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ABSTRACT

We study the optimal transmission strategy of a multiple-input
single-output (MISO) wireless communication link. The receiver
has perfect channel state information while the transmitter has only
long-term channel state information in regards of the channel co-
variance matrix. It was recently shown that the optimal eigenvec-
tors of the transmit covariance matrix correspond with the eigen-
values of the channel covariance matrix. However, the optimal
eigenvalues are difficult to compute. We develop a new character-
ization of the optimum power allocation. Furthermore, we apply
this result to develop a simple algorithm which computes the opti-
mum power allocation. In addition to this, we study the impact of
correlation on the ergodic capacity of the MISO system with differ-
ent channel state information (CSI) schemes. We show that the er-
godic capacity with perfect CSI and without CSI at the transmitter
is Schur-concave. Additionally, we show that the ergodic capac-
ity with covariance knowledge at the transmitter is Schur-convex
with respect to the correlation properties. Finally, we illustrate all
theoretical results by numerical simulations.

1. INTRODUCTION

It is well known [1] that multiple-element antenna arrays can im-
prove the performance and capacity of a wireless communication
system in a fading environment. Especially multiple antennas at
the transmitter have been studied frequently in the downlink beam-
forming scenario [2, 3], for example.

We consider the multiple-input single-output (MISO) single
user case with imperfect channel state information at the transmit
array. It was shown that even partial channel state information at
the transmitter (CSIT) can increase the capacity of a MISO system.
Recently, transmission schemes for optimizing capacity in MISO
mean-feedback and covariance-feedback systems were derived in
[4, 5]. The capacity can be achieved by Gaussian distributed trans-
mit signals with a particular covariance matrix. Additionally, it
was proven that the optimal transmit covariance matrix has the
same eigenvectors as the known channel covariance matrix.

In this work, we characterize the optimum power allocation by
a new necessary and sufficient condition. As a result, we develop
a computational efficient algorithm which computes the optimum
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power allocation. Furthermore, we study the impact of correla-
tion on the ergodic capacity of the MISO system with different
CSI schemes. We show that the ergodic capacity is Schur-concave
with perfect and without CSI at the transmitter while the ergodic
capacity is Schur-convex in the case of covariance feedback. Fur-
thermore, we illustrate all theoretical results by numerical simula-
tions.

2. SIGNAL MODEL

We consider the common MISO transmission model. We split the
input data stream with identically independent distributed sym-
bols with variance one d(k) into m parallel data streams d1(k)
d2(k), ..., dm(k). Each parallel data stream is multiplied by a fac-
tor

√
λ1, ...,

√
λm and then weighted by a beamforming vector

u1, ..., um, respectively. The number of parallel data streams is
less than or equal to the number of transmit antennas (m ≤ nT ).
The beamforming vectors have the size 1×nT with nT as the num-
ber of transmit antennas. The nT signals of each weighted data
stream xi(k) = di(k) ·√λi ·ui are added up x(k) =

∑m
i=1 xi(k)

and sent. By omitting the time index k for convenience we obtain
in front of the transmit antennas

x =

m∑
l=1

dl ·
√

λl · ul. (1)

In matrix form we obtain for x with Λt = [
√

λ1, ...,
√

λm] and
U = [uT

1 , ..., uT
m]T

xT = Λt · U.

The transmit covariance matrix Q = E(xxH) is with (1) given by

Q = E
(
UDΛUH

)
(2)

with diagonal matrix DΛ = diag(λ1, ..., λnT ) with the eigenval-
ues. The flat fading channel model is given by

y = xHh + n (3)

with complex nT × 1 transmit vector x, channel vector h =
[h1, ..., hnT ]T and circularly symmetric complex Gaussian noise

n with variance σ2
n
2

per dimension. [·]T denotes transpose of a
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matrix of a vector and [·]H denotes conjugate transpose of a ma-
trix or a vector. It is assumed that the receiver perfectly knows h.
The transmitter receives feedback information from the receiver
regarding h and knows that the channel is complex Gaussian dis-
tributed CN (0, Σ) with covariance matrix Σ [4].

