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ABSTRACT step over a rate-and-power optimization. In this paper we trans-
. . . L form the rather abstract optimal solution into an applicable recipe-
In this paper, the optimal power allocation to minimize the like bit-loading strategy which is easy to implement. After only
mean squareerror (MSE) in MIMO systemswith and without a few iterations we achieve the closest to optimum bit and power
channel knowledgeat thetransmitter (Tx) isinvestigated. Fur- allocation. A simple example may illustrate our approach.

thermore theimpact of correlation isdiscussed. We show that
for MIMO systems with no channel knowledge at the Tx cor-

relation will increases the M SE at the receiver . This does not 2. SYSTEM MODEL

hold in general when channel knowledgeisavailable at the Tx. )

The optimum transmit solution can then be obtained by solv- We assume a single user MIMO system with Tx and N' Rx

ing a MSE minimization problem. Based on this solution we antennas with\/ < N and up toL data streams are transmitted
present a bit loading algorithm which matches the optimum over the MIMO channeld. At the Rx we assume a iMimum
power allocation with a set of finite modulation alphabetswith Mean_Sjuare_Eror (MMSE) detector at the Rx with perfect CSI.
the constraint to certain bit error rate requirements. The transmitter has either no CSI (2.1) or perfect CSI (2.2) like the

Rx and we always consider a total sum power constraint at the Tx.
The MIMO transmission model in matrix form reads
1. INTRODUCTION
y=H-Z¥+n 1)

The growing communication market demands always more of
the limited resource bandwidth. Transmission systems usingwith i the receive vector of lengtlv, Z the transmitted vector of
a multiple-input multiple-output (MIMO) structure have been sizel, 7 is the additive Gaussian noise vector of sive
shown to achieve a very high spectral efficiency. Therefore much
work was already done to increase mainly capacity. Considering, 1 g only at the Receiver
practical aspects towards implementation [1] discusses optimal se-
quences and power control when using linear MMSE multiuser If no CSl is available at the Tx then uniform power allocation and
receivers. Optimal sequences for pilot based CDMA and OFDM one data stream per antenna is optiniglzz™] = % - Inr where
systems are investigated in [2], [3] and recent work from [4] dis- E[.] means the expectatioh}” means Hermitean conjugate,is
cusses the effect of correlation on the ergodic and outage capacityhe total sum power anfh, is the identity matrix of sizé/ x M.
without channel state information (CSI) at the transmitter (Tx). The data symbol estimate by the linear MMSE receiver is

The first part of this paper focuses on the mean square error
(MSE) as a measure for the two cases of CSI at the receiver (Rx) P T P J7
only and CSI also available at the Tx. We start with the theory = MH o In + MHH Y
from [1] and show that for the Tx without CSlI, correlation will
increase the MSE at the Rx. Furthermore we derive the optimal yith +2 the noise variance at the Rx. The covariance makfix
power allocation for the case of the Tx with CSI which minimizes
the MSE at the Rx. This solution totally differs from the classical

"waterfilling" solution which maximizes the ergodic capacity. K. = E[(g; _ f)(f -5
In the second part of this paper we investigate bit-loading with P P P P
. . . * 2 *1—1
discrete modulation alphabets. We choose the optimal power al- = MI]M - MIJVIH "IN + MHH ] HMI]M

location solution from above as the starting point for practical bit-

loading, which we are primarily interested in from an application yields with a normalization

point of view. The presented bit-loading strategy finds the maxi-

mum data throughput under the constraint of a maximum average s P e o P 1 P

bit error rate (BER). Similar bit loading problems were already ad- 2= = In — \| 37 In H 07 I+ HHT] Hy\ [ 2 Do
dressed by e.g. [5] or [6] but their approaches start either with a

uniform power allocation or achieve a bit loading solution step by trace (.) gives the normalized MSE at the Rx.

This work was supported in part by the Bundesministerium fur Bil- tr (M 4 P
P

2 P * *
dung und Forschung (BMBF) under grant 01BU150 _KE) =M-—t ([U In + MHH J MHH ) - (2
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We consider the singular value decomposition (SVD) of
H = UA}/*V* whereU andV are unitary matrices anti'/? is s,
a diagonal matrix with the square root of the ordered eigenvalues

transmission

of H on its diagonal. We now decomposeH* s @WKy . channel recover [~ 8
o
HH" = UNVVAYUS = UAxU* s—b-[% s,
P * P *
therefores® Iy + HE = U (021N + MAH) U*. Tx Rx

We defineD = ¢°Ix + £ Ap then
Fig. 1. MIMO transmission setup with channel knowledge at Tx.

