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ABSTRACT

In this paper, we analyze the effects of channel correlation
on the performance of Maximal Ratio Combining (MRC)
in receive antenna diversity systems. In the analysis, the
channel is modelled as flat Rayleigh fading, slowly vary-
ing and an arbitrary number of cochannel interferers are as-
sumed to be present. In an interference limited scenario, an
exact closed form expression for signal to interference ra-
tio (SIR) distribution is obtained for a dual antenna system.
The degradation in the outage probability as a function of
the correlation severity is investigated.

1. INTRODUCTION

In receive antenna diversity systems, the signals at the mul-
tiple antenna elements are combined to improve system per-
formance by combatting cochannel interference and chan-
nel impairments such as multipath fading. Maximal Ratio
Combining (MRC) is one of the well known linear com-
bining techniques in which the spatial combiner weights
are chosen so that the output signal to (thermal) noise ratio
(SNR) is maximized. There is a reduction in the diversity
gain of such a system when there is correlation among the
antenna elements possibly due to insufficient antenna spac-
ing. It is of interest to determine the performance degrada-
tion caused by this channel correlation.

The performance of an MRC system with independent
flat Rayleigh fading model is analyzed in [1] and [2], where
closed form SINR distribution and outage probability ex-
pressions are provided. The effect of fading correlation
among antenna elements have also been investigated. How-
ever, most of the work have been limited to single user sys-
tems [3, 4, 5]. In [6], systems with multiple interferers are
considered and simulation results are presented. An analyt-
ical approach to performance analysis is given in [7], but it
is assumed that either only the desired user or only the in-
terferers experience correlated fading. Even then, the error
probability expressions provided are not in closed from, but
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in the form of statistical expectations. In this paper, we con-
sider an MRC system with arbitrary number of co-channel
interferers and correlated flat Rayleigh fading across the an-
tenna elements. For a dual diversity system, we provide an
exact expression for the signal to interference ratio (SIR).
We also investigate the performance degradation as a func-
tion of the correlation severity.

The paper is organized as follows: The system model is
introduced in Section 2. In Section 3, the SIR distribution
of MRC is obtained. Simulation results are presented in
Section 4.

2. SYSTEM MODEL

Consider the uplink of a wireless communication system
with M antennas at the base station. The received signal
consists of components from the desired user, the N inter-
fering users and thermal noise.

r(t) =
√

P0 · c0 · do(t)+
N∑

k=1

√
Pk · ck · dk(t)+n(t) (1)

The desired and interfering user powers are denoted by Pk,
where k is the user index. dk corresponds to the informa-
tion bits of the kth user and it is assumed to be zero-mean
and unit variance. The M × 1 noise vector n is complex
white (both temporally and spatially) Gaussian with zero-
mean and variance σ2

n. Without loss of generality, σ2
n is set

to one. Non-unity variances can be readily accommodated
by scaling the user powers by 1/σ2

n. The channel is mod-
elled as flat Rayleigh fading, and the circularly Gaussian
vector ck corresponds to the fading coefficients of the kth

user. The fading coefficients at each antenna are assumed
to be correlated, i.e. E[ckck

H ] = Σ, which in practice
could be due to insufficient antenna spacing. The channel is
also assumed to be slowly-varying, so that the fading coef-
ficients remain unchanged over the frame. Hence, a quasi-
static analysis is applicable.

The signal to interference plus noise ratio (SINR) for
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this system model is expressed as [7]

SINR = P0 · |wHc0|2

wH

(
N∑

k=1

Pk · ckck
H + I

)
w

(2)

where w is the spatially combining weight vector.

3. MAXIMAL RATIO COMBINING

Maximum Ratio Combining (MRC) is one of the most com-
mon linear combining techniques in receive diversity sys-
tems. In MRC, the spatial combiner weights are chosen to
maximize the output signal to (thermal) noise ratio (SNR).
The corresponding spatial combiner weights, w, are the fad-
ing coefficients of the desired user [8]. In other words, MRC
projects the received M dimensional signal onto the direc-
tion of the desired user. It is the optimum linear combining
technique in the presence of thermal noise.

The output SINR for an MRC system can be written as

SINR = P0 · (c0
Hc0)2

c0
H

(
N∑

k=1

Pk · ckck
H + I

)
c0

(3)

The distribution of the output SINR have been investigated
in [1] for an uncorrelated fading system and a closed form
SINR distribution expression have been derived. However,
with the introduction of channel correlation, the numerator
and the denominator of the SINR expression can no longer
be statistically independent. This fact makes the analysis
of the correlated fading system a much more complicated
problem. In order to continue with the analysis, a differ-
ent approach has to be taken along with some simplifying
assumptions.

