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ABSTRACT

It is well known that linear MMSE can outperform its zero-forcing
counterpart. In combination with a successive interference can-
celler, MMSE can fully exploit the capacity of MIMO (Multiple-
Input-Multiple-Output) channels [1, 2]. In practice, however, such
an advantage is compromised due to its implementation complex-
ity and the requirement of accurate SNR estimate. Thus other
equalizers such as zero-forcing may present an attractive alterna-
tive as long as the performance gap is tolerable. This motivates a
need to quantify the tradeoff between MMSE and zero-forcing in
both parallel and sequential structures. In this paper, the capacity
performance of different equalization schemes is investigated, with
closed-form formulas provided in terms of two key measures: ca-
pacity gaps and ratios. We also conclude that the capacity gain via
structural choice (between parallel and sequential) far out-weights
that via filter choice (between zero-forcing and MMSE). Indeed,
the latter is found to be almost negligible for most practical SNR
regions. It is also shown that the sequential zero-forcing equaliz-
ers can asymptotically reach the channel capacity when SNR ap-
proaches infinity, irrelevant of the detection order. Although this
paper is focused on the flat-fading channels, the result is directly
extendable to the ISI case by slicing the frequency band into in-
finitesimal stripes, each of which can be treated as flat.

1. MATHEMATICAL CHANNEL MODEL

We consider a general MIMO communication system adopting �
transmit and � receive antenna elements:

����� � ������ � ����� (1)

where ����� � �� , ����� � �� are sample stacks of the complex-
valued receiver data and transmission sequences, and� is the ���
channel transfer function. The total transmission power is con-
strained to � and is shared by the � transmitting antennas with
distribution factors �	�
 � � � 
 	��: ��������

�
� ���� � 	�� , where��

��� 	� � �. The thermal noises ����� � �� are both spatially
and temporally white i.i.d Gaussian random processes with inde-
pendent real and imaginary parts and variance 
�� . Assuming in-
dependent inputs, the capacity of the MIMO system in (1) is well
known as
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where � � �����	��
�
���, � � �

�
is the nominal signal to noise

ratio and ����������� are the singular values of ����
�

�
��

���.
Here � denotes the conjugate transpose of a matrix (vector). In
this paper, we assume that � � � and the channel is generic, i.e.
� has full column rank. The channel realization is assumed to be
tracked at the receiver end.

2. PARALLEL LINEAR MIMO EQUALIZERS

2.1. Parallel Zero-Forcing (ZF) Equalizers

For the recovery of �th input stream �����, the zero-forcing con-
straint on the corresponding diversity-combiner, denoted by the
row vector ����	�, is

����	�� � ��� (3)

where ��� is a unit (row) vector with all elements zero except � at
position �. Specifically, the application of ����	� in (3) yields a
virtual SISO (Single-Input-Single-Output) channel

����	������ � ����� � ����	������ (4)

with the associated capacity
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Simultaneous application of these � filters on the receiver data
yields a parallel structure, whereafter the original MIMO is con-
verted into � independent and interference-free channels that can
be separately decoded. The total information rate supported by
the parallel ZF equalization is therefore the summation of the sub-
channel capacities ���	� over all the indices � � �
 � � � 
 �. The
optimal parallel ZF equalizers satisfying (3) and maximizing (5)
are given by
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where �� denotes the left pseudo-inverse of�.
We introduce the following Cholesky factorization:
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where � � ���
 � is a nonsingular upper-triangular matrix. It turns
out that the quantitative analysis hinges upon the inverse matrix
�

��, especially the two sets of correlation factors defined below:
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Note that the parameters �� and �� represent the degree of correla-
tion between the channel vectors regarding different inputs. They
are respectively the �-norm ratio of the total off-diagonal terms to
the diagonal terms in the �th row of matrix��� and���

�
��. In

fact, � �� � depend only on the channel transfer function�, while
� �� � depend on both� and �.
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Theorem 1 (Capacity Gap of Parallel ZF Equalizers)
In high SNR region, the asymptotic gap between the original MIMO
channel capacity and the achievable capacity of the optimal par-
allel ZF equalizers in (6) is
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Proof: By (5) and (6), the capacity performance of the optimal
ZF equalizers is

��� �
��

���

�	
��� �
	��

	����	�	�
�

�

��

���

�	
��� �
�

����������������������
�

�
��

���

�	
��� �
�

��������������
�

�
��

���

�	
��� �
������

�

� � ��
�� (9)

Compare (9) with the original MIMO capacity in (2), we have
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As ����������� are the singular values for the Hermitian matrix
�
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�, we have
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With the two equalities above, when � � �, the capacity gap in
(10) is simplified as
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by using �	
��� � �� �
�
�� �

������ for small �.