It was shown [4] that the capacity of such a system is given by

CcfCSI = max
Q:tr(Q)=P

E
(

log

(
1 +

hHQh

σ2
n

))
(4)

where the expectation is over channel state information h from
(3). tr(·) is the trace operator. Q is the covariance matrix of the
transmit signals x as defined in (2). The capacity can be achieved
by a Gaussian codebook with zero mean and covariance matrix
Qo. If the transmitter receives the channel covariance matrix Σ
only instead of the concrete channel realization (mean feedback), it
does not have any information about the actual attenuation of each
transmit-receive pair but possesses directional information regard-
ing the signal subspaces that can be used for beamforming (see
[6]).

Regarding the optimal transmit covariance matrix Qo, the fol-
lowing results are known from [4]: The optimal Qo achieving ca-
pacity in (4) is given by Qo = UΣΛo

QUH
Σ with Σ = UΣΛΣUH

Σ .
Λo

Q is a diagonal matrix with eigenvalues λ1, ..., λnT and ΛΣ is
diagonal matrix containing the eigenvalues µ= [µ1, ..., µnT ] of Σ.
The optimal eigenvalues are found numerically. The beamforming
vectors u1, ..., um are given by the corresponding eigenvectors of
the channel covariance matrix.

Furthermore it was shown that the capacity with known chan-
nel covariance matrix at the transmitter is given by

CcfCSI
opt (P ) = max∑nT

i=1 λi=P
E
(

log

(
1 + ρ

nT∑
i=1

µiλiwi

))
(5)

with λi as eigenvalues of the transmit covariance matrix Q and
with random wi white independent distributed according to stan-
dard exponential distribution and ρ = 1/σ2

n as SNR. The number
of eigenvalues greater than zero correspond to the multiplexing
gain of the system. In [7] the authors characterized the multiplex-
ing gain of the MISO system.

3. IMPACT OF CORRELATION ON ERGODIC
CAPACITY

In this section, we present the complete characterization of the im-
pact of correlation on the ergodic capacity of MISO systems with
different levels of CSI at the transmitter. We consider the cases in
which the transmitter has no CSI, perfect CSI and covariance feed-
back. We use the theory of majorization [8] in order to analyze
the impact of correlation. This is the well established approach to
model the correlation in MIMO systems [9]. One says that a vector
majorizes another if the sum of the m largest values of this vector
is greater than or equal to the sum of the m largest values of the
other.

3.1. No CSI at the transmitter

The ergodic capacity without CSI at the transmitter is given by

CnoCSI
opt (µ) = E log(1 +

ρ

nT

nT∑
l=1

µlwl). (6)

In order to characterize the impact of correlation on the er-
godic capacity in (6) we have the following theorem:

Theorem 1: For arbitrary eigenvalue vectors µ1 and µ2 we have
the following implication

µ1 � µ2 =⇒ CnoCSI
opt (µ1) ≤ CnoCSI

opt (µ2). (7)

i.e. the capacity of the single user MISO system with uninformed
transmitter is Schur-concave.

Proof: The proof can be found in [10].

3.2. Perfect CSI at the transmitter

The ergodic capacity with perfect CSI at the transmitter is given
by

CpCSI
opt = E log(1 + ρ||h||2) (8)

= E log(1 + ρ

nT∑
l=1

µlwl).

Remark: For the capacity with perfect CSI (9), we obtain the
same term as for the capacity without CSI (6) with the substitution
ρ = ρ̃/nT . In the next theorem, we state that the ergodic capacity
is again Schur-concave with respect to the correlation properties
µ.

Theorem 2: For arbitrary eigenvalue vectors µ1 and µ2 we have
the following implication

µ1 � µ2 =⇒ CpCSI
opt (µ1) ≤ CpCSI

opt (µ2). (9)

i.e. the capacity of the single user MISO system with perfectly
informed transmitter is Schur-concave.

Proof: By using the same arguments as in the uninformed case we
can follow that the ergodic capacity is Schur-concave.

3.3. Covariance Feedback

The ergodic capactity with covariance feedback is given in (4).
The next theorem states that the ergodic capacity is Schur-convex
with respect to the correlation vector µ.

