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ABSTRACT

In this paper, the optimal power allocation to minimize the
mean square error (MSE) in MIMO systems with and without
channel knowledge at the transmitter (Tx) is investigated. Fur-
thermore the impact of correlation is discussed. We show that
for MIMO systems with no channel knowledge at the Tx cor-
relation will increases the MSE at the receiver . This does not
hold in general when channel knowledge is available at the Tx.
The optimum transmit solution can then be obtained by solv-
ing a MSE minimization problem. Based on this solution we
present a bit loading algorithm which matches the optimum
power allocation with a set of finite modulation alphabets with
the constraint to certain bit error rate requirements.

1. INTRODUCTION

The growing communication market demands always more of
the limited resource bandwidth. Transmission systems using
a multiple-input multiple-output (MIMO) structure have been
shown to achieve a very high spectral efficiency. Therefore much
work was already done to increase mainly capacity. Considering
practical aspects towards implementation [1] discusses optimal se-
quences and power control when using linear MMSE multiuser
receivers. Optimal sequences for pilot based CDMA and OFDM
systems are investigated in [2], [3] and recent work from [4] dis-
cusses the effect of correlation on the ergodic and outage capacity
without channel state information (CSI) at the transmitter (Tx).

The first part of this paper focuses on the mean square error
(MSE) as a measure for the two cases of CSI at the receiver (Rx)
only and CSI also available at the Tx. We start with the theory
from [1] and show that for the Tx without CSI, correlation will
increase the MSE at the Rx. Furthermore we derive the optimal
power allocation for the case of the Tx with CSI which minimizes
the MSE at the Rx. This solution totally differs from the classical
"waterfilling" solution which maximizes the ergodic capacity.

In the second part of this paper we investigate bit-loading with
discrete modulation alphabets. We choose the optimal power al-
location solution from above as the starting point for practical bit-
loading, which we are primarily interested in from an application
point of view. The presented bit-loading strategy finds the maxi-
mum data throughput under the constraint of a maximum average
bit error rate (BER). Similar bit loading problems were already ad-
dressed by e.g. [5] or [6] but their approaches start either with a
uniform power allocation or achieve a bit loading solution step by
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step over a rate-and-power optimization. In this paper we trans-
form the rather abstract optimal solution into an applicable recipe-
like bit-loading strategy which is easy to implement. After only
a few iterations we achieve the closest to optimum bit and power
allocation. A simple example may illustrate our approach.

2. SYSTEM MODEL

We assume a single user MIMO system withM Tx and N Rx
antennas withM ≤ N and up toL data streams are transmitted
over the MIMO channelH . At the Rx we assume a Minimum
Mean Square Error (MMSE) detector at the Rx with perfect CSI.
The transmitter has either no CSI (2.1) or perfect CSI (2.2) like the
Rx and we always consider a total sum power constraint at the Tx.

The MIMO transmission model in matrix form reads

�y = H · �x + �n (1)

with �y the receive vector of lengthN , �x the transmitted vector of
sizeM , �n is the additive Gaussian noise vector of sizeN .

2.1. CSI only at the Receiver

If no CSI is available at the Tx then uniform power allocation and
one data stream per antenna is optimal:E[�x�xH ] = P

M
· IM where

E[.] means the expectation,[.]H means Hermitean conjugate,P is
the total sum power andIM is the identity matrix of sizeM ×M .

The data symbol estimate by the linear MMSE receiver is

�̂x =
P

M
H∗

[
σ2IN +

P

M
HH∗

]−1

�y

with σ2 the noise variance at the Rx. The covariance matrixKε

Kε = E[(�̂x − �x)(�̂x − �x)H ]

=
P

M
IM − P

M
IMH∗[σ2IN +

P

M
HH∗]−1H

P

M
IM

yields with a normalization

M

P
Kε = IM −

√
P

M
IMH∗[σ2IN +

P

M
HH∗]−1H

√
P

M
IM .

trace (Kε) gives the normalized MSE at the Rx.

tr

(
M

P
Kε

)
= M − tr

(
[σ2IN +

P

M
HH∗]−1 P

M
HH∗

)
. (2)
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We consider the singular value decomposition (SVD) of
H = UΛ

1/2
H V ∗ whereU andV are unitary matrices andΛ1/2 is

a diagonal matrix with the square root of the ordered eigenvalues
of H on its diagonal. We now decomposeHH∗

HH∗ = UΛ
1/2
H V ∗V Λ

1/2
H U∗ = UΛHU∗

thereforeσ2IN +
P

M
HH∗ = U

(
σ2IN +

P

M
ΛH

)
U∗.