P
[0In + MHH*]*1 =UD™'U". (3)

. - N SoH —~ S Hy_ .
We now apply (3) to substitute the last part in (2) We defines, = D5 then E[55"] = I, and Elsps, "]=D with

S, P < P. The estimated dat&C* at the MMSE Rx is then

%HH*]*%HH*) §=DW*H"[oc’Iy + HWDW*H*|"'7.

= tr (EUD’lU*UAHU*) =1r <£UD*1AHU*)

tr ([UQIN —+
The covariance matriX is

K.=D—DW*H*[6*Ix + HWDW*H*| "' HW D

N _)\H , N ) )

_ Z M _N-g Z = or in normalized form

=1 M )‘H (l) =1 M )‘H (l) 1 1 1 1
= = —= —= 5 * rrxr 2 * rrx1—1 5
D 2K.D 2 =1,-D2W"'H [0 IN+tHWDW "H"|" HWD-=.
and the normalized MSE of (2) (also see Fig.2) reads like

With H = UAY?V*, V = [Vi, ..., Vu] andW = [Vi, ..., VL]
the normalized MSE is given by

=M-N+

N
M
pUH)=M=-Nito Z () tr(D"2K.D"%) = L—tr ([o*Ix + HWDW H*| ' HWDW"*H")

>|’“U —

+o7 §;+ii Sy 1
o2+ Lap(l) o2 14 L2l L- N—”Zm =L-N+

=1 I=M+1 =1
The right term of the MSE in (4) is a Schur-convex function L N L .
which leads to the following theorem. + g2 .
Theorem 1: For tracefd H*) = constant, rising correlatiiin ; o?+ >\H ;1 2 1+ 22Q7
H increases the normalized MSE at the MMSE receiver.
proof: Let traceH*) = Y"1, Ag(l) = 1. Hy and H, In order to minimize the sum of the MSE’s for all data streams we
be two channel matrices anti; has more correlation thaf- solve the following minimization problem
which we write> ™™ Am, (1) > >, Ae,(I) m =1,..., M. L
The MSE is of the form MSE 3", f(z) with the Schur-convex min lim Z 1 )
function f(z) = 1+z According to theorem C1 from chapter 3 Sk 1 Psp 14+ AHU)PI '
in [7] also MSE= >"/", f(x) is Schur-convex. Therefore always
holds ' L=
We find the Lagrange functiof(P, u, o)
P D= o @ . L L
— L )\Hl( — AHz ©) LP, @) =Y 1 (Z P — ) -S> wh
+
=1 =

2.2. CSl at the Transmitter and the Receiver . o N (6)
wherey is the Lagrange multiplier to satisfy’;” ; P; < P and
Let L be fixed and perfect CSl is available at the Tx, the data guarantees alP; > 0. Partial differentiation of (6) gives

symbol vectorseC” is preprocessed and therCM is emitted

from the M Tx antennas.\M/ — L data streams are switched off. oL AIZY)

The transmission scheme is depicted in Fig.1 a&nd= W D5, F +p—wr=0. (7
whereD = diag(\/Px, ...,n/Pr) is the power allocation matrix (1 + =52 )

and W is a unitary beamforming matrix of sid¢ x L. Now (1) ) .
reads With a closer look at (5) we see that the sub-channels have differ-

G=HZ+i=HWDS+7 ent impact on the MSE. We expect a "waterfilling"-like solution,
which means that with little sum power, sub-channels correspond-

1Correlation is used here in the sense of the distribution of the ordereding to smaller eigenvalues; are switched off.
eigenvalues (EW)[4]. Uncorrelated - best case, when all EW are the same,
fully correlated - worst case, when there is only one EW bigger then zero. if Pf'pt =0, thenw; > 0 and ifPf'pt > 0, thenw; = 0
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There exists a maximum inddxfor which holds: ifi>L, then
PP = 0and2{Y = ;,—w;. With (6) and forl < L the optimal
solution is then given by
+
o
Au(l)

wherey satisfiesy"~ | P’** = P. This leads to:
Theorem 2: In case of perfect CSI at the Tx and Rx and

o2

pA (1)

opt __
l

8)

L_ a comparison of MSE) =

L 1 L
2t NAOID] > i

L ?m(l) L
1 2) _ 1
S wRSr and MSE S NASE depends on

Y and 1. Therefore it can not be generally stated whether
MSE® >MSE® or vice versa. This complex behaviour is to be
seen in Fig. 2.

