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ABSTRACT

We investigate the behaviour of MIMO capacity when the
size of the antenna array is constrained. By increasing the
number of antennas within a small region in space the an-
tenna array becomes dense and spatial correlation inhibits
capacity growth. A theoretically derived antenna saturation
point is shown to exist for dense array MIMO systems, at
which there is no capacity growth with increasing antenna
numbers. We show this saturation point increases linearly
with the radius of the region containing the antenna array
and is independent of the number of antennas.

1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) communications
systems using multi-antenna arrays simultaneously during
transmission and reception have generated significant inter-
est in recent years. Theoretical work of [1] and [2] showed
the potential for significant capacity increases in wireless
channels via spatial multiplexing with sparse antenna ar-
rays. However, in reality the capacity is significantly re-
duced when the signals received by different antennas are
correlated [3], corresponding to the antennas being placed
close together.

In this paper we theoretically analyze the effect on ca-
pacity of increasing numbers of antennas in a uniform circu-
lar array of fixed radius. As the number of antennas grows
the antenna array becomes dense and spatial correlation sig-
nificantly limits the capacity. We argue that using a circular
array is the best use of the space available since this topol-
ogy maximizes the distance between each antenna and all its
neighbors for every antenna. Under these conditions we de-
rive a theoretical saturation point, where no further capacity
gain is achieved with increasing numbers of antennas.

Recent independent works [4, 5] have studied dense lin-
ear arrays, however, to the authors knowledge no work ex-
ists on 2D arrays, or given the number of antennas required
to saturate the capacity, as addressed here.
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2. CONVERGENCE OF ERGODIC CAPACITY

Consider a MIMO system consisting of S transmitters and
@ receivers, let the transmitted signals be statistically inde-
pendent equal power components each with a Gaussian dis-
tribution, then the ergodic channel capacity is given by [1],
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where H is the normalized ) x S random flat fading chan-
nel matrix known at the receiver, 7 is the average signal-to-
noise ratio (SNR), I is the @ x (@ identity matrix, | - | is
the determinant operator, and | the Hermitian operator. The
scaling factor 1/() ensures the total received power remains
independent of the number of receiver antennas [6].

Let H = [h1hsy - - - hg], where h; is the ) X 1 complex
vector of channel gains corresponding to the sth transmit
antenna, then the correlation matrix at the receiver is de-
finedas Ry £ E {hshi} , Vs, where Rg(p, q) = ppq is
the spatial correlation between two sensors p and ¢ at the
receiver.

Consider the situation where the transmit array has well
separated antennas such that the transmitter covariance ma-
trix Rg = Ig, corresponding to independent hg vectors,
then the sample correlation matrix at the receiver is given by
Rg £ g1 25:1 hshlwhich converges to Rq for large
numbers of transmit antennas (S — o0). Observing that
HH' = Zle hshi then for a large number of well sep-
arated transmit antennas the ergodic capacity converges to
the deterministic quantity C,

a

lim C=C21o
& Q

S—o00

I+

Rd. )

2.1. Maximum Theoretical Capacity

In the case of uncorrelated receiver antennas Rg = Ig we
get the maximum theoretical capacity

C'max - Qlog(l + %) (3)
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which is identical to the identity channel case (H = I)
shown in [2], therefore, for a large number of receivers we
have

/.
In(2)
which is the absolute maximum capacity achievable for an
ideal MIMO system.
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3. CAPACITY OF A UNIFORM CIRCULAR ARRAY
IN A 2D ISOTROPIC DIFFUSE FIELD

The capacity formula (2) can be expanded by the product of
eigenvalues within the determinant, giving,

Q-1
(@
C= E log(1+ =\, 5

where A& € o(Rg) are the () eigenvalues of the spatial
correlation matrix R¢. Therefore, we see that the capacity
is governed by the eigenvalues of the spatial correlation ma-
trix, and as such their properties dictate the behavior of the
capacity given differing scattering environments, antenna
numbers and placement.

