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ABSTRACT

A beamforming for OFDM modulation is proposed that al-
locates power over subchannels and subcarriers. The de-
sign follows a minimum BER criterion taking into account
the different reliability of CSI estimates at both ends of
the transmitter link. The transmitter design is based on
a generalized exponential BER bound that is tighter than
the Chernoff bound, whereas the receiver that minimizes
the BER is implemented by the MAP detector. The result-
ing design reconfigures itself, from the known solution when
perfect CSI is available to the open-loop solution depending
on the channel uncertainty.

1. INTRODUCTION

The use of closed-loop schemes with MIMO systems, in-
creases the link performance either in terms of capacity
or in terms of reliability. However, the potential of these
schemes can only be fully accomplished when perfect Chan-
nel State Information (CSI) is available. In real scenarios,
CSI is always imperfect, and its quality is unbalanced be-
tween transmitter and receiver. The transmitter has only
an a priori channel state knowledge, based on a quantized
feedback channel and the prediction of the future channel
state from previous CSI [1]. On the contrary, the receiver
is able to take advantage of the observation at the channel
output to measure the channel state a posteriori. Accord-
ingly, since neither prediction, nor quantized error degrades
CSI at the receiver, the channel knowledge is always supe-
rior at this side.

This paper aims to design robust transmitter and re-
ceiver algorithms when the quality of CSI is unequal, follow-
ing the same Bayesian approach proposed in [2]. The trans-
mitter, employing the predicted CSI, allocates the avail-
able power among all subcarriers and antennas in a MIMO-
OFDM channel, minimizing the Bit Error Rate (BER) when
channel estimates are noisy. Unlike other proposed algo-
rithms that minimize the Chernoff bound as alternative to
the Q(·) function [3], this paper introduces a tighter general-
ized exponential BER bound adjusted, for each subcarrier,
to the nominal SNR. At the receiver a robust solution is
also implemented based on a maximum a posteriori (MAP)
detector, making use of all the available information. The
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resulting design reconfigures itself as a function of the chan-
nel uncertainty degree: when perfect CSI is available robust
and non robust solutions converge, whereas when the qual-
ity in CSI diminishes robust algorithm tends to the open-
loop solution outperforming non-robust one. This design
is similar to that one presented in [4], where partial CSI is
used at the transmitter to combine the benefits of beam-
forming with predetermined space-time codes. Although
the robust algorithm presented in this paper is also focused
on beamforming (i.e. only the most dominant channel mode
is used to transmit symbols), it can be generalized to trans-
mit distinct symbols in the larger channel modes increasing
the data throughput [5].

2. PROBLEM STATEMENT

This section describes the signal model for an OFDM MIMO
communications system and summarizes the Bayesian ap-
proach to design power allocation strategies robust to CSI
errors in [2]. The MIMO configuration consists of MT

transmitter and MR receiver antennas. The application
of OFDM modulation with Q subcarriers allows to decou-
ple the frequency-selective MIMO channel into Q MIMO
frequency-flat channels if a certain structure is imposed in
the transmitter and receiver.

Let x = [x(1) . . . x(Q)]T be the Q×1 vector that con-
tains Q information symbols to be transmitted in one OFDM
symbol, assumed to be i.i.d, with zero mean and variance
E

{

xxH
}

= σ2
xI. The input-output relation, once the cyclic

prefix has been removed, can be written in terms of matrices
that involve only one subcarrier each as:

rk = Hkfkxk + nk k = 1 . . . Q (1)

where rk is the MR×1 vector that contains the symbols
received through the different antennas for the kth subcar-
rier; Hk is a MR × MT matrix containing the frequency
responses of the MIMO channels; fk is a MT × 1 vector
that allocates the power over the MT antennas; and nk is
the noise vector after the FFT, which has the same Gaus-
sian statistic as its time-domain counterpart, zero mean and
variance E

{

nkn
H
k

}

= σ2
nI.

Making use of the identity vec (ABC) =
(

CT ⊗ A
)

vec (B)
[6], the received vector in (1) can also be written as:

rk = Fkhkxk + nk k = 1 . . . Q (2)

where hk vector, which reflects the MIMO channel responses
at the kth subcarrier, and Fk are defined as:

hk = vec {Hk} ; Fk = f
T
k ⊗ I (3)
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Similarly, all subcarrier channel vectors are grouped in a
single vector h that will denote the whole MIMO channel
response:

h =
[

hT
1 . . . hT

Q

]T
(4)

The performance of any power allocation strategy is
very sensitive to CSI errors. Accordingly, as channel re-
sponse is never completely known, an optimal design of fk

vector can never be fulfilled assuming perfect CSI at the
transmitter. Instead, the design of robust solutions that
introduce the statistics of the channel uncertainty in the
cost function exhibit lower sensitivity and provide better
performances.

