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ABSTRACT

Itiswell known that linear MM SE can outperform its zero-forcing
counterpart. In combination with a successive interference can-
celler, MM SE can fully exploit the capacity of MIMO (Multiple-
Input-Multiple-Output) channels[1, 2]. In practice, however, such
an advantage is compromised due to its implementation complex-
ity and the requirement of accurate SNR estimate. Thus other
equalizers such as zero-forcing may present an attractive alterna-
tive as long as the performance gap is tolerable. This motivates a
need to quantify the tradeoff between MMSE and zero-forcing in
both parallel and sequential structures. In this paper, the capacity
performance of different equalization schemesisinvestigated, with
closed-form formulas provided in terms of two key measures: ca
pacity gaps and ratios. We also conclude that the capacity gain via
structural choice (between parallel and sequential) far out-weights
that via filter choice (between zero-forcing and MMSE). Indeed,
the latter is found to be amost negligible for most practical SNR
regions. It is also shown that the sequential zero-forcing equaliz-
ers can asymptotically reach the channel capacity when SNR ap-
proaches infinity, irrelevant of the detection order. Although this
paper is focused on the flat-fading channels, the result is directly
extendable to the I1S| case by dlicing the frequency band into in-
finitesimal stripes, each of which can be treated as flat.

1. MATHEMATICAL CHANNEL MODEL

We consider a general MIMO communication system adopting ¢
transmit and r receive antenna elements:

#(k) = H3(k) + (k) )

where #(k) € C", 5(k) € C' are sample stacks of the complex-
valued receiver data and transmission sequences, and H isther x ¢
channd transfer function. The total transmission power is con-
strained to P and is shared by the ¢ transmitting antennas with
distribution factors {1, . .., ¢:}: E[si(k)s! (k)] = ¢; P, where
S, #i = 1. The therma noises 7i(k) € C" are both spatially
and temporally white i.i.d Gaussian random processes with inde-
pendent real and imaginary parts and variance NTI,.. Assuming in-
dependent inputs, the capacity of the MIMO system in (1) is well
known as
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where & = diag{¢:}i_1, p = £ isthe nominal signal to noise
ratio and {|\;|*}{=, are the singular values of ®'/*H'H®'/2.
Here  denotes the conjugate transpose of a matrix (vector). In
this paper, we assume that » > ¢ and the channel is generic, i.e.
H has full column rank. The channel realization is assumed to be
tracked at the receiver end.

2. PARALLEL LINEAR MIMO EQUALIZERS

2.1. Paralld Zero-Forcing (ZF) Equalizers

For the recovery of ith input stream s;(k), the zero-forcing con-
straint on the corresponding diversity-combiner, denoted by the
row vector gz r.;, is

gzrH =¢€; 3
where ¢; is a unit (row) vector with all elements zero except 1 at
position i. Specifically, the application of gzr; in (3) yields a
virtual SISO (Single-Input-Single-Output) channel

Gzri@(k) = si(k) + gzrini(k) 4
with the associated capacity
¢ip
Czri = log,(1+ — —). 5
ZF, ng( ||gZF,i||2) ( )

Simultaneous application of these ¢ filters on the receiver data
yields a parallel structure, whereafter the original MIMO is con-
verted into ¢ independent and interference-free channels that can
be separately decoded. The total information rate supported by
the parallel ZF equalization is therefore the summation of the sub-
channel capacities C; r,; over al theindicesi = 1,...,¢t. The
optimal parallel ZF equalizers satisfying (3) and maximizing (5)
are given by

Grri=&HT, i=1,...,t, (6)
where H* denotes the |eft pseudo-inverse of H.