The first simplifying assumption we make in this pa-
per is to ignore the effect of thermal noise. Consequently,
the results are valid in an interference limited environment.
We further assume that all the interfering users have equal
power levels, i.e. Pk = PI ∀ k = 1, . . . , N . With these
assumptions, the signal to interference ratio (SIR) can now
be expressed as

SIR = P0 · (c0
Hc0)2

PI

N∑
k=1

(c0
Hck)(c0

Hck)H

(4)

We define two new random variables, wk and K.

K = PI ·
N∑

k=1

|wk|2, where wk =
c0

Hck√
c0Σc0

(5)

where K is weighted chi-square distributed with 2N de-
grees of freedom and has the following distribution.

fK(k) =




1
Γ(N)PN

I

· kN−1 · e−k/PI for k ≥ 0,

0 for k < 0
(6)

Substituting K into the SIR expression, we have

SIR = P0
K · (c0

Hc0)2

c0
HΣc0

(7)

It can be shown that the wk’s conditioned on the value of c0

are complex Gaussian distributed with zero mean and unit
variance (wk|c0 ∼ N (0, 1)). Since the conditional distri-
bution of wk is not a function of the conditioning variable
c0, we can conclude that the wk’s (and therefore K) are
independent from c0. We have now expressed SIR as the
product of two independent terms. In order to find the SIR
distribution, we first condition it on K and obtain the con-
ditional distribution in closed form. We then derive the un-
conditional distribution by averaging over the conditioning
variable.

For the sake of analytical tractability, we only consider
dual antenna diversity systems, where ck = [xk,1 + jyk,1

xk,2 + jyk,2]T . In accordance with the Rayleigh fading as-
sumption, the xk,i’s and yk,i’s are Gaussian random vari-
ables (∼ N (0, 1/2)) and E[xk,i yk,i] = 0. As shown in [6],
if we assume that the mobile’s signal reaches all the antenna
array elements at the same time, the real and imaginary parts
of the fading coefficients at different antenna elements are
also independent from one another (E[xk,1 yk,2] = E[xk,2

yk,1] = 0). Hence, the correlation among the fading coef-
ficients can be modelled by a single real valued parameter,
r.

E[ckck
H ] = Σ =

[
1 r
r 1

]
(8)

When r = 0, we have the uncorrelated channel case
for which the exact SINR distribution is already computed
in [1] for an arbitrary number of antennas, M .

fSINR(s) =
e−s/P0

Γ(N)
· P−M

0 sM−1

(M − 1)!

×
M∑

k=0

(
M
k

)
P k

I · Γ(k + N)(
s
PI

P0
+ 1

)k+N
(9)

The closed from expression for the outage probability of the
uncorrelated channel have also been derived in [2]. When
r = 1, it means that both antenna elements observe the exact
same fading coefficient and the system performance is the
same as a Rayleigh fading channel with no diversity. The
SINR distribution and the outage probability can be calcu-
lated using the uncorrelated channel expressions for a single
antenna system, M = 1.
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For 0 < r < 1, we need to transform the SIR expres-
sion (7) to a form which is analytically more tractable. The
eigenvalue decomposition of Σ can be written as

Σ = UΛUH = U

[
1 + r 0

0 1 − r

]
UH

Using the eigenvalue decomposition of Σ, we rewrite the
SIR in terms of a new spatially white vector ν such that
ν = Λ−1/2UHc0.

SIR = P0
K · (νHΛν)2

νHΛ2ν

where ν = [ν1 ν2]T and ν ∼ N (0, I). We further define
two new random variables u and w such that u = (νHΛν)2

and w = νHΛ2ν. Now, the SIR is expressed as

SIR = P0
K · u2

w (10)

where

u = (1 + r) · |ν1|2 + (1 − r) · |ν2|2
w = (1 + r)2 · |ν1|2 + (1 − r)2 · |ν2|2 (11)

for 0 < r < 1.
Since 2·|ν1|2 and 2·|ν2|2 are both chi-square distributed

with two degrees of freedom, the joint distribution of u and
w can be computed using functions of random variables.

fU,W (u,w) =
1

2r(1 − r2)
· e− 2

1−r2 u · e 1
1−r2 w (12)

where
0 ≤ (1 − r)u ≤ w ≤ (1 + r)u

We initially use the above joint distribution to calculate
the conditional cumulative distribution function (cdf) of the
SIR.

