
AN OPTIMAL RECEIVER FORTRANSMISSIONDIVERSITY OVER UNCERTAIN CHANNELS

Hamidreza Saligheh Rad, and Saeed Gazor

radh@ee.queensu.ca,saeed.gazor@ece.queensu.ca
Department of Electrical and Computer Engineering,

Queen’s University, Kingston, Ontario, K7L 3N6, Canada.

Abstract– In this paper, a receiver for a Dual Transmit Di-
versity system is designed that takes into account the chan-
nel estimation error, assuming the unknown channel to have
a given complex bivariate Gaussian probability density func-
tion (pdf) (i.e., a Ricean pdf). This criterion of the receiver,
which is based on the MaximumA Posteriori (MAP), is
expressed in a quadratic form, and in extreme cases, rep-
resents either a linear detector or a non-coherent-non-linear
detector. Simulations of the Symbol Error Probability (SEP)
of the receiver and analysis of an Upper Bound (UB) and
a Lower Bound (LB) confirm that the proposed detector
achieves robust performance against channel imperfections.

I. I NTRODUCTION

To improve data communication quality (e.g., by reducing
the effective error rate) in a multipath fading environment,
it is crucial to successfully reduce the effect of fading at
both the mobile units and the base stations. In most scatter-
ing environments, antenna diversity is a practical and effi-
cient technique for reducing the effect of multipath fading
[1]. These schemes employ pre-coding, namely Space-Time
Coding (STC), which is appropriate for multiple transmit
antenna systems. STC leads to a considerable increase in
bandwidth efficiency and system capacity [2].

Although it has been proved in [5] that in the presence
of small errors in the channel state information, STCs still
result in an improved bandwidth efficiency over classical
transmitting schemes, a considerable degradation is observed
when the channel estimation error increases. This could be
improved by sending more pilot symbols (training symbols)
during the transmission at the cost of losing some band-
width efficiency, especially in the case of fast time-varying
channels [2, 5]. Hence, robust detection for these methods
is needed for good operation when the Channel State Infor-
mation (CSI) is not exactly known.

In this paper we derive a new MAP data detection algo-
rithm that takes into account the channel estimation errors.
In the proposed method, the channel error is assumed to
be a complex Gaussian random vector with a known mean
(based on a previous estimate [9], a guess, or initialized at
zero) and a covariance matrix (as a measure of the deviation

from the estimated value). Here, for simplicity, we con-
sider a system with two transmit antennas and one receive
antenna as in [1]. The results can be extended to a general
case of multiple transmitters and multiple receivers.

The paper is organized as follows: In Section II the sys-
tem and receiver structure are provided. In Section II-A,
we also simplify the receiver for an important and simple
case. In section II-B the performance of the receiver,i.e.,
the Symbol Error Probability (SEP), is analyzed for a simple
case by simulations and by derivation of an Upper Bound
(UB) and a Lower Bound (LB). Finally, some concluding
remarks are discussed in Section III.

II. SYSTEM MODEL AND RECEIVER STRUCTURE

For simplicity in this paper, the Dual Transmit Diversity
(DTD) technique is considered that is proposed by Alamouti
[1]. This scheme can be described as follows:

R
∆=

[
r1

r2

]
=

[
s1 s2

−s∗2 s∗1

] [
h1

h2

]
+

[
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n2

]
= SH +N. (1)

where fori = 1, 2, the vectorsri ∈ CL, andni ∈ CL

are the received signals and the Additive White Gaussian
Noise (AWGN), respectively. Transmitted symbols,s1 and

s2 both take their values randomly fromC =
{
ci ∈ CL

}K

i=1
,

whereK is the number of constellation points andL is
the dimension of the transmitted signal space. The chan-
nel gainsh1 and h2 are complex random variables. The
notations(.)∗, (.)T and(.)H stand for complex conjugate,
transposition and Hermitian, respectively.