We introduce the following Cholesky factorization:

3'/°’H'H®'? =R'R 7

where R = [r;;] isanonsingular upper-triangular matrix. It turns
out that the quantitative analysis hinges upon the inverse matrix
R, especially the two sets of correlation factors defined below:

ai = |ral’llERTP =120
[&R™R7T?
i = —s—F——12>0.
p ER-E 2

Note that the parameters a; and 3; represent the degree of correla-
tion between the channel vectors regarding different inputs. They
are respectively the 2-norm ratio of the total off-diagonal terms to
the diagonal termsin the ith row of matrix R~ and R"'R~*. In
fact, { «; } depend only on the channel transfer function H, while
{ B; } depend on both H and &.
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Theorem 1 (Capacity Gap of Parallel ZF Equalizers)

In high SNRregion, the asymptotic gap between the original MIMO
channel capacity and the achievable capacity of the optimal par-
allel ZF equalizersin (6) is

t
C—Czr > log,(1+a:i) +0(p?). ®)

i=1

Proof: By (5) and (6), the capacity performance of the optimal
ZF equalizersis

dip
C = lo —
2 Z 8:(1 17,
_ 14
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Compare (9) with the original MIMO capacity in (2), we have

Zlog2 (1+ai) +Zlog‘o |)\__|2

1+ /\—2—
+ Zlog2 — e (10)
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As {|\;|*}_, are the singular values for the Hermitian matrix
$'/?’H'H®'/? = R'R, we have

t

HI/\'I2

i=1

det[R'R

H 7]

= tr[R'R Z o (11)

|rii]

With the two equallties above, when p > 1, the capacity gap in
(10) issimplified as

t
D logy(1+0a:i)+0(p %) (12)

i=1

lnz +0(

C—Czr

by usinglog, (1 + z) = %) for small =.

2.2. Parallel MM SE Equalizers

Qualitatively, it iswell known that MM SE can outperform its zero-
forcing counterpart. In this section, we shall investigate the quan-
titative aspect of this improvement. The individual MM SE filter
forinput i is

G = pei @ PHY (14 pHEHT) L. (13)
After the application of gas; on the receiver data Z(k), the SIR
(Signal-to-Interference-Ratio) is

plga, HE &l

Gu,i(1+ pHE; ®E;H) G,
= p&d®'/"H'(1+ pHE;®E;H')”

SIR =

'He/?&l(14)

where E; denotes the identity matrix with ¢th diagonal element
equal to zero. The corresponding capacity achieved in each equal-
ized sub-channel istherefore

log,(1+ SIR)
= —log,{&[1—p@/*H' (14 pH®H') 'H®'/?)c}
= —log,[&(1+ p@/*H' H®'/?) &l (15)

The equalities above can be obtained via the Sherman-Morrison-
Woodbury Identity.

Theorem 2 (Improvement of Parallel MM SE Equalizers)
In high SN\R region, the difference of the achievable capacity be-
tween parallel MMSE and ZF equalizersis

t
— (1 + a;
Cumse —Czr=p") : (Ir.'.|2—a )

i=1

+0(p™%). (16)

Proof: Comparing equations (9) and (15), thegap is

Cumse,i —Czr

1
= log, 5 (17)

t ey
&I+ pRIR)-1&1 (1 + gi(RTR)_lng)

Note that for large p,
&1+ pR'R) el
= G(pR'R) I+ (pR'R) e
= @' ®RR)T - pPRIR) e + 0(p7%)
= CuwmsEe,i—Czr,
&(R'R) el

_ —1 i o mtpy—1at —2

= —€&(R'R)" €|+ 0
P i R 067
_15i(1 + «y .

= p 1%‘*0(0 “). (18)

Theorems 1 and 2 show an asymptotically constant capacity degra-
dation of 3°¢_, log,(1 + a;) for both the linear MMSE and ZF
schemes. (Thus this gap is a function of H only.) The channel
capacity can be asymptotically achieved only when all the chan-
nel correlation factors a; = 0, which israrely the case in practice.
However, as discussed in the subsequent section, the degradation
caused by such correlations can be artificially eliminated viaa suc-
cessive interference cancellation procedure.

3. SEQUENTIAL ZERO-FORCING (SZF) EQUALIZERS

In BLAST design [3], Foschini proved that the successive ZF can
asymptotically approach the capacity lower bound for Rayleigh
fading MIMOs when » = ¢. In this section, we give a comprehen-
sive capacity analysis of SZF equalizers in the entire SNR range
for any channel realization and antenna settings.