The robust design of fk will follow a Bayesian approach

based on the estimate channel model ĥ:

ĥ = h + ε (5)

where the estimation errors ε are modelled as a zero mean
Gaussian random variable, independent of the true Rayleigh
channel h.

Assuming uncorrelation between antennas and between
channel taps in the channel impulse response, and assuming
that the power delay profile of the channel impulse response
is identical for all subchannels, the covariance matrix of the
channel h is:

E
{

hh
H

}

= P ⊗ I (6)

where P is the circulant matrix built as a Hermitian Toeplitz
matrix whose first row is [ P (1) . . . P (Q) ], and P (k) k =
1 . . . Q is the DFT of the power delay profile. Similarly, the
covariance of the channel error ε extended to all subcarriers
and antennas becomes:

E
{

εε
H

}

= E ⊗ I (7)

where matrix E, with the same structure that P, contains
the DFT of the variance in the channel estimation error for
each tap.

As the channel estimate ĥ only provides partial infor-
mation on the true channel h, the impact of the channel un-
certainty is mitigated by averaging the function to minimize
over the real channel, given the channel estimate. Assuming

that ĥ and h vectors are jointly Gaussian, the conditional
p.d.f. f

h/ĥ (h) required to compute previous expectation,

is also a Gaussian random variable whose mean and covari-
ance are given by [2]:

m
h|ĥ =

(

P (P + E)−1 ⊗ I
)

ĥ

C
h|ĥ =

(

P (P + E)−1
E

)

⊗ I
(8)

2.1. The equivalent channel

The conditional mean (8) can be rewritten as a linear com-
bination of the estimated channels for all subcarriers:

h
eq
k = m

hk|ĥ =

Q
∑

j=1

βk(j) ĥj (9)

where βk(j) is the j-th element of vector βk defined as:

βk =
(

P
T + E

T
)−1

pk (10)

and pk is the kth column of PT .

According to (9), h
eq
k can be defined as an equivalent

channel that exploits the correlation between subcarriers,
and the channel uncertainty structure, to mitigate the mis-
match between the real and the estimated channel (for an
extended interpretation on this equivalent channel see [2]).

3. TRANSMITTER DESIGN

This section designs the linear transformation fk to opti-
mally allocate the power over all antennas and subcarriers,
minimizing the uncoded BER for each subcarrier. Assum-
ing QPSK modulation, the exact BER for the kth subcar-
rier, and the averaged BER over all subcarriers become:

BERk = Q
(√

SNRk

)

; BER =
1

Q

Q
∑

k=1

BERk (11)

As the use of the exact Q (·) function derives in complex so-
lutions, this paper proposes an expansion of the Q (·) func-
tion in the neighborhood of the nominal SNRk for each
particular subcarrier. By a generalized exponential expan-
sion of the BER, the Q (·) function can be expressed as:

Q
(√

x
)

' De−Ax (12)

where constants A and D can be chosen to set certain con-
straints. The Chernoff bound can be regarded as a particu-
lar case of (12) for A = 1/2 and D = 1/2. However, a more
tight bound can be obtained following a Taylor expansion
of ln (Q (

√
x)) in the neighborhood of the point x = a. In

this case A and D constants are given by:

A =
e−|a|/2

2
√

2πaQ (
√

a)
; D = Q

(√
a
)

eAa (13)

It can be shown that (13) provides a lower bound for Q (·),
that is very tight in a wide range of values of x around a.

According to (12), the exact BER for the kth subcarrier
in the neighborhood of a = SNRk can be approximated by:

BERk = Q
(√

SNRk

)

' δke−αkSNRk (14)

where αk and δk constants, which depend on the kth sub-
carrier, refers to A and D in (13).