Remark 1: It is easy to see that the signalR remains in-
variant by transforming the quadruplet(s1, s2, h1, h2) into
(ejφs1, e

−jφs2, e
−jφh1, e

jφh2). Assuming that elements
of this quadruplet are unknown, this property leaves am-
biguity, which we shall call Phase Ambiguity (PA), in de-
termination of the phaseejφ when onlyR is observed in
order to estimate this quadruplet. The PA depends on the
set of alphabetsC. For example, using a 4QAM modula-
tion scheme, we haveejφ ∈ {±1 ± j}; in this case the
receiver must knowejφ, which is the equivalent of two bits
or one symbol. To resolve the PA, the direction of one of
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the components of this quadruplet must be determined. One
way to resolve the PA is to control the set of alphabetsC for
s1 ands2, e.g., using one pair of training symbols. If the
phase varies slowly enough with time, it can be tracked ac-
curately after the first initialization [9]. However, a sudden
rotation of the channel coefficients results in a dual rotation
of the detected data after that event. Another alternative to
overcome the PA is to use differentially coded modulation
schemes (e.g., see [4] and references therein for more de-
tails). In these schemes the information is embedded into in
the transmitted sequence in a such a way that after decoding
the effect ofejφ is cancelled, usually at the expense of about
3dB noise augmentation.

The following theorem, which is the basis of the pro-
posed receiver, assumes a Ricean pdf for the channelH ∼
N (H̃, Σ̃) at a particular moment. The noiseN is zero-
mean, white and Gaussian and is assumed to be independent
of the channel coefficients. In this and the next sections,(̃.)
and(̂.) denotea priori anda posteriorivalues, respectively.
The receiver is provided with the received signalR and in-
accuratea priori channel informationH̃ where the matrix
Σ̃ representsa priori covariance of the channel errors.

Theorem 1:If the a priori pdf of the channel vectorH
is Gaussian and is provided with the meanH̃ and the co-
variance matrixΣ̃, i.e., H ∼ N (H̃, Σ̃), and the additive
noise is a zero-mean white stationary Gaussian vector,i.e.,
N ∼ N (0, σ2I2L), then the optimal receiver should maxi-
mize the conditional pdf of the received vector signal given

by f(R|S) = |bΣ| exp(−B)

π2Lσ2L|eΣ| where

Σ̂−1 =
1
σ2

SHS + Σ̃−1 = αI2 + Σ̃−1, (2a)

B = −ĤHΣ̂−1Ĥ +
1
σ2

RHR + H̃HΣ̃−1H̃, (2b)

Ĥ = H̃ +
1
σ2

Σ̂SH
(
R− SH̃

)
, (2c)

whereα
∆= ‖s1‖2+‖s2‖2

σ2 = |S|
σ2 and|A| stands for the magni-

tude of the determinant of the matrixA (or for
√

det(AHA)
if A is not a square matrix) and||.|| is the Euclidian distance.
Furthermore, ifS is the true transmitted value or if the er-
ror probability is small enough, then thea posterioripdf of
the channel after observation ofR and detection ofS is also
Gaussian, withĤ as its mean and witĥΣ as its covariance
matrix, i.e., f(H|R, S) = N (Ĥ, Σ̂). For proof See [9].

Remark 2:Since thea posterioriand thea priori pdfs
of the channel have a same form, the assumption of this
theorem is justified if an iterative channel estimation is em-
ployed.