Consider a uniform circular array (UCA) with radius r
and @ receiver elements. Denote the set {dz}?:_ol as the
distance between any element and the other ) — 1 elements
in the array (in a clockwise or anticlockwise direction), with
dy = 0 being the distance between the element and itself,
then

de = 2rsin(nl/Q). (6)

For the special case of scattering over all angles in the plane
we have a 2D isotropic diffuse field (often referred to as a
rich scattering environment) at the receiver and the spatial
correlation between any element on the UCA and its /¢th
neighbor is given by [7]

pe = Jo(kdy) 7

where Jy(-) are Bessel functions of the first kind, and k =
27 /X is the wavenumber. Due to UCA symmetry, for £ > 0,
pe = pg—¢, and the correlation matrix becomes a ) x @
symmetric circulant matrix,

p2p1] ®

where [-] and |- | are the ceiling and floor operators respec-
tively, and

Rg = Circ [po,pl,...,p(%w,plcgqj,...
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defines the circulant matrix.

3.1. Eigenvalues of Spatial Correlation Matrix R

The eigenvalues of the symmetric circulant matrix R are
given by a simple closed form expression [8]

Q-1
AP =3 peetmm9. (10)
£=0

For a UCA in a 2D isotropic diffuse field the correlation co-
efficients are real and symmetric, hence (10) represents the
Discrete Cosine Transform (DCT) of the spatial correlation
coefficients

Q-1
@ = Z pecos (2rml/Q) . (11)
=0

Since Rg is a positive-semidefinite Hermitian matrix and
with the properties of the DCT it is easy to show \,,, € R,
A >0, and A\g_,, = Ay, = A_p, that is, the eigenvalues
are real, non-negative and symmetric.

Theorem 1 (eigenvalue threshold). For a UCA of radius r
in a 2D isotropic diffuse field define the eigenvalue thresh-
old:

M = [mer/A] (12)

then, for any @ > 2M + 1 there exists a finite set of non-
vanishing eigenvalues, {A;?)}%:_M, with set size inde-

pendent of Q).

Before proving Theorem 1 we clarify its significance
with the following interpretation:

For any UCA in a 2D isotropic diffuse field there is a fi-
nite set of significant spatial correlation matrix eigenvalues,
where the set size increases linearly with the radius of the
array and is independent of the number of antennas.

Proof (sketch). Substitution of (7) and (6) into (11) gives

Q-1
@ = Z Jo(2krsin (7€/Q)) cos 2mml/Q)  (13)
=0

letting £ = 7¢/() and assuming a large number of antennas,
we can approximate (13) with the integral

MDD ~ %/W Jo(2krsin€) cos (2mé&)dé (14)
0

form € [0, [(Q — 1)/2]]. Using the identity [9, p.32]

J2(2) = %/Oﬂ Jo(2zsinv) cos(2nyp)dy  (15)

then the eigenvalues can be expressed as

M@ ~ QU2 (kr) (16)
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which is asymptotically equal to (13) with the antenna num-
ber.

Using the the following bound [10, p.362] on the bessel
functions for n > 0

92 < ety (1)
the eigenvalues are then upper-bounded by
A <Q <M>2 . (18)
"= I'(m+1)

Since Gamma function I'(m + 1) increases faster than the
exponential (/)™ then (18) will rapidly approach 0 for
some m > 0 for which I'(m + 1) > (7r/X)™. Using a re-
laxed Stirling lower bound' for I'(m + 1), we wish to find
m for which (m/e)™ > (mr/A)™, which is clearly satis-
fied when m > mer /), asserting that m must be an integer
we see that the eigenvalues vanish for m > [mwer/\], thus
giving the eigenvalue threshold in (12).

Given the symmetric nature of the eigenvalues then for
any number of antennas, () > 2M + 1, there is a finite set
of 2M + 1 non-vanishing eigenvalues,

A={ v A Ao Av—1, A (19)

whose number of elements grows only with the radius of the
array, and is independent on the number of antennas. O

Fig. 1 shows the eigenvalues of the spatial correlation
matrix R for various UCA radii in a 2D isotropic diffuse
field. Shown as a solid black line, it can be seen that the the-
oretical eigenvalue threshold derived in Theorem 1 defines
the boundary between the significant and vanishing eigen-
values for each radius.

3.2. Capacity Growth Limits: Antenna Saturation

Due to the dependence of (5) on the eigenvalues of the spa-
tial correlation matrix we see that Theorem 1 has signif-
icant implications on capacity growth with increasing an-
tenna numbers. In this section we show that this fixed set
size of eigenvalues, regardless of the number of antennas,
leads to an antenna saturation effect on MIMO capacity.

