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ABSTRACT

Space-Time Block Codes (STBC) exploit multiple-input
multiple-output (MIMO) communication systems in order
to obtain diversity for high link reliability. Unfortunately,
it is not possible to construct STBC with transmission rate
equal one for more than two transmit antennas. A way to
achieve higher transmission rates is to use quasiorthogo-
nal STBC (QSTBC). We can improve the performance of
QSTBC through a special constellation rotation. In this
work, we analytically derive the optimal rotation. Numer-
ical simulations show that our analytical approach outper-
forms the regular QSTBC as well as approaches, where a
simulative method is used in order to obtain better perfor-
mance in comparison to regular QSTBC. In addition to this,
we study the impact of the rotation on the achievable portion
of the outage capacity.

1. INTRODUCTION

Recent information theoretic results have demonstrated that
the capacity of a system in the presence of Rayleigh fad-
ing improves significantly with the use of multiple transmit
and receive antennas [1]. Space-Time Trellis Codes [2] and
Space-Time Block Codes [3] exploit multiple antennas at
both the transmitter and receiver in order to obtain transmit
and receive diversity and therefore increase the reliability of
the system. Space-Time Block Codes (STBC) provide full
diversity and we use a very simple maximum-likelihood de-
coding algorithm at the receiver. Unfortunately, we can not
construct an orthogonal space-time code with transmission
rate equal one for more than two transmit antennas. There-
fore, [4, 5] designed a quasi-orthogonal space-time block
code (QSTBC) with transmission rate one for more than
two transmit antennas. The disadvantage of QSTBC is the
reduction of the transmit diversity, i.e. the slope of the bit
error rate (BER) curve is not as steep as in the orthogonal
case. Furthermore, the decoder of these codes works with
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pairs of transmitted symbols instead of single symbols as
in the orthogonal case. In order to improve the BER per-
formance, [6] proposed a rotation-based method, that aims
at maximizing the minimum euclidian distance in the used
signal constellation. However, in doing this, [6] used a com-
puter based search, which is not optimal. In this work, we
analytically maximize the minimum euclidian distance.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce the system model and establish nota-
tion. The analytical results on the optimum rotation angle
and the impact of the rotation on the achievable portion of
the outage capacityCout is described in Section 3. Section 4
provides simulation results, followed by some concluding
remarks in Section 5.

2. SYSTEM MODEL

We consider a system withnT transmit andnR receive an-
tennas. Our system model is defined by

Y = GH + N (1)

whereG is the (T ×nT ) transmit matrix,Y is the (T ×nR)
receive matrix,H is the (nT × nR) complex uncorrelated
Rayleigh channel matrix, andN is the complex (T × nR)
additive white Gaussian noise (AWGN) matrix, where an
entry{ni} of N (1 ≤ i ≤ nR) denotes the complex noise
at theith receiver for a given timet (1 ≤ t ≤ T ) (for clarity
we dropped the time index). The real and imaginary parts of
ni are independent andN (0,nT /(2SNR)) distributed. An
entry of the channel matrix is denoted by{hji}. This repre-
sents the complex gain of the channel between thejth trans-
mitter (1 ≤ j ≤ nT ) and theith receiver (1 ≤ i ≤ nR),
where the real and imaginary parts of the channel gains are
independent and normal distributed random variables with
N (0,1/2) per dimension. The channel matrix is assumed
to be constant for a block ofT symbols and changes inde-
pendently from block to block. The average energy of the
symbols transmitted from each antenna is normalized to be
one, so that the average power of the received signal at each
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receive antenna isnT and the signal-to-noise ratio is SNR. It
is further assumed that the transmitter has no channel state
information (CSI) and the receiver has perfect CSI.