For notational simplicity, we assume that the input streams are
sequentialy retrieved in the order of ¢,¢ — 1,...,1. Inthe SZF
equalizer, the detected input stream can be used to help the detec-
tion of others via decision feedback. The interferences generated
by the already-detected inputs are successively nulled from the ob-
servation data before the equalizersfor the other inputs are applied.
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Assuming no error propagation, the interference-reduced receiver
data, at the input of ith individual equalizer, is:

79 (k) = H:3 (k) + 7 (k) (19)

where H; isthefirst + columns of H denoting the virtual channel
after the inputs < + 1,4 + 2,...,t have been detected and elim-
inated. The vector 5% (k) is the first ¢ rows of 3(k). The ZF

congtraint for the sequential equalizersis now
gszrHi =&, 1<i<t. (20)

Also we denote R,; (®;) as the left-upper ¢ x ¢ minors of R(®).
Exploiting the upper-triangular structure of R, we get
®!/’HIH,;®!* = RIR.. 1)

Theorem 3 (Capacity Gap and Ratio for SZF Equalizers)
The gap between the channel capacity and that achieved by the
optimal SZF is:

1+
C - CSZF—ZI 2T plral® (22)
1. Inhigh SNR region:

Cszr 1

L — 1
C tplnpz|7“”|2 ol(plnp)™]

— —2

C-Cszr = Z |T”|2 ); (23)

2. Inlow SNRregion:

t

C—-Cszr = o2 (tT[RTR] ; ris*) + O(p?)
Cszr iy Iral?
C = SRR + O(p). (24)

Proof:  Just like the parallel case, the optimal SZF equalizers
Jszr,i satisfying the constraint (20) is

Gszri = &HS (25)
with the corresponding capacity

ZCSZF'L = Zlogz[l +

= Zlogz[l-i- P ]

('I)l/szH '1)1/2)

= ZIng[l + R ]

CSZF = ||2]

|gSZF 7

= Zlog2(1 + plriil?). (26)

i=1

The capacity gap is

t
1+ p|Ai]?
— § 1 L L)
C—-Cszr . Og21+p|1"ii|2

Zl CIE S g, L o
Og‘1+ = M

In large SNR region, by applying (11) we obtain the 1st order ex-
pansion

C—Cszr p2). (28)

ln 2 Z |7“”

The other derivations are basically similar (omitted here).

Theorem 4 (Capacity Achieving Property of SZF)

The SZF asymptotically achieves the original channel capacity
when the SNR p goes toward either infinity or zero: Cszr = C.
It holds true irrelevant of the detection order.

Proof:  The capacity-achieving claim is obvious with reference
to (23) and (24). When p — oo, (26) leadsto

t
=0 = log,(plriil”) =log, p' det[R'R].  (29)

i=1

Cszr

Assume that the ¢ input streams are to be retrieved in a differ-
ent order. This can be accomplished by rearranging the columns
of H by a permutation matrix P, i.e. H = HP. Accordingly,
@' = ®P. Denote R’ as the Cholesky factorization matrices of
(@")/2(H')'H’ (®')/2. Based on (29), the proof is completed
by noting that PP* = I, and hence

det[(R))'R'] = det[R'R]. (30)

Remark 1 Empirically, the capacity ratio S22 is a monotoni-
cally increasing function of p for all generic channels (i.e. when

%ﬂ% is above certain QoS-safeguard threshold). In fact, the
range of capacity ratio runs roughly from~ (when p — 0) to 1.0

(when p — o0), where

_ iy il
7T T [RIR]

Note that though the effect of channel coupling «; is eiminated
for large SNR (i.e. CSCZF — 1l asp — o0), it till has impact
on the SZF performance when SNRis small through another fac-
tor v. For an ill-conditioned system with highly aligned channel
vectors (inducing some very small singular values \;), the corre-
lation between different antenna channels can be severe and lead
to a small-valued ~.