We defineD = σ2IN + P
M

ΛH then

[σ2IN +
P

M
HH∗]−1 = UD−1U∗. (3)

We now apply (3) to substitute the last part in (2)

tr ([σ2IN +
P

M
HH∗]−1 P

M
HH∗)

= tr

(
P

M
UD−1U∗UΛHU∗

)
= tr

(
P

M
UD−1ΛHU∗

)

=

N∑
l=1

P
M

λH(l)

σ2 + P
M

λH(l)
= N − σ2

N∑
l=1

1

σ2 + P
M

λH(l)

and the normalized MSE of (2) (also see Fig.2) reads like

M

P
tr (Kε) = M − N + σ2

N∑
l=1

1

σ2 + P
M

λH(l)
= M − N+

+σ2

(
M∑

l=1

1

σ2 + P
M

λH(l)
+

N∑
l=M+1

1

σ2

)
=

M∑
l=1

1

1 + P
M

λH(l)

σ2

.

The right term of the MSE in (4) is a Schur-convex function
which leads to the following theorem.

Theorem 1: For trace(HH∗) = constant, rising correlation1 in
H increases the normalized MSE at the MMSE receiver.

proof: Let trace(HH∗) =
∑N

l=1 λH(l)
.
= 1. H1 andH2

be two channel matrices andH1 has more correlation thanH2

which we write
∑m

l=1 λH1(l) ≥ ∑m
l=1 λH2(l) m = 1, ..., M .

The MSE is of the form MSE=
∑m

l=1 f(x) with the Schur-convex
function f(x) = 1

1+x
. According to theorem C1 from chapter 3

in [7] also MSE=
∑m

l=1 f(x) is Schur-convex. Therefore always
holds

m∑
l=1

1

σ2 + P
M

λH1(l)
≥

m∑
l=1

1

σ2 + P
M

λH2(l)
� (4)

2.2. CSI at the Transmitter and the Receiver

Let L be fixed and perfect CSI is available at the Tx, the data
symbol vector�sεCL is preprocessed and then�xεCM is emitted
from theM Tx antennas.M − L data streams are switched off.
The transmission scheme is depicted in Fig.1 and�x = WD�s,
whereD = diag(

√
P1, ...,

√
PL) is the power allocation matrix

and W is a unitary beamforming matrix of sizeM × L. Now (1)
reads

�y = H�x + �n = HWD�s + �n

1Correlation is used here in the sense of the distribution of the ordered
eigenvalues (EW)[4]. Uncorrelated - best case, when all EW are the same,
fully correlated - worst case, when there is only one EW bigger then zero.
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Fig. 1. MIMO transmission setup with channel knowledge at Tx.

We define�sp = D�s thenE[�s�sH ] = IL andE[�sp �sp
H ]=D with∑L

l=1 Pl ≤ P. The estimated datâ�sεCL at the MMSE Rx is then

�̂s = DW ∗H∗[σ2IN + HWDW ∗H∗]−1�y.

The covariance matrixKε is

Kε = D − DW ∗H∗[σ2IN + HWDW ∗H∗]−1HWD

or in normalized form

D− 1
2 KεD

− 1
2 = IL−D

1
2 W ∗H∗[σ2IN+HWDW ∗H∗]−1HWD

1
2 .

With H = UΛ
1/2
H V ∗, V = [V1, ..., VM ] andW = [V1, ..., VL]

the normalized MSE is given by

tr (D− 1
2 KεD

− 1
2 ) = L−tr

(
[σ2IN + HWDW ∗H∗]−1HWDW ∗H∗)

= L −
(

N − σ2
N∑

l=1

1

σ2 + λH(l)Pl

)
= L − N +

+ σ2

(
L∑

l=1

1

σ2 + λH(l)Pl
+

N∑
l=L+1

1

σ2

)
=

L∑
l=1

1

1 + λH(l)Pl
σ2

.

In order to minimize the sum of the MSE’s for all data streams we
solve the following minimization problem

min lim∑L
l=1 Pl≤P
Pl≥0

L∑
l=1

1

1 + λH(l)Pl
σ2

. (5)

We find the Lagrange functionL(�P , µ, �ω)

L(�P , µ, �ω) =

L∑
l=1

1

1 + λH(l)Pl
σ2

+ µ

(
L∑

l=1

Pl − P

)
−

L∑
l=1

ωlPl

(6)
whereµ is the Lagrange multiplier to satisfy

∑L
l=1 Pi ≤ P and�ω

guarantees allPi ≥ 0. Partial differentiation of (6) gives

∂L
∂Pr

= −
λH(r)

σ2(
1 + λH(r)Pr

σ2

)2
+ µ − ωr = 0. (7)

With a closer look at (5) we see that the sub-channels have differ-
ent impact on the MSE. We expect a "waterfilling"-like solution,
which means that with little sum power, sub-channels correspond-
ing to smaller eigenvaluesλi are switched off.

if P opt
l = 0, thenωl ≥ 0 and ifP opt

l > 0, thenωl = 0
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There exists a maximum indexL for which holds: ifl>L, then
P opt

l = 0 and λH(l)

σ2 = µ−ωl. With (6) and forl ≤ L the optimal
solution is then given by

P opt
l =

[√
σ2

µλH(l)
− σ2

λH(l)

]+

(8)

whereµ satisfies
∑L

l=1 P opt
l = P . This leads to:

Theorem 2: In case of perfect CSI at the Tx and Rx and
a MMSE receiver, then the optimal transmit strategy is given by
transmittingL data streams with the transmit vector�x:

�x = WD�s.

