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Abstract— In this paper, a receiver for a Dual Transmit Di- from the estimated value). Here, for simplicity, we con-
versity system is designed that takes into account the chansider a system with two transmit antennas and one receive
nel estimation error, assuming the unknown channel to haveantenna as in [1]. The results can be extended to a general
a given complex bivariate Gaussian probability density func- case of multiple transmitters and multiple receivers.

tion (pdf) (.e., a Ricean pdf). This criterion of the receiver, The paper is organized as follows: In Section Il the sys-
which is based on the MaximuA Posteriori (MAP), is tem and receiver structure are provided. In Section II-A,
expressed in a quadratic form, and in extreme cases, repwe also simplify the receiver for an important and simple
resents either a linear detector or a non-coherent-non-lineacase. In section 1l-B the performance of the receivet,
detector. Simulations of the Symbol Error Probability (SEP) the Symbol Error Probability (SEP), is analyzed for a simple
of the receiver and analysis of an Upper Bound (UB) and case by simulations and by derivation of an Upper Bound
a Lower Bound (LB) confirm that the proposed detector (UB) and a Lower Bound (LB). Finally, some concluding
achieves robust performance against channel imperfectionstemarks are discussed in Section IIl.

I. INTRODUCTION II. SYSTEM MODEL AND RECEIVER STRUCTURE

To improve data communication qualitg.g, by reducing For simplicity in this paper, the Dual Transmit Diversity

the effective error rate) in a multipath fading environment, (DTD) technique is considered that is proposed by Alamouti

it is crucial to successfully reduce the effect of fading at [1]. This scheme can be described as follows:

both the mobile units and the base stations. In most scatter-

ing environments, antenna diversity is a practical and effi- , & [ 1 } _ { 51 82 } { hy }L{ ny } _SH4N. (1)

cient technique for reducing the effect of multipath fading T2 —83 8] hao n

[1]. These schemes employ pre-coding, namely Space-Time

Coding (STC), which is appropriate for multiple transmit Where fori = 1,2, the vectors:; € C*, andn; € C"

antenna systems. STC leads to a considerable increase iaire the received signals and the Additive White Gaussian

bandwidth efficiency and system capacity [2]. Noise (AWGN), respectively. Transmitted symbois,and
Although it has been proved in [5] that in the presence s, both take their values randomly fragh= {c; € (CL}iK:l,

of small errors in the channel state information, STCs still where K is the number of constellation points ardis

result in an improved bandwidth efficiency over classical the dimension of the transmitted signal space. The chan-

transmitting schemes, a considerable degradation is observa| gainsh; and h, are complex random variables. The

when the channel estimation error increases. This could benotations(.)*, (.)” and(.)? stand for complex conjugate,

improved by sending more pilot symbols (training symbols) transposition and Hermitian, respectively.

during the transmission at the cost of losing some band- Remark 1:Itis easy to see that the signdlremains in-

width efficiency, especially in the case of fast time-varying variant by transforming the quadruplet;, sz, i1, he) into

channels [2,5]. Hence, robust detection for these methods(e’?s;, e 7%s,, e 7%hy,e/%hy). Assuming that elements

is needed for good operation when the Channel State Infor-of this quadruplet are unknown, this property leaves am-

mation (CSI) is not exactly known. biguity, which we shall call Phase Ambiguity (PA), in de-
In this paper we derive a new MAP data detection algo- termination of the phase’® when only R is observed in

rithm that takes into account the channel estimation errors.order to estimate this quadruplet. The PA depends on the

In the proposed method, the channel error is assumed tcset of alphabet€. For example, using a 4QAM modula-

be a complex Gaussian random vector with a known meantion scheme, we have’® € {+1 + j}; in this case the

(based on a previous estimate [9], a guess, or initialized atreceiver must know’?, which is the equivalent of two bits

zero) and a covariance matrix (as a measure of the deviatioror one symbol. To resolve the PA, the direction of one of
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the components of this quadruplet must be determined. One

=y

way to resolve the PA is to control the set of alphaloehsr 0.5 02 Calculation of M(Cp 4, R) Choose 51,5
s1 ands,, e.g, using one pair of training symbols. If the e M(Cp g, R) Maximum of—-
phase varies slowly enough with time, it can be tracked ac- Cpq | from (3) : M(Cpq, R)

curately after the first initialization [9]. However, a sudden _ . . .