Remark 2 It was known that sequential MMSE equalizers can
achieve the full channel capacity in the entire SNR range [1, 2],
provided an accurate SNR estimate. Theorems 2 and 3 demon-
strate that the capacity advantage of MMSE over ZF is not signifi-
cant in most practical SNR regions. Quantitatively speaking, their
difference is in the order of p=' for high SNR. Note also that the
most complex operation in these equalizer designs are those in-
volving matrix inversions (or Cholesky decompositions). Parallel
ZF, parallel MMSE, and SZF equalizersall require only one matrix
inversion for thet users while the sequential MMSE would require
t such operations. Altogether, it appearsthat SZF equalizersrepre-
sent an attractive solution since they can deliver very satisfactory
performance while incurring minimum complexity over head.
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Fig. 1. Capacity performance comparison for different equalizers.

For p > 10db, the importance of the structural choice (parallel vs.
sequential) far exceeds the filter choice (ZF vs. MM SE).
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Fig. 2. Comparison of (&) capacity gap (b) capacity ratio for dif-

ferent equalizers. Asymptotically, only SZF approaches azero ca
pacity gap as p increases.

4. SIMULATION

Simulations are conducted to verify the theoretical analysis. First
we simulate a randomly generated 6-input-6-output channel with
even power distribution, and the Frobenius norm of the transfer
function is normalized to t x r = 36, i.e. ||H||% = 36. There-
forethe nominal SNR p represents the average signal to noiseratio
at each receiver. The capacity performance of different equalizers
under atypical channel realization is displayed with respect to p.
The constant capacity gaps of parallel ZF or MM SE (illustrated by
the two lower curves in Figure 1) when p islarge consolidate our
finding in Theorems 1 and 2. For clarity, such capacity gaps and
ratios are magnified in Figure 2. The shapes of these curves again
agree to our closed-form formulasin Theorems 1, 2 and 3. Figure
2(b) further confirms the monotonicity property in Remark 1 and
the prescribed range of capacity ratio for SZF described therein.
Note also that in the small SNR region (p < 0db), MMSE déliv-
ers an impressive performance. However, the situation becomes
very different when we consider a more practical SNR region.
When p > 0db, SZF aready outperforms other equalizers sig-
nificantly. When the SNR reaches above 10db, the SZF is very
close to achieve full capacity.

To further confirm the capacity achieving property, 10,000
tests were conducted, with H drawn from C®%% Rayleigh-fading
assembly. The channel condition is assumed to be generic, i.e. our
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Fig. 3. Distribution of capacity ratios (based on 10, 000 tests) for
paralel ZF, MMSE and sequential ZF equalizers at (a) p = 10db
and (b) p = 20db for C®%¢ MIMO channels. The p = 20db SZF
histograms for C%*¢ and C®*% MIMO channels are displayed in
(c) and (d) respectively.

0.995

experiment excludes those ill-conditioned channels with

min(|\;[*) _
max(n ) < 0.01 = —20db.

Figure 3(a)(b) display the empirical pdf of capacity ratios achieved
by thethree equalizersat p = 10db and p = 20db, respectively. At
p = 10db, the average capacity ratios of parallel ZF, MM SE and
SZF are about 74.96%, 83.34% and 97.07% respectively. For p =
20db, the three values are correspondingly 86.46%, 87.27%, and
99.75%. In both cases SZF significantly outperforms the others.
It isworth noting that the performance difference between parallel
ZF and MM SE goes down with increasing p. At p = 20db, their
curves almost coincide, and the capacity ratio of SZFisdensely lo-
cated around 0.99 in the shape of an impulse function. Non-sguare
MIMO channels with » > ¢, should outperform the square MIMO
due to the expanded receiver diversity. Thisisconfirmed in Figure
3(c)(d), which show the histograms of SZF equalizer for 10, 000
C%*% and C3*°® Rayleigh-fading channels. It is evident that, in
both cases, the SZF achieves nearly the full channel capacity.
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