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ABSTRACT pairs of transmitted symbols instead of single symbols as
in the orthogonal case. In order to improve the BER per-
formance, [6] proposed a rotation-based method, that aims
at maximizing the minimum euclidian distance in the used

_to_obtaln d'V?rS'ty for high link reI|ab|I_|ty. Unfort_un_ately, signal constellation. However, in doing this, [6] used a com-
it is not possible to construct STBC with transmission rate o ; .
puter based search, which is not optimal. In this work, we

equal one for more than two transmit antennas. A way to . o o - :
) : o . ) analytically maximize the minimum euclidian distance.
achieve higher transmission rates is to use quasiorthogo- : . .
) The rest of this paper is organized as follows. In Sec-
nal STBC (QSTBC). We can improve the performance of . . .
. . . - tion 2 we introduce the system model and establish nota-
QSTBC through a special constellation rotation. In this . . X
tion. The analytical results on the optimum rotation angle

work, we analytically derive the optimal rotation. Numer- and the impact of the rotation on the achievable portion of

ical simulations show that our analytical approach outper- . : . . . .
forms the regular QSTBC as well as approaches, where athe outage capacity,,; is described in Section 3. Section 4

simulative method is used in order to obtain better perfor- provides_simula_tion results, followed by some concluding
mance in comparison to regular QSTBC. In addition to this, remarks in Section 5.

we study the impact of the rotation on the achievable portion

of the outage capacity. 2. SYSTEM MODEL

Space-Time Block Codes (STBC) exploit multiple-input
multiple-output (MIMO) communication systems in order

We consider a system withy transmit andh z receive an-

1. INTRODUCTION tennas. Our system model is defined by

Recent information theoretic results have demonstrated that
the capacity of a system in the presence of Rayleigh fad- Y=GH+N )

ing improves significantly with the use of multiple transmit |\ herec is the @ x nr) transmit matrixY is the ' x np)
and receive antennas [1]. Space-Time Trellis Codes [2] and,qceive matrix H is the @1 x nr) complex uncorrelated
Space-Time Block Codes [3] exploit multiple antennas at Rayleigh channel matrix, ar¥ is the complexT x ng)
both the transmitter and receiver in order to obtain transmit 4 4itive white Gaussian noise (AWGN) matrix, where an
and receive diversity and therefore increase the reliability of entry {n;} of N (1 < i < np) denotes the complex noise
the system. Space-Time Block Codes (STBC) provide full 4t thejth receiver for a given time(1 < t < T) (for clarity
diversity and we use a very simple maximum-likelihood de- e gropped the time index). The real and imaginary parts of
coding algorithm at the receiver. Unfortunately, we can not n; are independent an¥’ (0,7 /(2SNR)) distributed. An
construct an orthogonal space-time code with transmissionemry of the channel matrix is denoted fy;;}. This repre-
rate equal one for more than two transmit antennas. Thereggntis the complex gain of the channel betweenthérans-
fore, [4, 5] design_ed a quas_i-o_rthogonal space-time block pitter (1 < j < nr) and theith receiver { < i < ng),
code (QSTBC) with transmission rate one for more than \yhere the real and imaginary parts of the channel gains are
two transmit antennas. The disadvantage of QSTBC is thej,gependent and normal distributed random variables with
reduction of the transmit diversity, i.e. the slope of the bit N(0,1/2) per dimension. The channel matrix is assumed
error rate (BER) curve is not as steep as in the orthogonaly, he constant for a block &F symbols and changes inde-
case. Furthermore, the decoder of these codes works W'ﬂbendently from block to block. The average energy of the
This work was supported in part by the German ministry of education SYMbOIs transmitted from each antenna is normalized to be
and research (BMBF) under grant 01BU150. one, so that the average power of the received signal at each
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receive antenna is; and the signal-to-noise ratio is SNR. It is only a function ofG, and the other one

is further assumed that the transmitter has no channel state

information (CSI) and the receiver has perfect CSI. tr{Y3 Y2+ Yy GoH+ H'GJ'Y, + H'GJ G, H}
A space time block code is defined by a transmit matrix