. . . . Fig.1. The block diagram of the optimal receiver. The detector recéives
rotation of the channel coefficients results in a dual rotation ang detects the transmitted pairs by receiving some statistical information
of the detected data after that event. Another alternative toof the channel( &, ), and the noise variance?.
overcome the PA is to use differentially coded modulation
schemesd.g, see [4] and references therein for more de-
tails). In these schemes the information is embedded into in
the transmitted sequence in a such a way that after decoding
the effect ofe’? is cancelled, usually at the expense of about
3dB noise augmentation.

The following theorem, which is the basis of the pro-
posed receiver, assumes a Ricean pdf for the chafinel
N(H,X) at a particular moment. The noig€ is zero-
mean, white and Gaussian and is assumed to be independent

of the channel coefficients. In this and the next secti(;F)s,

anda denotea priori anda posteriorivalues, respectively.
The receiver is provided with the received sigfiaand in-
accuratea priori channel informationi where the matrix
Y representa priori covariance of the channel errors.
Theorem 1:1f the a priori pdf of the channel vectoH
is Gaussian and is provided with the me&nand the co-
variance matrixz, i.e, H ~ N(H,X), and the additive
noise is a zero-mean white stationary Gaussian veicgar,
N ~ N(0,02%I51), then the optimal receiver should maxi-

mize the conditional pdf of the received vector signal given
8| exp(=B)

=3 1H+ SCH R

Calculation o
%, (4)

Calculation of 3

H{TS Hy, (77)

10g|§| e o o

HISH, log |3]

M(Cpq,R) =log|S|+ HIS1H

Fig. 2. The structure of the MAP metric calculator for an unknown chan-
nel H with a given Gaussian pdf/ (8, £).

should be maximized,

by f(R‘S) 2L g2l |8 Where § = argcrnca)e( M(Cpqu) (3)
a 1 = = ~ ~
ST =588+ =ah + 37 (2a)  where M(C,q, R) = log|S| + H#S-1H andC,, 2
PN N 1 o . Cp Cq . . . . i
B— _HOHS- 1+ TRHR +HISVH, (2b) i . The block diagram of this receiver in Fig
g

P . s
ure 1 shows how the receiver uses some statistical informa-

H=0H+ %isff (R - sﬁ) : ()

A 2 :
wherea = M L%land|A| stands for the magni-

tude of the determmant of the matuik(or for y/det( AT A)
if Ais nota square matrix) anf|| is the Euclidian distance.
Furthermore, ifS is the true transmitted value or if the er-
ror probability is small enough, then tleposterioripdf of
the channel after observation Bfand detection of is also
Gaussian, withfl as its mean and withl as its covariance
matrix,i.e., f(H|R,S) = N (H,X). For proof See [9]. B
Remark 2:Since thea posterioriand thea priori pdfs

of the channel have a same form, the assumption of thisvheres =

theorem is justified if an iterative channel estimation is em-
ployed.

By virtue of this theorem, an optimal receiver can maxi-
mize the log-likelihood functiori,e., log (f(R|S)), as the
decision rule; therefore, the following metrid (C,, 4, R)

tion about the channel and the noise. Figure 2 shows the
details of the metric calculator in the receiver. It demon-
strates that each path in the receiver is simple as to the
computational complexity, and its digital implementation
is both feasible and cheap. In this paper, we consider

= 1 . .
52 ¢? P | as the error covariance matrix of the

pro 1
channel vector. This assumption results in
N 1 a+p  PBp }
Y= . (4
(a+B)? = B|pl? { a+tp @

1§f|2 , ¢2 andp are the variance and the corre-
lation of thea pr|0r| channel estimation error, respectively,
and|S| = g

Remark 3:The valueY, that represents theposteriori
covariance of the channel coefficients when the error prob-
ability is very small, satisfie€ov(H|R, S = S) S <

IV - 342



Theorem 1 and this inequality show thdtcan be consid-
ered as the posterioriestimate of the channel when the
Symbol Error Probability (SEP) is low. This implies thdt
can be used as the output of an iterative algorithm to esti-
mate the channel coefficients. See [10] for more details.
Remark 4:We can see that i — 0, i.e, when the
channel is known and the additive noise is white and Gaus-
sian, then the receiver simplifies to a linear receiver as pro-
posed in [1].