The unitary beamforming matrixW is given by the firstL columns
of V obtained from SVD ofH = V Λ1/2U∗ and the power allo-
cation matrixD = diag(

√
P1, ...,

√
PL) with Pr in (8) from the

solution of the minimization problem formulated in (5).
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Fig. 2. MSE as a function of the eigenvaluesλH(1) with
λH(1) = (1 − λH(2)) and

∑2
i=1 Pi = P = 1, 2, 5, 10 andσ2 = 1.0

Fig. 2 shows the MSE functions for the ordered 2 Eigenvalues
example. The upper curves(+) belong to the system with no CSI
at the Tx and are Schur-convex. The lower curves (◦) of the 4 sets
are the MSE’s with optimum power allocation. These functions are
not Schur-convex, in general, which we show in the following. On
the right hand side from the jump discontinuity only the effective
MSE of the remaining data stream is depicted becauseP2=0. Let
us assumeσ andP to be fixed andλH(1) be the parameter for
the MSE like in Fig. 2 (λH(1) + λH(2) = 1). The solution of
the minimization task beL = 2 for λH(1) = λH(2). With rising
correlation(λH(1) ↑) we find aλ̃H(1), so thatL = 1. Now we
considerλ(1)

H ≥ λ
(2)
H ≥ λ̃H(1) then

MSE(1) =
1

1 +
λ
(1)
H

P

σ2

≤ 1

1 +
λ
(2)
H

P

σ2

= MSE(2) ≤ MSE(λ̃H)

which is Schur-concave forλ(i)
H ≥ λ̃H . The more general case

reads:
M∑

l=1

λ
(1)
l =

M∑
l=1

λ
(2)
l andλ(1) ≥ λ(2).

We substitutePl in (5) with (8) and find for theL best chan-
nels in use MSE(L) =

∑L
l=1

1√
µλ(l)

. Since we know that

∑L
l=1

1√
λ(1)(l)

≥ ∑L
l=1

1√
λ(2)(l)

a comparison of MSE(1) =∑L
l=1

1√
µ(1)λ(l)

and MSE(2) =
∑L

l=1
1√

µ(2)λ(l)
depends on

µ(1) andµ(2). Therefore it can not be generally stated whether
MSE(1) ≥MSE(2) or vice versa. This complex behaviour is to be
seen in Fig. 2.

We now find the critical power when a channel has to be
switched off, assuming a fixed correlation and noise. We consider
the two eigenvalue example. We assumeP to be the sum power,
so thatP opt

2 > 0. We choose âP , with P ≥ P̂ , which holds
P opt

1 = P andP opt
2 = 0. We find the functionf(P opt

1 , P opt
2 ) and

parameterize it withP opt
1 = P − ε andP opt

2 = ε.

f(P opt
1 , P opt

2 ) =
1

1 +
λH(1)P

opt
1

σ2

+
1

1 +
λH(2)P

opt
2

σ2

f(P − ε, ε) =
1

1 + λH(1)(P−ε)

σ2

+
1

1 + λH(2)ε

σ2

Now we look at the point where the derivative becomes positiv

df(P − ε, ε)

dε
|ε=0≥ 0.

df

dε
|ε=0=

λH(1)

σ2(
1 + λH(1)(P−ε)

σ2

)2 −
λH(2)

σ2(
1 + λH(2)ε

σ2

)2 ≥ 0.

Theorem 3: A necessary and sufficient condition for beamforming
to be optimum is given by

P ≤ σ2

λH(1)

(√
λH(1)

λH(2)
− 1

)
= P crit.

3. BIT-LOADING STRATEGIES

Based on the results from above we propose a bit-loading strat-
egy (BLS) which uses finite modulation alphabets. Under the con-
straint of a minimum transmission quality (e.g. maximum BER)
the BLS finds the best match of the available SNRs per data stream
and the finite data symbols. In this way we achieve the highest data
throughput under the given constrains.
1.) The BLS starts with the above given optimum solution and
computes the SNR for every sub-stream. Each of the sub-streams
is then given the highest modulation satisfying the BER constraint.
2.) The allocated Tx power per data stream is reduced to achieve
just the necessary SNR for each modulation.
3.) Test, if taking one bit/Hz/s from one data stream and giving it
to another saves power. If not, proceed to next step.
4.) Sum up the remaining power and give it to the stream which
can support one more bit/Hz/s (a higher modulation scheme) while
it needs least from the rest power.
5.) Continue from 1. to 4. until no positiv rest power is available
after an intended modulation step.
6.) Distribute the remaining power in a way that all channels have
the same SNR increase.