2.2. Parallel MMSE Equalizers

Qualitatively, it is well known that MMSE can outperform its zero-
forcing counterpart. In this section, we shall investigate the quan-
titative aspect of this improvement. The individual MMSE filter
for input � is
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After the application of ���	� on the receiver data �����, the SIR
(Signal-to-Interference-Ratio) is
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where �� denotes the identity matrix with �th diagonal element
equal to zero. The corresponding capacity achieved in each equal-
ized sub-channel is therefore
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The equalities above can be obtained via the Sherman-Morrison-
Woodbury Identity.

Theorem 2 (Improvement of Parallel MMSE Equalizers)
In high SNR region, the difference of the achievable capacity be-
tween parallel MMSE and ZF equalizers is
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Proof: Comparing equations (9) and (15), the gap is
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Note that for large �,
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Theorems 1 and 2 show an asymptotically constant capacity degra-
dation of

��
��� �	
��� � ��� for both the linear MMSE and ZF

schemes. (Thus this gap is a function of � only.) The channel
capacity can be asymptotically achieved only when ��� the chan-
nel correlation factors �� � �, which is rarely the case in practice.
However, as discussed in the subsequent section, the degradation
caused by such correlations can be artificially eliminated via a suc-
cessive interference cancellation procedure.

3. SEQUENTIAL ZERO-FORCING (SZF) EQUALIZERS

In BLAST design [3], Foschini proved that the successive ZF can
asymptotically approach the capacity lower bound for Rayleigh
fading MIMOs when � � �. In this section, we give a comprehen-
sive capacity analysis of SZF equalizers in the entire SNR range
for any channel realization and antenna settings.

For notational simplicity, we assume that the input streams are
sequentially retrieved in the order of �
 � 
 �
 � � � 
 �. In the SZF
equalizer, the detected input stream can be used to help the detec-
tion of others via decision feedback. The interferences generated
by the already-detected inputs are successively nulled from the ob-
servation data before the equalizers for the other inputs are applied.
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Assuming no error propagation, the interference-reduced receiver
data, at the input of �th individual equalizer, is:

��
��	��� � ����

��	��� � ����� (19)

where �� is the first � columns of � denoting the virtual channel
after the inputs � � �
 � � �
 � � � 
 � have been detected and elim-
inated. The vector ����	��� is the first � rows of �����. The ZF
constraint for the sequential equalizers is now

�����	��� � ���
 � 
 � 
 �� (20)

Also we denote ������ as the left-upper � � � minors of ����.
Exploiting the upper-triangular structure of�, we get
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Theorem 3 (Capacity Gap and Ratio for SZF Equalizers)
The gap between the channel capacity and that achieved by the

optimal SZF is:
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1. In high SNR region:
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2. In low SNR region:
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Proof: Just like the parallel case, the optimal SZF equalizers
�����	� satisfying the constraint (20) is
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� (25)

with the corresponding capacity
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The capacity gap is

� 
 ���� �

��

���

�	
�
� � �����

�

� � �������

�
��

���

�	
�
� � �

�����
�

� � �
������

�

�
��

���

�	
�
����

�

������
�(27)

In large SNR region, by applying (11) we obtain the �st order ex-
pansion
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The other derivations are basically similar (omitted here).

Theorem 4 (Capacity Achieving Property of SZF)
The SZF asymptotically achieves the original channel capacity
when the SNR � goes toward either infinity or zero: ����

�
� �.

It holds true irrelevant of the detection order.

Proof: The capacity-achieving claim is obvious with reference
to (23) and (24). When ���, (26) leads to
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Assume that the � input streams are to be retrieved in a differ-
ent order. This can be accomplished by rearranging the columns
of � by a permutation matrix �, i.e. �� � ��. Accordingly,
�
� � ��. Denote �� as the Cholesky factorization matrices of

���������������������. Based on (29), the proof is completed
by noting that ��� � �� and hence

��
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��� (30)

Remark 1 Empirically, the capacity ratio ����
�

is a monotoni-
cally increasing function of � for all generic channels (i.e. when
��������

�	

�
������
�	

is above certain QoS-safeguard threshold). In fact, the
range of capacity ratio runs roughly from � (when � � �) to ���
(when ���), where

� �
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�

�������
�

Note that though the effect of channel coupling �� is eliminated
for large SNR (i.e. ����

�
� � as � � �), it still has impact

on the SZF performance when SNR is small through another fac-
tor �. For an ill-conditioned system with highly aligned channel
vectors (inducing some very small singular values ��), the corre-
lation between different antenna channels can be severe and lead
to a small-valued �.