A space time block code is defined by a transmit matrix
G. In this work, we consider the performance of the follow-
ing rate one quasiorthogonal space time block code [4]

G(x) = G(x1, x2, x3, x4)

=




x1 x2 x3 x4

x∗2 −x∗1 x∗4 −x∗3
x3 −x4 −x1 x2

x∗4 x∗3 −x∗2 −x∗1


 , (2)

wherex1, . . . , x4 are taken from a given constellation. The
matrix G can be decomposed in two partsG1 andG2 as
follows

G = G1 + G2 , (3)

where

G1 = G(x1, 0, x3, 0)

=




x1 0 x3 0
0 −x∗1 0 −x∗3

x3 0 −x1 0
0 x∗3 0 −x∗1


 (4)

andG2 = G(0, x2, 0, x4) is defined similarly. An impor-
tant property of the quasi-orthogonal space-time codes is

GH
1 ·G2 + GH

2 ·G1 = 0 ∀x , (5)

which is crucial, because this enables a simple maximum-
likelihood decoding algorithm. Assuming perfect channel
estimation is available, the receiver computes the follow-
ing decision metric over all possible transmit matrices and
decides in favor of the transmit matrix that minimizes the
following decision metric.

||Y −G(x) ·H||2F
= tr{(Y −G(x) ·H)H(Y −G(x) ·H)} (6)

= tr{YHY −YHG(x)H−
−(YHG(x)H)H + HHG(x)HG(x)H} .

After some manipulations, we arrive at

tr{YH
1 Y1 + YH

1 G1H + HHGH
1 Y1 + HHGH

1 G1H+

YH
2 Y2 + YH

2 G2H + HHGH
2 Y2 + HHGH

2 G2H} ,

whereY1 andY2 are given as

Y1 = G1H + N

Y2 = G2H + N .

The above decision metric can be decomposed into two parts,
one of which

tr{YH
1 Y1 + YH

1 G1H + HHGH
1 Y1 + HHGH

1 G1H}

is only a function ofG1, and the other one

tr{YH
2 Y2 + YH

2 G2H + HHGH
2 Y2 + HHGH

2 G2H} ,

is only a function ofG2. Thus the minimization of (6) is
equivalent to minimizing this two parts separately. Since
the two parts can be considered separately, it is possible to
write an equivalent system model for each of them. The
equivalent system model forG1 (and similarly forG2) for
nR = 1 receive antennas can be written as

Y1 = H̃
[

x1

x3

]
+ N (7)

with

H̃ =




h1 h3

−h∗2 −h∗4
−h3 h1

−h∗4 h∗2


 .

By multiplying H̃H from left to (7)

Ỹ1 = H̃HH̃
[

x1

x3

]
+ H̃HN︸ ︷︷ ︸

eN

(8)

whereÑ is no more AWGN. To compute the pre-whitening
filter, we need the singular value decomposition (SVD) of
H̃, which is given asH̃ = USVH . Therefore the pre-
whitening filter is given asFPW = S−1VH . By multiply-
ing FPW to (8) and some manipulations we arrive at

Ŷ1 =
[

β iβ
ε −iε

]

︸ ︷︷ ︸
bH

[
x1

x3

]
+ W

=
[

β(x1 + ix3)
ε(x1 − ix3)

]
+ W , (9)

whereW is white noise again and

β =

√
γ + α

i

2
ε =

√
γ − α

i

2
,

whereγ andα are given as

γ =
nT∑

j=1

|hj |2

α = 2i · Im(h∗1h3 + h∗4h2) .

3. ANALYTICAL RESULTS ON OPTIMUM
ROTATION ANGLE

Let us denote the constellation ofx1 from (9) asA (e.g.
QPSK) and forx3 asB, whereB = A exp(iφ). Further-
more, let us denote the constellation of the “supersymbol”
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(x1 + ix3) (cf. (9)) asC = A + iB and for(x1 − ix3) as
D. If φ = 0, thenB is equal toA. Assume now, that we
use QPSK modulation. In order to improve the BER perfor-
mance, we rotate the constellation ofx3 with φ as depicted
in Fig. 1. To illustrate the impact of this rotation, we take the
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Fig. 1. Rotation of the QPSK constellation ofx3 with an
angleφ.

constellationC and increase stepwise, as depicted in Fig 2,
the angleφ from 0.0 rad (∗) to 0.8 rad (¤)in steps of0.1
rad. Without rotation, there are some constellation points

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

s
a
 

s
b
 

s
c
 

d(b,c) 
d(a,b) 