We now find the critical power when a channel has to be
switched off, assuming a fixed correlation and noise. We consider
the two eigenvalue example. We assuim¢o be the sum power,

a MMSE receiver, then the optimal transmit strategy is given by so thatPg?* > 0. We choose &, with P > P, which holds

transmittingL data streams with the transmit vector
Z=WDs.

The unitary beamforming matri¥” is given by the firsf. columns
of V obtained from SVD ofd = VA!/2U* and the power allo-
cation matrixD = diag(v/P%i, ..., /Pr) with P, in (8) from the
solution of the minimization problem formulated in (5).

normalized MSE()\H(l))

o
=
T

o
N

Fig. 2. MSE as a function of the eigenvaluedy (1) with
A1) =1 —Ap(2) and¥2 P, =P =1,2,5, 10 and? = 1.0

PP" = P andPy”" = 0. We find the functionf (P**, Py**) and
parameterize it witiP{?* = P — e and Py?" = e.

1 1
f POpt7POpt — _ _
( E 2 ) 1 + )‘H(;)Qplpt 1+ )‘H(i)zpzpt
1 1
f(P_€7€)
1+ AH(lf)r(sze) 14+ Ab;(22)s

Now we look at the point where the derivative becomes positiv

df (P —¢,¢
UP—es)) s
df )‘Hél) )‘H§2)
_J —0= o _ o 2 0
de '© <1+ Ay 1;(21375))2 (1+ )\1.2(22)5>2

Theorem 3: A necessary and sufficient condition for beamforming
to be optimum is given by
_ 1) _ Pc'rit.

A (1) (

3. BIT-LOADING STRATEGIES

A (1)

P < i (2)

Based on the results from above we propose a bit-loading strat-
egy (BLS) which uses finite modulation alphabets. Under the con-

Fig. 2 shows the MSE functions for the ordered 2 Eigenvalues straint of a minimum transmission quality (e.g. maximum BER)
example. The upper curves(+) belong to the system with no CSlihe BLS finds the best match of the available SNRs per data stream

at the Tx and are Schur-convex. The lower curvgf the 4 sets

and the finite data symbols. In this way we achieve the highest data

are the MSE's with optimum power allocation. These functions are throughput under the given constrains.
not Schur-convex, in general, which we show in the following. On 1.) The BLS starts with the above given optimum solution and

the right hand side from the jump discontinuity only the effective
MSE of the remaining data stream is depicted becdus®. Let

us assumer and P to be fixed and\z (1) be the parameter for
the MSE like in Fig. 2 (1) + Ax(2) = 1). The solution of
the minimization task bé& = 2 for Az (1) = Ax(2). With rising
correlation(Az (1) 1) we find aXx (1), so thatZ, = 1. Now we
considennl)) > A2 > X (1) then

1 1 .
MSE®) = o S — @ = MSE? < MSE(An)
L+ 2 52

which is Schur-concave fokg_? > Ag. The more general case
M
=Y " AP andA® > 2@

reads:
M
SoA
=1 =1

We substituteP; in (5) with (8) and find for thel. best chan-
nels in use MSEL) = Y./, —~—. Since we know that

Vi)

computes the SNR for every sub-stream. Each of the sub-streams
is then given the highest modulation satisfying the BER constraint.
2.) The allocated Tx power per data stream is reduced to achieve
just the necessary SNR for each modulation.

3.) Test, if taking one bit/Hz/s from one data stream and giving it
to another saves power. If not, proceed to next step.

4.) Sum up the remaining power and give it to the stream which
can support one more bit/Hz/s (a higher modulation scheme) while
it needs least from the rest power.

5.) Continue from 1. to 4. until no positiv rest power is available
after an intended modulation step.

6.) Distribute the remaining power in a way that all channels have
the same SNR increase.