The SNRk for the kth subcarrier is given by:

SNRk =
σ2

x

σ2
n

h
H
k F

H
k Fkhk (15)

and the exponent in (14) can be expressed as a function of
vector h defined in (4) as:

αkSNRk = h
H
Mkh (16)

where Mk is the QMT MR × QMT MR matrix:

Mk = γk

















01

...
Ik

...
0Q

















F
H
k Fk [ 01 . . . Ik . . . 0Q ] (17)

and Ii denotes a MT MR identity matrix allocated in the

ith position, 0i is an all zero matrix, and γk = αk
σ2

x
σ2

n
.
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Substituting (16) and (14) in the averaged uncoded BER
(11), the robust function to minimize, subject to a power
constraint, is obtained computing the expectation of (11)
over the real channel given the channel estimate:

ξ = E
h/ĥ

{

BER
}

= 1
Q

E
h/ĥ

{

∑Q
k=1 δke−h

H
Mkh

}

subject to
∑Q

k=1 fH
k fk = P0

(18)

3.1. Cost function

Using the results in (8) to expand the Gaussian p.d.f. f
h/ĥ,

the averaged cost function in (18) becomes:

ξ =
1

Q

Q
∑

k=1

δk

πQ|C
h/ĥ|

∫

h∈C

e−h
H

Mkhe
−(h−h

eq)H
C

−1

h/ĥ
(h−h

eq)
dh

(19)
where heq, as defined in (9), denotes the equivalent channel
over all subcarriers. Previous integral can be easily solved
rewriting its integrand as:

∫

h∈C

e−(h−µ)Hβ(h−µ)−ηdh (20)

where: β = Mk + C−1

h/ĥ

µ = β−1C−1

h/ĥ
heq

η = heqH
(

MkCh/ĥ + I
)−1

Mkh
eq

(21)

The solution to the integral in (20) can be found by com-
paring its integrand with a complex Gaussian p.d.f., whose
integral equals to one. Accordingly, (19) becomes:

ξ =
1

Q

Q
∑

k=1

δk

|C
h/ĥMk + I|e

−h
eqH

(

MkC
h/ĥ

+I

)−1
Mkh

eq

(22)

As the matrix Mk only contains non-zero values in a block
of elements as defined in (17), previous expression can be
simplified following:

|C
h/ĥMk + I| = 1 + γkω|fk|2

(

MkCh/ĥ + I
)−1

Mk = 1
1+γkω|fk|2

Mk

(23)

where ω, obtained from the conditioned covariance matrix
C

h/ĥ (8), denotes the (k, k)th element of
(

P (P + E)−1
E

)

,

and is independent of the kth subcarrier since E and P are
circulant matrices.

Finally substituting (23) and (3) in (22), and applying
vec (ABC) =

(

CT ⊗ A
)

vec (B) [6], the function to mini-
mize, subject to a power constraint, becomes:

ξ =
1

Q

Q
∑

k=1

δk

1 + γkω|fk|2
e
−γkf

H
k H

eq
k

H
H

eq
k

fk

(

1

1+γkω|fk|2

)

(24)

3.2. Robust power allocation

This subsection presents a solution for the optimization of
(24). The minimization is obtained selecting fk to be in the
direction of the right singular vector vk associated to the
largest singular value λeq

k of the equivalent channel H
eq
k :

fk = vkφk (25)

where the scalar φk is the new parameter to design, and
denotes the power allocated to the kth subcarrier. In or-
der to proof (25) it is sufficient to see that all the terms
in the summation of the cost function in (24) are positive.
Then, the way to minimize the function is to minimize each
term independently. According to the SVD of the equiva-
lent channel, previous minimization is achieved maximizing
the argument of the exponential term, focusing the trans-
mitted symbols in the direction of the singular vector asso-
ciated to the maximum singular value of the channel.

Substituting (25) in (24) the new cost function, includ-
ing the power constraint (18), becomes:

1

Q

Q
∑

k=1

δk

1 + γkω|φk|2
e
−

γk|φk|2|λ
eq
k

|2

1+γkω|φk|2 − µ

[

Q
∑

k=1

|φk|2 − P0

]

(26)
where µ is the Lagrange multiplier. The minimization prob-
lem follows deriving the gradient ∇φ∗

k
and equaling it to

zero. After some manipulations on the gradient, the opti-
mal power allocation can be obtained by solving for each
subcarrier:

− γk|φk|2|λ
eq
k

|2

1+γkω|φk|2
− 2 ln

(

1 + γkω|φk|2
)

+

ln
(

ω +
|λ

eq
k

|2

1+γkω|φk|2

)

= µ − ln (δkγk)
(27)

A closed form solution for this identity can not be derived.
However under the assumption that the channel uncertainty
is low 1, we approximate ln (1 + x) ' x and 1/ (1 + x) ' 1,
and (27) is simplified:

−γk|λeq
k |2|φk|2 −2γkω|φk|2 +ln

(

ω + |λeq
k |2

)

= µ− ln (δkγk)
(28)

obtaining a closed form solution for |φk|2:

|φk|2 =

[

−µ − ln (δkγk) − ln
(

ω + |λeq
k |2

)

γk (2ω + |λeq
k |2)

]+

(29)

and µ is determined forcing the power constraint (18).