Fig. 2. Constellation ofC for QPSK. The arrows show in
direction of increasing anglesφ. φ is increasing from0.0
rad (∗) to 0.8 rad (¤)in steps of0.1 rad.

dwell at the same position. By rotating, these constellation
points change their position and the euclidian distances be-
tween them grow. But if the angle of rotation is too big,
the euclidian distances between two neighboring constella-
tion points get smaller again . Therefore, it exists an angle
φopt, at which the distance between the nearest constellation
points is maximal. To obtain the angle which maximizes

this distance, we have to solve the following equation

arg max
φ

d(s1, s2), s.t.d(s1, s2) ≥ d(s1, si) ∀i 6= 1, 2

(10)
wheresi ∈ C. As can be seen from Fig.2, there is a high
symmetry in the constellationC. Therefore, solving (10) is
equal to solving

d(sa, sb)
!= d(sb, sc) (11)

where the distancesd(sa, sb) and d(sb, sc) are given (cf.
Fig. 2) as

d(sa, sb) = 2
1√
2
|−1 + exp(−iφ)| (12)

d(sb, sc) = 2
1√
2
|−i + i(1 + i) exp(−iφ)| (13)

At φ = 0, the distanced(sa, sb) is equal to zero andd(sb, sc)
is equal to

√
2 . After substituting (12) and (13) in (11) and

some manipulations we get the optimum angle, which is
given as

φopt =
π

6
. (14)

All constellation points are on different places forφopt =
π/6. Therefore we expect, that the performance of the con-
stellation with rotation is better than without rotation. In
Table 1, we showφopt for different modulation schemes.

QPSK 8PSK 16QAM 64QAM
φopt
[rad] π/6 0.483 π/6 0.257

Table 1. φopt for different modulation schemes.

3.1. Capacity considerations

Now, we are interested in the impact of the constellation
rotation on the outage capacityCout. The instantaneous ca-
pacity of a MIMO system withnT = 4 transmit andnR = 1
receive antennas is as follows

C = log2 det(IR +
ρ

nT
HHH) . (15)

We use (15) to computeCout based on monte-carlo simula-
tions. The capacity of the quasiorthogonal scheme is

Cqstbc =
2
4

log2 det(IR +
ρ

nT
H̄HH̄) , (16)

whereH̄ is given as follows in the case of not rotated con-
stellation

H̄ = Ĥ ,
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andĤ is given in (9). In the case of rotated constellation,
H̄ is given as follows

H̄ = Ĥ
[

1 0
0 exp(−iφ)

]

︸ ︷︷ ︸
Θ

, (17)

whereΘ is a unitary matrix and therefore does not deteri-
orate the capacity in comparison to the nonrotated case as
depicted in Fig. 3.
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Fig. 3. 10% Outage Capacities of a MIMO systemCout

and the QSTBC schemeCqstbc with nT = 4 transmit and
nR = 1 receive antennas.

4. NUMERICAL SIMULATIONS

In Fig. 4, the BER of the quasiorthogonal scheme from Ja-
farkhani [4] (without rotation,i.e.φ = 0), from [6] (with
rotation, determination ofφ through simulations) denoted
as “ShaPa” in Fig. 4 and the BER forφopt for a system with
nT = 4 transmit andnR = 1 receive antennas and QPSK
modulation are depicted. As can be seen from Fig. 4, the
slope of the curve withφopt is steeper as that of [4] and [6].
The scheme withφopt outperforms both other schemes for
higher SNR values.

5. CONCLUSION

In this paper, we analytically derived the optimal rotation
angleφopt for different constellation sizes, which signifi-
cantly improves the performance of QSTBC. We compared
the BER performance of the scheme taking advantage of
φopt to the regular QSTBC from [4]. In addition, we com-
pared our scheme with the one from [6].In [6], a simula-
tive approach is used to derive the optimal rotation. We

showed that our scheme outperforms the schemes of [4, 6]
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Fig. 4. BER of the quasiorthogonal scheme (nT = 4, nR =
1) with and without constellation rotation, uncoded QPSK
modulation.

for higher SNR values. Finally, we showed that there is no
reduction on the achievable portion of the outage capacity
through constellation rotation.
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