4. SIMULATION

The simulation shall illustrate the described bit-loading-strategy.
Without loss of generality we choose a transmit mattixwith
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random real entries instead of complex i.i.d. valugé=4, N=4
andL=1,...,4.

We first compute the optimal power allocation solution de-
pending onL and give the MSE’s and SNR’s for the sub-streams.
Next we perform optimal bit-loading with the aim of maximizing
the data throughput under a maximum BER constraint.

4.1. examplefor the minimization task solution

We seto? = 0.1 and P = 15. We choose a random matriX

0.733 —0.777 0.314  0.398
H— 0.059 1.55 1.419 —0.073
10149 1.055 0.327 1.315
1.596 —0.166 0.475 0.978

with the following EigenvaluesA ;;=(6.45; 4.69; 1.28; 0.12).
Now we show the optimal power allocatiod3;,—; derived
from (8) for this example and = 1, ..., 4:

1.347 19.39
1.577 18.69
Dr=a= | 59gp| SNRIBI= | 1555
9.094 10.45

3.405 23.42
Dp—s = (3992] SNR[dB]= [ 22.72

7.603 19.88
6.904
Dp—2 = <8.096> SNR[dB] = < )

Dp—1 = (15.00) SNR[dB] = (29.86)
The sum of the MSE’s is then given by:

26.49
25.79

L Y MSE's

4 132093E —1
3 2.0006E — 2
2 4.8639E — 3
1 1.0315E -3

4.2. Bit-Loading example

In the following we consider a set of discrete modulation schemes
available for bit loading. To limit complexity we assume the same
error protection coding for all data streams on bit level before mod-

ulation otherwise adaptive coding would be one more parameter.

Fig. 3 shows spectral efficiency, modulation and the required SNR
per sub-channel to achieve an uncoded BER betterthah[8].

Bits/s/Hz | Modulation | Ej,/No[dB] SNR[dB]
BER~ 102 | BER~ 102
1 BPSK 6.8 6.8
2 QPSK 6.8 9.8
3 8QAM 9.0 13.7
4 16QAM 10.6 16.6
5 32QAM 12.7 19.7
6 64QAM 15.0 22.7
7 128QAM 171 25.5

Fig. 3. Spectral efficiency, Modulation and SNR ( BER& 3)

We now start with the optimal MMSE solution from above and
initially load all channels according to their actual SNR’s.

19.39 16QAM

| 1869 v | 16QAM
SNR[OB] = | 5gy | MOD" = | {54as
10.45 QPSK

We reduce the emitted power that just the chosen modulation is
supported and sum up the remaining power. We check if taking
one hit/Hz/s from one channel and giving it to another saves power.
If no gain can be achieved we add the remaining power to every
sub-channel and compute the rest power after this modulation step.
The channel which would needs the least power to transmit 1 more
bit/s/Hz is upgraded. Next we compute the minimum necessary Tx
power to satisfy the new modulation scheme and s.o.

After 6 iterations no modulation upgrade can be performed
with the remaining power and the BLS terminates with:

648QM 2.884
¢ _ | 64QAM 6 _ | 3.968
MOD” = 32QAM Di—a= 7.288

0 0

where D6L/:4 means the power allocation matrix after 6 itera-
tions. The remaining power (5.7%) is distributed over the 3 active
channels that their SNR’s are improved equally or just power is
saved. The exemplary modulation scheme would support a spec-
tral efficiency of 17 bits/s/Hz with a BER better thag=>. The
other extreme is to allocate all power to the best channel. The
SNR;=1=29.8 dB can support a 256QAM whichda 8 bits/s/Hz
efficiency. If we start with the highest possihlewe quickly find

the maximum data throughput supporting a targeted BER.

5. CONCLUSION

We showed that correlation increases the MSE if no CSl is avail-
able at the Tx. This does not hold in general if the Tx has CSl and
the data signals are preprocessed prior to transmission. We showed
that preprocessing with a unitary beamforming matrix and a power
allocation matrix can minimize the MSE at the Rx. The solution
was obtained by solving the minimization problem from (5).

Based on this optimum power allocation we proposed a bit
loading algorithm which matches the optimum power distribution
over the sub-channels with finite modulation alphabets under the
constraint of a certain BER requirement.
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