Theorem 2 (antenna saturation point). For a UCA of ra-
dius v in a 2D isotropic diffuse field define a saturation point
Qs as the minimum number of antennas required to gener-

ate a full set of significant eigenvalues QM) ¢ o(Rg,,);

Qm 22M +1 (20)

ITM(z4+1)>V2m227e™ > 2% %,2>0

20,

=

cigenvalue A,

eigenvalue number m

Fig. 1. The eigenvalues of the spatial correlation matrix for vari-
ous UCA radii in a 2D isotropic diffuse scattering field. The dark
solid line represents the theoretical eigenvalue threshold derived
in Theorem 1, and clearly shows the boundary between the signifi-
cant and vanishing eigenvalues of the spatial correlation matrix for
each array radius.

then, for any QQ > Qs the channel capacity is given by the
constant

M

~ _ M\ (@)
C =~ Cp = Z log <1+)\m > Q21
it Qum

Before giving a proof of Theorem 2 we give the follow-
ing interpretation:

For a MIMO system with a UCA in a 2D isotropic dif-
fuse field there exists a saturation point in the number of an-
tennas, which is dependent only on the radius of the array,
after which the addition of more antennas gives no capacity
gain.

Proof (sketch). Using the symmetric nature of the eigenval-
ues and assuming an odd number of antennas the capac-
ity (5) can be written as’

(@-1)/2 .
C= Y  log (1 + —A§,§3>> ) (22)
m=—(Q-1)/2 @

Consider the UCA placed in a 2D isotropic diffuse field,
then as a direct result of Theorem 1 for @) > 2M + 1 the
channel capacity given by (22) is well approximated using
the set of 2M + 1 non-vanishing eigenvalues, that is,

M
Cr~ Y log <1+%/\£f;?>). (23)

m=—M

2from Theorem 1 the case of even @ gives identical results, however to
simplify notation we assume an odd number of antennas
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Given two UCAs of equal radius 7 with antenna numbers
@1, Q2 > 2M + 1, and spatial correlation matrix eigenval-
ues M9 and A(@) respectively, then from (16) we have
the following relationship between the non-zero eigenval-
ues of systems with different numbers of receive antennas,

)\57?1) )\57?2)
Q1 Qe

with the approximation asymptotically equal with the num-
ber of antennas. Define Q3; = 2M + 1 as the minimum
number of antennas required to generate the full set of non-
zero eigenvalues, then letting ()1 = Qs and Q2 = Q) we
have

(24)

M@ Q%AS,?W (25)

where \\2) € o(Rg,,) are the eigenvalues of the spatial
correlation matrix Rg,,. Thus the non-zero eigenvalues for
any UCA of radius  with number of antennas ) > @ s are
simply scaled versions of the eigenvalues generated by an
array with @) antennas. Substituting (25) into (23) gives

M
Cr Y log (1 n LA;?W) (26)

m=—M Qum

which is independent of (), hence the capacity growth be-
comes zero once the antenna number reaches the saturation
point given by Q ;. O

It can be observed from Fig. 2 that the capacity (2) does
indeed increase approximately with the maximum theoreti-
cal capacity (3) up until the theoretical saturation point de-
fined in Theorem 2, after which no capacity gain is achieved
with increasing antenna number.

4. DISCUSSION

We have derived a capacity saturation point, which depends
only on the radius of the array, whereby further increases in
the number of antennas fails to give further capacity gains.
This result has significant implications for practical MIMO
systems as the saturation point gives the minimum number
of number of antennas required to achieve maximum capac-
ity for a given region. Further to the UCA case, empirical
studies using more general spatial correlation models [11]
have shown that there are only ever 2[mwer/A| + 1 signif-
icant eigenvalues generated by arbitrarily placed antennas
within a circular region of radius . We believe the satura-
tion point derived here for UCAs also holds for any antenna
configuration within a circular region and we are currently
developing theoretical results to support this.
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Fig. 2. Capacity of MIMO systems for various antenna num-
bers of a UCA with radii » = 0.1,0.3, 0.5, and 0.7 wavelengths
in a 2D isotropic diffuse scattering field, along with the theoretical
limits. As indicated by the dashed lines for each radii, the Antenna
Saturation Point theoretically derived in Theorem 2 gives a good
indication where the MIMO system saturates and hence increasing
antenna numbers gives no further capacity gain.
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