FZ|K(z|k) = Pr

[
P0
k

· u2

w ≤ z

]
= Pr

[
w ≥ P0

k
· u2

z

]

=
∫ kz(1+r)

P0

0

1
2r

· e− u
1+r du −

∫ kz(1−r)
P0

0

1
2r

· e− u
1−r du

−
∫ kz(1+r)

P0

kz(1−r)
P0

1
2r

· exp
(

P0

kz(1 − r2)
u2 − z

1 − r2
u

)
du

(13)

Denoting the third integral on the right hand side of the
above expression as I , we write the conditional probabil-
ity distribution function (pdf) as the derivative of the condi-
tional cdf with respect to z.

fZ|K(z|k) =
k(1 + r)

P0
· 1
2r

· e−kz/P0

− k(1 − r)
P0

· 1
2r

· e−kz/P0 − ∂I

∂z

=
k

P0
· e−kz/P0 − ∂I

∂z

where

∂I

∂z
=

[√
kπ(−1 + r2)

4r
√

P0z
+

k3/2
√

πz

2rP
3/2
0

√
−1 + r2

]

× e
− kz

P0(1 − r2) · erf
(√

kz

P0(−1 + r2)
· r

)

+
k

2P0
· e−

zk
P0

The unconditional SIR distribution is then computed by av-
eraging the conditional distribution over the conditioning
variable, K.

fZ(z) =
∫ ∞

0

fZ|K(z|k) · fK(k) · dk

=
NPIP

N
0

(zPI + P0)N+1
− 1

Γ(N)PN
I

×
∫ ∞

0

∂I

∂z
· kN−1 · e−k/PI · dk

After numerous steps of algebra [9], the above distribution
can be written in closed form in terms of hypergeometric
functions.

fZ(z) =
NPIP

N
0

(zPI + P0)N+1
− N · PN

0 · (1 − r2)N+1

PN
I · r2N+2 · zN+1 · (−1)N

×Re {H(P0, PI , N, r)} +
NPIP

N
0

2(zPI + P0)N+1
(14)

where

H(P0, PI , N, r) =
1

2(2N + 1)
· 2F 1

(
N +

1
2
, N + 1;

N +
3
2
,
zPI + P0(1 − r2)

PIr2z

)
+

N + 1
r2(2N + 3)

× 2F 1

(
N +

3
2
, N + 2;N +

5
2
,
zPI + P0(1 − r2)

PIr2z

)
(15)

The hypergeometric function 2F 1(a, b; c, d) is defined
as follows [9]:

2F 1

(
ν

2
,
ν + 1

2
;
ν

2
+ 1,

µ2

β2

)
=

√
π · ν · βν

Γ
(

ν+1
2

) ·
∫ ∞

0

xν−1 · eµ2x2 · [1 − erf(βx)] dx (16)

when Re{β2} > Re{µ2} and Re{ν2} > 0. The values
of 2F 1(a, b; c, d) are readily available in software packages
such as Matlab.
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Fig. 1. Outage probability of a dual antenna MRC sys-
tem with N = 8 interferers for P0 = PI = 10 and
r = {0, 0.3, 0.6, 0.9}

4. NUMERICAL RESULTS

In this section, we present numerical results that validate the
closed form expression derived for the SIR distribution. The
results also demonstrate the effect of channel correlation on
system performance. We consider a dual antenna system
with 8 interfering users. The desired user and the interferers
are of equal power, i.e, P0 = PI = 10. The SIR distri-
bution is computed both by using the analytical expression
and through Monte Carlo simulations. Then, these distri-
butions are numerically integrated from zero to a specified
SIR threshold to obtain the outage probability.

In Figure 1, the outage probabilities calculated using
simulation results and the analytical SIR distribution ex-
pression are presented for various values of the correlation
coefficient, r = {0.3, 0.6, 0.9}. The outage probability of
the uncorrelated channel (r = 0) is also plotted for compar-
ison purposes [2]. The results indicate that for small values
of r, the performance degradation is not significant. It is
only when r exceeds the values of 0.4-0.5 that the system
suffers from the correlation among the antenna elements.

5. CONCLUSION

In this paper, we considered a receive antenna diversity sys-
tem that employs maximal ratio combining. The channel
was assumed to be correlated Rayleigh fading. For an in-
terference limited scenario, we obtained a closed form ex-
pression for the SIR distribution of a dual antenna system
(with arbitrary number of cochannel interferers) as a func-

tion of the correlation coefficient. We also investigated the
effects of correlation on the system performance and con-
cluded that the system can withstand correlation coefficients
of up to 0.4-0.5.
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