G. In this work, we consider the performance of the follow- S Only & function ofG.. Thus the minimization of (6) is
ing rate one quasiorthogonal space time block code [4] equivalent to minimizing thls two parts sepa_rgtely. Smce
the two parts can be considered separately, it is possible to

Gx) = G(z1,22,23,24) write an equivalent system model for each of them. The
T o T3 T4 equivalent system model f&&; (and similarly forG,) for
-zl x - ngr = 1 receive antennas can be written as
- I3 —XT4 —X Xro ’ (2) _ z
xy oz —xy —af Y, =H [ xl } +N @)
3
wherezxy, ..., x4 are taken from a given constellation. The
matrix G can be decomposed in two pafs andG, as  With h "
follows N b e
G=Gi+Gs, ®) H = 2
—hs I
where —hy  hy
Gi = G(21,0,23,0) By multiplying H? from left to (7)
T 0 T3 0
0 et 0 - ¥, - fA7H [ o } AN ®)
- T3 0 —T7 0 (4) x3
0 3 0 —x7

whereN is no more AWGN. To compute the pre-whitening
filter, we need the singular value decomposition (SVD) of
H, which is given asH = USV*. Therefore the pre-
GI.Gy+ G -G =0 Vx, (5) whitening filter is given a¥pw = SflvH. By multiply-
o . ) ] ) ing Fpw to (8) and some manipulations we arrive at
which is crucial, because this enables a simple maximum-

likelihood decoding algorithm. Assuming perfect channel ?1 _ [ I} 7@ ] [ 1 } LW

and Gy = G(0,x2,0,x4) is defined similarly. An impor-
tant property of the quasi-orthogonal space-time codes is

estimation is available, the receiver computes the follow-
ing decision metric over all possible transmit matrices and

€ —1l€ T3

decides in favor of the transmit matrix that minimizes the A ,
following decision metric. _ [ Blxs + ?xS) ] TW, 9)
e(xy — ix3)

Y - G(x) - H[|% o :
= tr{(Y - G(x) - H)H(Y ~ G(x)-H)} (6) whereW is white noise again and

tr{Y"Y - Y'G(x)H - T a —a
—(YfGx)H)" + HG(x)"G(x)H} . g = \/T €= \/T

After some manipulations, we arrive at wherey anda are given as
tr{YY, + YIGH+HIGIY, +t HIGI'G H+ nr
YHY, + YHGH + HYGHY, + HYGY G,H]} , v = z_:l‘hﬂ"2
whereY; andY, are given as o = ;Z -Im(hihs + hihsa) .
Yio= GiH+N 3. ANALYTICAL RESULTS ON OPTIMUM
Y, = GyH+N.

ROTATION ANGLE

The above decision metric can be decomposed into two parts, .
one of which Let us denote the constellation of from (9) as.A (e.g.

QPSK) and forzs asB, whereB = Aexp(i¢). Further-
tr{Y?Y, + YFGH+H'GI'Y, +t H' GG, H} more, let us denote the constellation of the “supersymbol”
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(x1 + iz3) (cf. (9)) asC = A + iB and for(z; — ix3) as this distance, we have to solve the following equation

D. If ¢ = 0, thenB is equal toA. Assume now, that we

use QPSK modulation. In order to improve the BER perfor-  argmaxd(si, s2), S.t.d(s1,s2) > d(s1,5;) Vi # 1,2
mance, we rotate the constellationagfwith ¢ as depicted ¢ (10)

in Fig. 1. To illustrate the impact of this rotation, we take the wheres; € C. As can be seen from Fig.2, there is a high

symmetry in the constellatioff. Therefore, solving (10) is
Lor o equal to solving

’

al 1%

, , d(sa,sp) = d(sp, S¢) (11)
X \//x
oo I ’ where the distanced(s,, s) andd(sy,s.) are given (cf.
(@] L X regular QPSK Fig. 2) as
. .
o 1 )
-05F 1 d(Sa;s) = 2% |—1 + exp(—ig)| (12)
X X 1
At o 1 d(sp,sc) = 27 |—i+i(1 4 i) exp(—ig)| (13)
Y S i a— At ¢ = 0, the distancé(s,, sp) is equal to zero andi(s,, s.)