4. THE OPTIMUM RECEIVER

Making use of all the available information at the receiver
side (i.e the designed fk for all subcarriers, and CSI at the
receiver) the optimum receiver becomes the MAP detec-
tor. Under the assumption that all transmitted symbols are
equally likely, the MAP criterion and ML make the same
decisions. Accordingly, in the case of imperfect channel esti-
mates, the decision rule is based on finding the transmitted
symbols that maximize the conditional likelihood function
f
rk/ĥ (rk/xk). As the conditional ML function is Gaussian,

obtaining the maximum of the likelihood function over xk

is equivalent to finding the symbols xk that maximize:

D(rk, xk) =
2

σ2
x|φk|2ω + σ2

n

Re
{

r
H
k H

eq
k fkxk

}

(30)

where constants and irrelevant terms have been omitted,
and conditional mean and covariance have been obtained
following (8).

1If this assumption does not hold, an iterative solution can
be derived using the gradient ∇φ∗

k
.
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Figure 1: BER comparison between different power alloca-
tion strategies. MT=1, MR=1. Tx uncertainty: σ2

ε = 0.02.

5. SIMULATION RESULTS

Computer simulation were carried out to illustrate the ro-
bustness of the proposed beamformer and MAP receiver as
a function of the MIMO configuration. The bit stream to
be transmit was mapped into a QPSK constellation, and
one symbol per subcarrier was transmitted over the MT

antennas. The channel obeyed an exponential power delay
profile with 50ns of delay spread. It was assumed that the
channel estimation error had the same variance σ2

ε for all
taps of the impulse channel response. Channel uncertainty
at the receiver was assumed to be proportional to the noise
variance σ2

n, as would be the case in a linear channel estima-
tor. On the contrary, channel uncertainty at the transmit-
ter included a proportional to σ2

n term modelling channel
prediction error in time-varying channels.

Figure 1 evaluates the BER (11) for different power al-
location criteria: the generalized BER bound solution (αk

and δk according to (13)), the Chernoff bound solution
(αk = δk = 1/2) and the MMSE solution [2]. As it was
expected, robust solutions have best performance than non-
robust ones, and the relative difference grows when SNR
increases. Moreover, the proposed exponential BER bound
always outperforms others, even at low SNR’s, where Cher-
noff bound exhibits a lower performance. Accordingly, the
proposed bound (12) becomes an appropriate alternative to
the Q(·) function extensive to any SNR ratio.

Figure 2 shows the minimum EbNo to achieve a BER ≤
10−3 for 1x1 and 2x1 MIMO configurations. The target
EbNo is plotted as a function of the channel uncertainty
degree ρ defined as:

ρ = E
{

ε
H

ε
}

/E
{

ĥ
H
ĥ
}

(31)

Accordingly, ρ = 0 denotes perfect CSI, whereas ρ = 1
means no channel knowledge. Two simulations are plotted
for different channel uncertainty degrees at the receiver:
perfect CSI and σ2

ε = σ2
n/4. The point ρ = 0, plotted

as a reference, was always simulated with perfect CSI at
transmitter and receiver. The robustness of the proposed
solution is evidenced comparing robust and non-robust al-
gorithms for different channel uncertainties. When perfect
CSI is available, both algorithms have the same perfor-
mance. Nevertheless, when the CSI quality degrades the
losses of the non-robust solution are significant. It is also
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Figure 2: Minimum EbNo that achieves BER ≤ 10−3. Tx.
uncertainty defined by ρ. Rx. uncertainty σ2

ε = σ2
n/4.

worth to remark that the robust algorithm tends to the
open-loop solution when CSI degrades.

6. CONCLUSIONS

This paper presented the design of a robust power allocation
strategy focused on the minimization of the uncoded BER,
and an optimum MAP detector, in the presence of chan-
nel uncertainties. Unlike other solutions that consider the
Chernoff bound to evaluate the BER, this paper introduced
a more tight generalized exponential BER bound. Numeri-
cal results demonstrate that the robust solution, according
to a Bayesian formulation, outperforms algorithms that as-
sume perfect channel knowledge, with a complexity similar
to that one of existing techniques. Moreover, the proposed
solution reconfigures itself as a function of the channel un-
certainty degree, achieving the open-loop solution when no
channel information is available.
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