A. Simplified Receiver Structure

In this section, the receiver can be simplified for the spe-
cial case wheré|s;||? + ||s2||? = |S] is taken to be con-
stant at the transmitter. This constraint means that the tota
energy used for transmission of one pair of symbelsnd
s2, IS constant. This condition is less strict compared to
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Fig. 3. The experimental SEP evaluation and the error bounds (5) for

the case of equal energy signals. It can be seen from Thea 4QAM modulation for different values of the variance of the channel

orem 1 that this constraint maké)sindependent of; and
s2; therefore, the first term of the metrid in (3) plays no
role in optimization, and the simplified metrig/’ > H, is
to be maximized. The receiver structure in this case will

be the same as depicted in Figure 1, except for the calcula-

tion of log \f]| that is no longer required. So, imposing such
a simple constraint on the energy of signals the transmitter
results in a more computationally efficient receiver.

B. Symbol Error Probability (SEP)

In the following theorem, an upper bound (UB) and a
lower bound (LB) are given for the SEP of the above simpli-
fied receiver, whemp = 0. The exact SEP is then evaluated
by simulations and is compared with the UB and the LB as
a function ofc?, p and||H||.

Theorem 2:For a 4QAM modulation scheme and the case
of p = 0, the SEP is bounded as follows (See [9] for proof):

o102 0))cp o 3 o1 C)) g

g g
8 (p,q) # (1,1) 8
where Y. 2520, + Cl,lflel,

a 02 HYRe{(Cr1 — Cpo)PC11 Y H
¢2|C1 1]
0'4HH (Cp,q —01,1)H2ﬁ (Cpﬂ —0171)H n
¢4C11)? '
In this theorem, wherC, ; is transmitted,d (C} 4, C1,1)
measures an approximate distance between the transmitte
symbol,C ; and a tentative detection outcongg, ,. And
a% is the equivalent noise variance. This equivalent noise

d<0p>q7 Cl,l)

)

1>

2
9%

estimation errorg?, when 8 = [1;1].
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Fig. 4. The effect ot on the SEP for different SNRs, whei = [1; 1]
andp = 0; Solid: SNR = -10dB; Dotted: SNR = 0dB; Dashed: SNR =
10dB; Dashed-Dotted: SNR = 20dB. This also shows the effegt @f
SEP, whens?2 = 0.12 and B = [1;1]; Dashed: SNR = -5dB; Dashed-
Dotted: SNR = 5dB; Dotted: SNR = 15dB; Solid: SNR = 25dB (small
picture).

The functiond(C,, 4,C4,1) is a non-negative quadratic
form of thea priori channel estimaté/ (because the matrix
Re{(C11—C,4)"Cy 1} is non-negative angz‘g% > 0),

i.e, itrepresents an energy-type function of the known parts
of the channel. This simplification means that the SEP re-
duces when the energy of the known parts of the channel
increases or when the energy of the unknown parts reduces.
As the channel variation is modeled by a Gaussian pdf,

variance includes the effects of both additive noise and chanprovided thatS = ) 1, R is the summation of two inde-

nel uncertainties. For example, if the channel is exactly
known, i.e., ¢? = 0, the functiond (C, 4, C1,1) becomes
the Euclidian distance for the received constellations and

o2 = o2 represents the variance of the additive noise.

R
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pendent Gaussian vectors and therefore is Gaussian with a
mean ofC ; H and a covariance matrix* I, + Cy,1 CT .

This covariance matrix includes the uncertainties caused by

both channel imperfections and additive noise. To achieve
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a better understanding of the SEP and the above bounds,
simulation results are illustrated in Figures 3 and 4, and the
effects of different parameters are discussed in the following
cases:

obviously expected.

If ||H|| increases, the SEP reduces and the error floor
of SEP occurs at higher SNRs. The bounds are also
tighter when||H|| is higher.

e ¢Z — 0: In this case, the channel is knowire., H =

H and the SEP bounds become identical with those of
a known channel with AWGN, as expected (See Fig-
ure 3).

¢2 — oo: This condition implies that na priori infor-
mation is provided about the channel coefficients, and
the receiver detects randomly. This shows that either
an initialization is required or a small subset of con-
stellation points could be used to allow channel identi-
fication (See Figure 3).

The SEP has a floor which is a functiongf because
when the channel uncertainties diminish, the effect of
the additive noise becomes dominant at certain points,
as is evident in Figure 3. In other words, in low SNRs
the additive noise limits the system performance, while

Figure 4 also illustrates the effect of the correlation
between the channel estimate coefficientspn the
SEP. It is observed that in low SNRs, the SEP does
not depend om. This is easily justified in this case
by considering (6) as\; » o? (See Figure 4 for
SNR<0dB). In high SNRs, from (6) it is observed that
A12 =~ ¢2|S| (1 £ |p|). Inthis case, the SEP bounds do
not vary greatly with variations of SNR (See Figure 4
for SNR>15dB). In this case, the SEP is determined
by the channel uncertainties that are characterized by
A1,2 and the average effect pfis less than the impact
of 3dB variations of2.