4. SIMULATION

The simulation shall illustrate the described bit-loading-strategy.
Without loss of generality we choose a transmit matrixH with
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random real entries instead of complex i.i.d. values.M=4, N=4
andL=1,...,4.

We first compute the optimal power allocation solution de-
pending onL and give the MSE’s and SNR’s for the sub-streams.
Next we perform optimal bit-loading with the aim of maximizing
the data throughput under a maximum BER constraint.

4.1. example for the minimization task solution

We setσ2 = 0.1 andP = 15. We choose a random matrixH

H =




0.733 −0.777 0.314 0.398
0.059 1.55 1.419 −0.073
0.149 1.055 0.327 1.315
1.596 −0.166 0.475 0.978




with the following Eigenvalues:ΛH=(6.45; 4.69; 1.28; 0.12).
Now we show the optimal power allocationsDL=i derived

from (8) for this example andL = 1, ..., 4:

DL=4 =




1.347
1.577
2.982
9.094


 SNR[dB] =




19.39
18.69
15.82
10.45




DL=3 =

(
3.405
3.992
7.603

)
SNR[dB] =

(
23.42
22.72
19.88

)

DL=2 =

(
6.904
8.096

)
SNR[dB] =

(
26.49
25.79

)

DL=1 = (15.00) SNR[dB] = (29.86)

The sum of the MSE’s is then given by:

L
∑

MSE′s
4 1.3293E − 1
3 2.0006E − 2
2 4.8639E − 3
1 1.0315E − 3

4.2. Bit-Loading example

In the following we consider a set of discrete modulation schemes
available for bit loading. To limit complexity we assume the same
error protection coding for all data streams on bit level before mod-
ulation otherwise adaptive coding would be one more parameter.
Fig. 3 shows spectral efficiency, modulation and the required SNR
per sub-channel to achieve an uncoded BER better than10−3 [8].

Bits/s/Hz Modulation Eb/N0[dB] SNR[dB]
BER≈ 10−3 BER≈ 10−3

1 BPSK 6.8 6.8
2 QPSK 6.8 9.8
3 8QAM 9.0 13.7
4 16QAM 10.6 16.6
5 32QAM 12.7 19.7
6 64QAM 15.0 22.7
7 128QAM 17.1 25.5

Fig. 3. Spectral efficiency, Modulation and SNR ( BER <10−3)

We now start with the optimal MMSE solution from above and
initially load all channels according to their actual SNR’s.

SNR[dB] =




19.39
18.69
15.82
10.45


 MOD1′ =




16QAM
16QAM
8QAM
QPSK




We reduce the emitted power that just the chosen modulation is
supported and sum up the remaining power. We check if taking
one bit/Hz/s from one channel and giving it to another saves power.
If no gain can be achieved we add the remaining power to every
sub-channel and compute the rest power after this modulation step.
The channel which would needs the least power to transmit 1 more
bit/s/Hz is upgraded. Next we compute the minimum necessary Tx
power to satisfy the new modulation scheme and s.o.

After 6 iterations no modulation upgrade can be performed
with the remaining power and the BLS terminates with:

MOD6′ =




64QAM
64QAM
32QAM

0


 D6′

L=4 =




2.884
3.968
7.288

0




where D6′
L=4 means the power allocation matrix after 6 itera-

tions. The remaining power (5.7%) is distributed over the 3 active
channels that their SNR’s are improved equally or just power is
saved. The exemplary modulation scheme would support a spec-
tral efficiency of 17 bits/s/Hz with a BER better than10−3. The
other extreme is to allocate all power to the best channel. The
SNRL=1=29.8 dB can support a 256QAM which has a 8 bits/s/Hz
efficiency. If we start with the highest possibleL we quickly find
the maximum data throughput supporting a targeted BER.

5. CONCLUSION

We showed that correlation increases the MSE if no CSI is avail-
able at the Tx. This does not hold in general if the Tx has CSI and
the data signals are preprocessed prior to transmission. We showed
that preprocessing with a unitary beamforming matrix and a power
allocation matrix can minimize the MSE at the Rx. The solution
was obtained by solving the minimization problem from (5).

Based on this optimum power allocation we proposed a bit
loading algorithm which matches the optimum power distribution
over the sub-channels with finite modulation alphabets under the
constraint of a certain BER requirement.
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