Theorem 3: For arbitrary eigenvalue vectors µ1 and µ2 we have
the following implication

µ1 � µ2 =⇒ CcfCSI
opt (µ1) ≥ CcfCSI

opt (µ2). (10)

i.e. the capacity of the single user MISO system with covariance
feedback is Schur-convex.

Proof: The proof can be found in [11].

3.4. Characterization of the optimum power allocation for co-
variance feedback

In order to characterize the optimum power allocation we define
the power vector p = [p1, ..., pnT ] with pi = λi with the sum
power constraint ||p|| ≤ P . For fixed channel eigenvalues µk, the
ergodic capacity is a function of the power allocation and it follows
from (5)

CcfCSI(p, ρ,µ) = E log(1 + ρ

nT∑
k=1

pkµkwk). (11)
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The maximum capacity if given by

CcfCSI
opt (ρ,µ) = max

||p||1≤1
CcfCSI(p, ρ,µ). (12)

Furthermore, we define the following coefficients

αk(p) =

∫ ∞

0

e−t
nT∏

l=1,l�=k

1

1 + ρtplµl

ρµk

(1 + ρtµkpk)2
dt. (13)

Finally, we define the set of indices for which a given power allo-
cation has entries greater than zero

I(p̂) = {k ∈ [1...nT ] : p̂k > 0}. (14)

The following theorem provides a characterization of the power
allocation p̂ which maximizes the expression in (12).

Theorem 4: A necessary and sufficient condition for the optimal-
ity of a power allocation p̂ is

{k1, k2 ∈ I(p̂) =⇒ αk1 = αk2 and (15)

k �∈ I(p̂) ⇐⇒ αk ≤ max
l∈I(p̂)

αl}. (16)

This means that all indices l which obtain some power pl greater
than zero have the same αl = maxl∈[1...nT ]. Furthermore, all
other αi are less or equal to αl.

Proof: The proof can be found in [11].

3.5. Algorithm for optimum power allocation with covariance
feedback

We use the Theorem 1 from the last section to provide the follow-
ing algorithm. This computes the optimum power allocation for
the MISO system with covariance feedback (algorithm 1).

Algorithm 1 Optimum power allocation

Require: given µ and SNR ρ
λ1 = [1, 0, ..., 0]
for i = 1 to nT − 1 do

if αi(λ
i) ≥ αi+1(λ

i) then
optimum solution is given in λi

else
find λi + 1 with α1(λ

i+1) = ... = αi+1(λ
i+1)

end if
end for

Ensure:
∑nT

k=1 λk = 1

We start with the beamforming solution inλ1 and check whether
the condition in (16) is fulfilled. If it is not fulfilled we split the
transmission power to direction one and two (λ2) in such a way
that α1(λ

1) = α2(λ
1). Next, we check again the condition in

(16) for λ2 and so on.
For the algorithmic implementation, we mention that the inte-

gral in (13) can be written for the case that λm = λm+1 = ... =
λnT = 0 as

αm(λ) = ρµm

∫ ∞

0

e−t 1∏m−1
l=1 (1 + ρtλlµl)

dt.

3.6. Relationship between the different CSI schemes

The inequality chain in the next corollary shows the relation be-
tween the different CSI schemes and different levels of correlation.
Assume that the correlation vectorµ1 majorizesµ2, i.e. µ1 � µ2.
We define the fully correlated vector ψ = [1, 0, ..., 0]T and the
completely uncorrelated vector as χ = [1/nT , 1/nT , ..., 1/nT ]T .

Corollary 1: We have for the ergodic capacity in MISO systems
with different levels of correlation and different CSI at the trans-
mitter the following inequalities:

CnoCSI
opt (ψ) ≤ CnoCSI

opt (µ2) ≤ CnoCSI
opt (µ1) ≤ CnoCSI

opt (χ) =

CcfCSI
opt (χ) ≤ CcfCSI

opt (µ1) ≤ CcfCSI
opt (µ2) ≤ CcfCSI

opt (ψ) =

CpCSI
opt (ψ) ≤ CpCSI

opt (µ2) ≤ CpCSI
opt (µ1) ≤ CpCSI

opt (χ). (17)

Proof: The inequalities follow from (7), (9) and (10).