~

[1l. CONCLUSIONS
In this paper an optimal MAP receiver for Transmission

in high SNRs the channel uncertainties mainly limit Diversity is proposed that takes channel uncertainties into

the performance (SN@ W). Therefore, it

is very important to use efficient channel estimators.
Figure 4 depicts the effect of the channel estimation
error,s2, on the SEP. It also verifies that the effect of
2 is considerable in high SNRs while its effect is ne-
glectable in low SNRs. This figure also shows that
has a minor effect on SEP. To study the variation modes
of o2
channel uncertainties, we consider the eigenvalues o
¥ ¢ as follows:

a
fWi

© M
Looking at the larger eigenvalue, we see the effect of [2]
uncertainties in the worst case. Variations)afs in

the worst case dfp| = 1 show that the eigenvalues lie
betweens? ando? + 262 |S|. This intuitively means
that the additive noise is dominant in small SNRs and
the channel uncertainties are dominant in large SNRs.
H — 0: This condition implies a Rayleigh fading
channel. For a QAM scheme, the detection perfor-
mance of the receiver will be very poor. In this case for
an orthogonal modulation scheniee,, ¢/'c, = 6,4

as in FSK, this receiver simplifies to a kind of non-
coherent receiver. This case is formulated and studied
in [8]. The system is not bandwidth-efficient in this
scheme. However, this scheme (which involves reduc-
ing the size of the set of the alphabets) could be used
as an important alternative to the training mode, allow- [€!
ing lower data rate communication during the training
mode.

[|[H|| — oo: This condition implies a very strong Line

Az =0 +[S|(1£pl).

E]
(4]

(6]

(7]

B

account.
Gaussian. The performance of this detection algorithm is
analyzed using bounds of Symbol Error Probability. Both

the SEP curves obtained by simulations and the bounds indi-
cate that the proposed algorithm is robust and simple. Such

The channel estimation error is assumed to be

receiver results in a considerable performance improve-

ment in the presence of channel imperfections and is very
which reflects the effect of additive noise and suitable for use in fast fading environments in combination

th an adaptive channel tracking algorithm [9, 10].

REFERENCES

S. M. Alamouti, “A simple transmit diversity technique for wireless
communications,IEEE Journal on Selected Areas in Communica-
tions vol. 16, pp. 1451-1458, Nov. 1998.

V. Tarokh, N. Seshadri, A. Calderbank, “Space-Time Codes for high
data rate wireless communication: Performance criterion and code
construction,"lEEE Transactions on Information Thegmol. 44, no.

2, pp. 744-765, March 1998.

B.L. Hughes, “Differential Space-Time ModulatiodEFEE Transac-
tions on Information Theoryol. 46, pp. 2567-2578, Nov. 2000.

V. Tarokh and H. Jafarkhani, “A differential detection scheme for
transmit diversity,"IEEE Journal on Selected Areas in Communica-
tions vol. 18, pp. 1168-1174, July 2000.

] V. Tarokh, N. Seshadri, and A. Calderbank, “Space-Time Codes for

high data rate wireless communication: Performance criterion in the
presence of channel estimation errors, mobility and multipatB&E
Transactions on Information Thearyol. 47, no. 2, Feb. 1999.

A. Naguib, V. Tarokh, N. Seshadri, and A. R. Calderbank, “A space-
time coding modem for high-data-rate wireless communications,”
IEEE Journal on Selected Areas in Communicatjonsl. 16, pp.
1459-1477, Oct. 1998.

G. D. Forney, Jr., “Lower Bounds on Error Probability in the Presence
of Large Intersymbol Interferencd EEE Transactions on Communi-
cations vol. TCOM-20, no. 2, pp. 76-77, 1972.

J. D. Brown, Performance of Optimal Dual Transmit Antenna Di-
versity System for Unknown, Correlated Rayleigh Fading Channels
M.Sc. Dissertation, Queen'’s University, March 2002.

S. Gazor and H. S. Rad, “An Optimal/Adaptive Receiver for Transmis-
sion Diversity over Uncertain Channels,” submittedE&E Transac-
tions on Wierless CommunicatigndNov. 2002.

of Sight (LOS) gain in the transmission. In this case, [10] S.Gazorand H. S. Rad, “Joint Estimation and Detection for Transmit

the bounds converge to zero and heie— 0, as is

IV - 344

Diversity over Fast Fading Channels,” submitted to ICASP 2003.