is equal toy/2 . After substituting (12) and (13) in (11) and
Fig. 1. Rotation of the QPSK constellation of with an ~ Some manipulations we get the optimum angle, which is

angleg. given as
s
i . . . . . ¢opt = g . (14)
constellationC and increase stepwise, as depicted in Fig 2,
the anglep from 0.0 rad (x) to 0.8 rad (J)in steps of0.1 All constellation points are on different places i, =

rad. Without rotation, there are some constellation points 7/6. Therefore we expect, that the performance of the con-
stellation with rotation is better than without rotation. In

2 ‘ ‘ ‘ ‘ ‘ ‘ Table 1, we show,,, for different modulation schemes.
xxxxxﬂ xxxxXXD
15
# k *x& ] \ QPSK\ 8PSK\ 16QAM \ 64QAM \
1 X X Popt
i ok H | g | 7/6 | 0483 r/6 | 0.257 |
0.5F )>(< )>(< S
’ % xxX0 % y Table 1. ¢.p, for different modulation schemes.
S o,
oxxx*x* :(ab éxxx&wx&%
-0.5 c
9 9 ®a & 3.1. Capacity considerations
X X
a4 % % |
’%& % Now, we are interested in the impact of the constellation
-15 o F XX K rotation on the outage capacity,,;. The instantaneous ca-
mxx mxx pacity of a MIMO system witlh = 4 transmitanchy = 1
2 s a1 s o 05 1 1s 2 receive antennas is as follows
Fig. 2. Constellation ofC for QPSK. The arrows show in C = log, det(Ir + LHHH) . (15)
direction of increasing angles. ¢ is increasing fron0.0 nr

rad («) to 0.8 rad (J)in steps 00.1 rad. We use (15) to computé,,,; based on monte-carlo simula-

N ) ~ tions. The capacity of the quasiorthogonal scheme is
dwell at the same position. By rotating, these constellation

points change their position and the euclidian distances be-
tween them grow. But if the angle of rotation is too big,

the euclidian distances between two neighboring constella- ~
tion points get smaller again . Therefore, it exists an angle whereH is given as follows in the case of not rotated con-
Popt» at which the distance between the nearest constellatiorstellation R
points is maximal. To obtain the angle which maximizes H=H

9 _
Costre = 7 logy det(Tn + -~ FI'H) - (16)

)
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andH is given in (9). In the case of rotated constellation,

H is given as follows

_ ~[1 0
H=H [ 0 exp(—ig)

(S)

(17)

.

where® is a unitary matrix and therefore does not deteri-

orate the capacity in comparison to the nonrotated case as

depicted in Fig. 3.

Coul

- Cqs(bc‘ =0 <

—%— gstbc, wap

t

-5 0 5 10 15

-10 20

Fig. 3. 10% Outage Capacities of a MIMO systeii,
and the QSTBC schem@,. with ny = 4 transmit and
ngr = 1 receive antennas.

4. NUMERICAL SIMULATIONS

In Fig. 4, the BER of the quasiorthogonal scheme from Ja-

farkhani [4] (without rotation,i.e.¢ = 0), from [6] (with
rotation, determination of through simulations) denoted
as “ShaPa” in Fig. 4 and the BER fox,,; for a system with

nr = 4 transmit andvz = 1 receive antennas and QPSK
modulation are depicted. As can be seen from Fig. 4, the

slope of the curve witlp, is steeper as that of [4] and [6].

10°

showed that our scheme outperforms the schemes of [4, 6]

"

7
—o— (popt analytically

—O— ShaPa (@ simulative)
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Fig. 4. BER of the quasiorthogonal scheme-(= 4, ng =

1)

with and without constellation rotation, uncoded QPSK

modulation.

for higher SNR values. Finally, we showed that there is no
reduction on the achievable portion of the outage capacity
through constellation rotation.

[1]

[2]

[3]

The scheme witlp,,; outperforms both other schemes for (4]

higher SNR values.

5. CONCLUSION

In this paper, we analytically derived the optimal rotation

angle ¢, for different constellation sizes, which signifi-

cantly improves the performance of QSTBC. We compared

[5]

the BER performance of the scheme taking advantage of[6]

®opt 10 the regular QSTBC from [4]. In addition, we com-

pared our scheme with the one from [6].In [6], a simula-
tive approach is used to derive the optimal rotation. We
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