponential in both the number of
onstellation transmitting antennas and the channel ISI. To overcome this prob-
Mapper | sy(k) lem we present a suboptimal scheme that esentially compiiék) |X]
after removing the co-channel and the intersymbol interferences
Fig. 1. Transmitter model via a DFE designed using a novel criterion explained in subsequent
sections.

where the observations corresponding to Akl sampling inter- 3. DECISION FEEDBACK EQUALIZER BASED ON THE

val, x(k), have the form MAXIMUM LIKELIHOOD PRINCIPLE
x(k) = Hz(k) + g(k), k=0,1,..., K -1 ey Let us consider the following model for our DFE
H H A
whereH = [H(m—1) H(m—2) --- H(0)] represents the overall y(k) =W xm(k) + V78u(k), k=0,1,... K -1 (4

dispersive MIMO channel with memory length. Each matrix wherey (k) = [y1 (k) y2(k) - -- yn (k)]T is the filtered vectoV
H (i) contains the fading coefficients that affect the symbol vector iq torward filter V the backward filterg, (k) = [x7 (k) x (k+

s(k — i). The vectorz(k) results from stacking the source vectors 1) -+ x7(k+m— 1) the observations that contain information

H T T T T
s(k),i.e.z(k) = [s (k—m+1)s"(k —m+2) --- s (K)]".  ahout the transmitted symbol vectefk), ands, (k) = [87 (k —
The componeng(n) is a vector of independent samples of white m+1) 87 (k—m+2) --- 87 (k—1)]” estimations of the symbols

Gaussian noise. that interfere with symbad (k).
In order to derive the expression of the equalizer filters, we

Deint b will start considering that there exist linear filt&é§.. and'V .. that
N completely remove co-channel and intersymbol interferences. Un-
L[s(k)] der such assumption, we have
MAP | _
ST |4 Inter. yv(k) =s(k) +gr(k), k=0,1,..., K -1 (5)
k . I[s(k)| X .n IMAP S-T .

O Bqualizer RO ORI ZLORS whereg (k) is the channel AWGN. For simplicity reasons, we will
Ftrlom | —— : assume thak gy (k)gy (k —n)"] = o315(n) which enables us to
channe Llutky1] L{u(k):0] write the pdf of the filtered vectgy (k) as follows [6]

Fig. 2. Receiver model fyape. (k) = Esa [fymsiyo. (¥(k))]

K

The MAP ST equalizer computes the logarithm of éhgoste- Es)

1
exp {_0_2||Y(k) - S(k)IQH

riori probabilities ofs(k) conditioned to the overall sequence of !
observations, i.e.L[s(k)|X], from the set of available observa- where®, = [W., V] represents the optimum filter coefficients.
tions, X, and the sequence af priori log-probabilities about the  The joint pdf of the filtered vecto = [y” (0) y” (1) --- y* (K —
source symbol vectord,[s(k)]. Whatever kind of MAP equal-  1)]7 is the product of marginal densities, i.e.,
izer is employed, it can always be shown thatéhgosteriorilog-
probabilities take the fornii[s(k)|X] = L[s(k)] + L.[s(k)]. Only

K-—1
11 frawe. (y(k))

the latter term, calleextrinsic information in the Turbo coding fyo.(3) =

literature, is forwarded to the decoder to avoid statistical depen- k=0

dences with the results of the previous iteration. Similarly, the Kt 1 5
MAP ST decoder computes tlaeposterioriprobabilities for both & kl_[O Esk) |exp T2 Iy (k) = s(k)|

source symbolsy(k), and coded symbol vectors(k). The latter
are forwarded to the equalizer via an interleaver after substracting’he optimum filter coefficients can now be estimated according to

its a priori component. the Maximum Likelihood principle
Optimum MAP detection can be carried out by the BCJR (Bahl- .. -
Cocke-Jelinek-Raviv) algorithm [4], which exactly computesahe © = arg raax log fy.e.(¥)

posteriorilog-probabilitiesL[s(k)|X]. Letey = (sg—1,s(k), sk)

K—1
be a transition of the finite-state machine that describes the ISI 1 2
) . = a a log Eg e - k) —s(k
channel, wheres;,_; is the previous states(k) = Lin[ex] the e kZ:O & Fsk) Xp{ o3 Iy (k) = s(®)l H
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This is an optimization problem without closed-form solution. In OnceW, 1 has been computed, we obtain the {)-th estimation
the next section we will show how can be solved using an iterativeof V. solving the following optimization problem
method termed the SAGE algorithm.