The worst case scenario is the uninformed transmitter with
fully correlated channels CnoCSI

opt (ψ). In the best case the per-
fectly informed transmitter with completely uncorrelated channels
is CpCSI

opt (χ).
In figure (1), we show the capacity gain for a specific sce-

nario with two transmit antennas nT = 2 over the correlation
coefficient µ1 at a SNR of 20 dB. In figure (1), we illustrate the
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Fig. 1. Capacity as a function of correlation for MISO 2 × 1 sys-
tem with different levels of CSI

inequality chain from (17). We observe that the capacity for this
scenario can be increased by more CSI. Furthermore, it can be
increased by higher or smaller correlation. Starting with no CSI
from 3,44 bit/s/Hz (100 %) the capacity increases with less cor-
relation to 3.68 bit/s/Hz (107 %). With covariance feedback we
start uncorrelated at 3.68 bit/s/Hz and increase the capacity up to
4.08 bit/s/Hz (119 %) with more correlation. In the scenario with
perfect CSI, we start at this value (4.08 bit/s/Hz) completely cor-
related and gain up to 4.35 bit/s/Hz (126 %) with less correlation.

3.7. Discussion

We have proven that the impact of the correlation on the ergodic
capacity strongly depends on the level of CSI at the transmitter.

IV - 375

➡ ➡



If we do not have any CSI at the transmitter, the optimum strat-
egy is the equal split of the transmit power. Therefore, we cannot
adjust to a potential correlation in the channel. Hence, we waste
transmission power by allocating power for channels with small
eigenvalues. In the case in which we have covariance knowledge
at the transmitter, we can adjust the transmission strategy to the
correlation properties of the channel and can take advantage of the
correlation. Therefore, the correlation helps increasing the ergodic
capacity. In the case in which we have perfect CSI at the trans-
mitter, we know each channel realization at the transmitter and
can apply the optimum transmission strategy at each time point.
Therefore, the advantage of having a correlated channel with dis-
tinct average directions and transmission powers vanishes and the
ergodic capacity is at its highest for uncorrelated channels.

4. NUMERICAL SIMULATION

In figure (2), we present the optimum power allocation for a MISO
system with two transmit antennas for correlation µ1 = [0.5, ..., 1]
and SNR from 0 dB up to 50 dB.
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Fig. 2. optimum power allocation for two transmit antenna MISO
system with covariance feedback

In figure (3), we show the ergodic capacity of a 3 × 1 MISO
system at a SNR of 20 dB for as a function of the correlation prop-
erties. The eigenvalues are sorted µ1 ≥ µ2 ≥ µ3 and their sum
is equal to one, i.e.

∑3
i=1 µi = 1. The largest channel covari-

ance matrix eigenvalue µ1 ranges from 0.33 to 1. And the second
largest eigenvalue µ2 is varied from 1−µ1 down to (1−µ1)/2.
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Fig. 3. Ergodic capacity for three transmit antenna MISO system
at SNR 20 dB

In figure (3), the arrows indicate the direction of the ergodic
capacity increase. The upper right point corresponds with the case
in which the channel is completely correlated, i.e. µ = [1, 0, 0]T .
At this point the ergodic capacity decreases in all directions. The
point at which the channel is completely uncorrelated is µ =
[1/3, 1/3, 1/3]T . It is in the front side in the middle. At this point,
the ergodic capacity is at its minimum.

5. CONCLUSION

In this work, we studied the optimum power allocation and the
impact of correlation on the ergodic capacity of a MISO system
with covariance feedback. We characterized the optimum power
allocation in terms of a necessary and sufficient condition for the
optimality. As a result, we developed a computational efficient al-
gorithm which computes the optimum power allocation for given
channel covariance matrix and SNR. Furthermore, we studied the
impact of correlation on the ergodic capacity. Recently, it was
shown that the ergodic capacity in a MISO system without CSI at
the transmitter is Schur-concave with respect to the covariance ma-
trix eigenvalues. We showed that this is the other way around for
MISO systems with covariance feedback, i.e. the ergodic capacity
is Schur-convex. Furthermore, we proved that the ergodic capacity
of the MISO system with perfect CSI at the transmitter is Schur-
concave with respect to the correlation properties. We provided
an inequality which related the ergodic capacities of different CSI
schemes and different correlation properties.
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