Remark 2 It was known that sequential MMSE equalizers can
achieve the full channel capacity in the entire SNR range [1, 2],
provided an accurate SNR estimate. Theorems 2 and 3 demon-
strate that the capacity advantage of MMSE over ZF is not signifi-
cant in most practical SNR regions. Quantitatively speaking, their
difference is in the order of ��� for high SNR. Note also that the
most complex operation in these equalizer designs are those in-
volving matrix inversions (or Cholesky decompositions). Parallel
ZF, parallel MMSE, and SZF equalizers all require only one matrix
inversion for the � users while the sequential MMSE would require
� such operations. Altogether, it appears that SZF equalizers repre-
sent an attractive solution since they can deliver very satisfactory
performance while incurring minimum complexity overhead.
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Fig. 1. Capacity performance comparison for different equalizers.
For � � ����, the importance of the structural choice (parallel vs.
sequential) far exceeds the filter choice (ZF vs. MMSE).
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(a) Capacity gap.
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(b) Capacity ratio.

Fig. 2. Comparison of (a) capacity gap (b) capacity ratio for dif-
ferent equalizers. Asymptotically, only SZF approaches a zero ca-
pacity gap as � increases.

4. SIMULATION

Simulations are conducted to verify the theoretical analysis. First
we simulate a randomly generated �-input-�-output channel with
even power distribution, and the Frobenius norm of the transfer
function is normalized to � � � � ��, i.e. 	 	�� � ��. There-
fore the nominal SNR � represents the average signal to noise ratio
at each receiver. The capacity performance of different equalizers
under a typical channel realization is displayed with respect to �.
The constant capacity gaps of parallel ZF or MMSE (illustrated by
the two lower curves in Figure 1) when � is large consolidate our
finding in Theorems 1 and 2. For clarity, such capacity gaps and
ratios are magnified in Figure 2. The shapes of these curves again
agree to our closed-form formulas in Theorems 1, 2 and 3. Figure
2(b) further confirms the monotonicity property in Remark 1 and
the prescribed range of capacity ratio for SZF described therein.
Note also that in the small SNR region (� ! ���), MMSE deliv-
ers an impressive performance. However, the situation becomes
very different when we consider a more practical SNR region.
When � " ���, SZF already outperforms other equalizers sig-
nificantly. When the SNR reaches above ����, the SZF is very
close to achieve full capacity.

To further confirm the capacity achieving property, ��
 ���
tests were conducted, with � drawn from ���� Rayleigh-fading
assembly. The channel condition is assumed to be generic, i.e. our
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Fig. 3. Distribution of capacity ratios (based on ��
 ��� tests) for
parallel ZF, MMSE and sequential ZF equalizers at (a) � � ����
and (b) � � ���� for ���� MIMO channels. The � � ���� SZF
histograms for ���� and ���� MIMO channels are displayed in
(c) and (d) respectively.

experiment excludes those ill-conditioned channels with

��������
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����������

 ���� � 
�����

Figure 3(a)(b) display the empirical pdf of capacity ratios achieved
by the three equalizers at � � ���� and � � ����, respectively. At
� � ����, the average capacity ratios of parallel ZF, MMSE and
SZF are about ������, ������ and ������ respectively. For � �
����, the three values are correspondingly ������, ������, and
������. In both cases SZF significantly outperforms the others.
It is worth noting that the performance difference between parallel
ZF and MMSE goes down with increasing �. At � � ����, their
curves almost coincide, and the capacity ratio of SZF is densely lo-
cated around ���� in the shape of an impulse function. Non-square
MIMO channels with � " �, should outperform the square MIMO
due to the expanded receiver diversity. This is confirmed in Figure
3(c)(d), which show the histograms of SZF equalizer for ��
 ���
���� and ���� Rayleigh-fading channels. It is evident that, in
both cases, the SZF achieves nearly the full channel capacity.
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