Vig1 =
4. THE SAGE ALGORITHM )
JWe
The Space-Alternating Generalized-EM (SAGE) algorithm [7] is a (15)
variation of the EM algorithm, less complex and with faster conver-
gence, that is useful when the set of parameters to be estimated c#gain, this is a quadratic optimization problem with the following
be partitioned into disjoint subsets. Using the usual terminologyexact solution
employed in the EM algorithm, we define the “complete” data set N SRR L a
asy. = [s7(0)y” (0)s™ (1) y" (1) -+ s" (K1) y" (K~1)]", Vi1 = Ry (Rue = Ray W) (16)
being the “incomplete” data set the observatigns

arg max E&e 195 IWit1,V3,62 ] log fS/e;[Wi+1 V63,

Before proceeding with the application of the SAGE algorithm, where

it should be mentioned that the noise variance after filterdﬁg, . K—-1
has to be considered as a parameter to be estimated since it is a R, = 8, (k)85 (k) a7
function of W, which is nota priori known. Therefore, we rede- k=0
fine our set of parameters &. = [W.., V., 07|, whereW,, V. A K—1
ando? are considered disjoint through the estimation process. Ac- R,s = §v(k)Eiy1i [SH(k)] (18)
cording to the SAGE algorithm formulation, the{ 1)-th estimate k=0
of W, is obtained by solving the following optimization problem (29)
Wiy = arg max E&a&;[w“vi,&%,l] log f"e;[w*,vi,&ﬁyi](i’e)] Finally, givenW,; and V11, we can computé? ; as

(6) o
After some calculus we arrive at Ofi =

« K1 argmaXEie\S';[wi Vig1,62 ] lngS'e?[Wi Vig1,02 v](ye)
Wi+1 = arg min Z Xg(k)W*W*HXm(k‘) g? +1 +1:9¢ 4 |: +1 +1:97 4 :|
W oo (20)
+ X5 (RYW. VT8, (k) + 87 (R) Vi Wi x, () whose solution is
— X (FYW. Eals(h)] — Bals™ (k)] W s (k) | K
@) 67i= < Y B [[lyirun (k) —s®)?]  (21)
KN
where h=0
Eij[g(s(k))] = Es(k)\y(k);[wi,\?j,ﬁj% J [9(s(k))] (8) 5. DECISION FEEDBACK TURBO EQUALIZER

beingg(s(k)) an arbitrary function oé(k). Note that this expec-  As mentioned in Section 2, the MAP ST equalizer must compute

tation can be computed using Bayes’ rule as L[s(k)|x]. In our DFE we compute these log-probabilities after
removing co-channel and intersymbol interferences from the ob-

Eo() |:g(s(k,‘))exp {—iny,j(k) - s(k:)||2}:| servations, i.e.L[s(k)|X] ~ L[s(k)|y]. Taking into account the

Ei;lg(s(k))] = ¢ structure ofy (k) given by (5) and using Bayes’ rule, we have
E, — —lyis (k) — s(k)|? - .
® {exp{ 72, 1y (k) =Bl H Ls(®)lF] = Lis(hly() = Lly(R)ls(i)] + Lis(k)] - L[5
©) 1
where = —aly(k) - s(k)[|* + L[s(k)] + hs (22)
yii (k) = Wil (k) + V'8, (k) (10) !
Equation (7) represents a quadratic optimization problem with anwhereh, is the constant that maké¥s(k)|¥] being a pdf. Clearly,
exact solution given by the extrinsicinformation to be forwarded to the outer decoder is
W.. —R-YR RV, 11 Le[s(k)] = —élly(k) - S(k)||2
i1 = Ry (Ras = Rou Vi) (11) Let us make some comments about how the information pro-
where vided by the decoder is used in our DFE. It is apparent from (9)
K-1 that thea priori values,L[s(k)], fed back from the decoder play a
R, = X (k)2 () (12) key role in computing the DFE parameters. Thus, in each decod-
o ing iteration, one (or more) iterations of the SAGE algorithm can
K1 be performed in order to obtain more refined estimation$\af,
R,. = Xim (k) Esi [sH(k)] (13 V- ando?. Furthermore, the backward filtdf.. can be fed with

estimations of the transmitted symbols that come from the decoder,

since they are supposed to be more accurate than those obtained at

R,, = L ()sH (k 14 thel output of the quallzer. For instance, if BPSK is used, we can
xm(k)sy (k) (14) estimate the transmitted symbols&ty:) = sign { Es[s(k)]}.
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Fig. 3. Comparison between Optimum MAP Detector and DF ML- Fig. 4. Performance Results of the DF ML-Based SAGE Equalizer

Based SAGE Equalizer in a severe ISl scenario
6. SIMULATION RESULTS our approach is considerably less than the optimum MAP detec-
tor whereas simulation results show that the performance is only

Computer simulations were carried out to illustrate the performances

of the proposed ST equalizer. Figure 3 shows a comparison be-IIghtIy worse.

tween the results obtained with the optimum MAP detector and
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