By virtue of this theorem, an optimal receiver can maxi-
mize the log–likelihood function,i.e., log (f(R|S)), as the
decision rule; therefore, the following metricM(Cp,q, R)

Calculation of

M(Cp,q, R)

from (3)

--
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-
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Fig. 1. The block diagram of the optimal receiver. The detector receivesR
and detects the transmitted pairs by receiving some statistical information
of the channel,( eH, eΣ), and the noise variance,σ2.
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Fig. 2. The structure of the MAP metric calculator for an unknown chan-
nelH with a given Gaussian pdfN ( eH, eΣ).

should be maximized,

Ŝ = arg max
cp,cq∈C

M(Cp,q, R) (3)

whereM(Cp,q, R) = log |Σ̂| + ĤHΣ̂−1Ĥ and Cp,q
∆=[

cp cq

−c∗q c∗p

]
. The block diagram of this receiver in Fig-

ure 1 shows how the receiver uses some statistical informa-
tion about the channel and the noise. Figure 2 shows the
details of the metric calculator in the receiver. It demon-
strates that each path in the receiver is simple as to the
computational complexity, and its digital implementation
is both feasible and cheap. In this paper, we consider

Σ̃ ∆= ς2

[
1 ρ
ρ∗ 1

]
as the error covariance matrix of the

channel vector. This assumption results in

Σ̂ =
1

(α + β)2 − β2|ρ|2
[

α + β βρ
βρ∗ α + β

]
, (4)

whereβ
∆= ς−2

1−|ρ|2 , ς2 andρ are the variance and the corre-
lation of thea priori channel estimation error, respectively,
and|Σ̂| = 1

(α+β)2−β2|ρ|2 .

Remark 3:The valueΣ̂, that represents thea posteriori
covariance of the channel coefficients when the error prob-
ability is very small, satisfiesCov(H|R, S = Ŝ) = Σ̂ 6 Σ̃.
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Theorem 1 and this inequality show thatĤ can be consid-
ered as thea posteriori estimate of the channel when the
Symbol Error Probability (SEP) is low. This implies thatĤ
can be used as the output of an iterative algorithm to esti-
mate the channel coefficients. See [10] for more details.

Remark 4:We can see that if̃Σ → 0, i.e., when the
channel is known and the additive noise is white and Gaus-
sian, then the receiver simplifies to a linear receiver as pro-
posed in [1].

A. Simplified Receiver Structure

In this section, the receiver can be simplified for the spe-
cial case where||s1||2 + ||s2||2 = |S| is taken to be con-
stant at the transmitter. This constraint means that the total
energy used for transmission of one pair of symbols,s1 and
s2, is constant. This condition is less strict compared to
the case of equal energy signals. It can be seen from The-
orem 1 that this constraint makeŝΣ independent ofs1 and
s2; therefore, the first term of the metricM in (3) plays no
role in optimization, and the simplified metricHH

0 Σ̂H0 is
to be maximized. The receiver structure in this case will
be the same as depicted in Figure 1, except for the calcula-
tion of log |Σ̂| that is no longer required. So, imposing such
a simple constraint on the energy of signals the transmitter
results in a more computationally efficient receiver.

B. Symbol Error Probability (SEP)

In the following theorem, an upper bound (UB) and a
lower bound (LB) are given for the SEP of the above simpli-
fied receiver, whenρ = 0. The exact SEP is then evaluated
by simulations and is compared with the UB and the LB as
a function ofς2, ρ and||H̃||.

Theorem 2:For a 4QAM modulation scheme and the case
of ρ = 0, the SEP is bounded as follows (See [9] for proof):

Q

(
d(C3,2, C1,1)

σ eN

)
6Ps 6

∑

(p, q) 6= (1, 1)

Q

(
d(Cp,q, C1,1)

σ eN

)
, (5)

where Σ eN
∆= σ2I2 + C1,1Σ̃CH

1,1,

d(Cp,q, C1,1)
∆=

σ2H̃HRe{(C1,1 − Cp,q)HC1,1}H̃
ς2|C1,1| ,

σ2
eN

∆=
σ4H̃H (Cp,q − C1,1)

H Σ eN (Cp,q − C1,1) H̃

ς4|C1,1|2 .

In this theorem, whenC1,1 is transmitted,d (Cp,q, C1,1)
measures an approximate distance between the transmitted
symbol,C1,1 and a tentative detection outcome,Cp,q. And
σ2
eN is the equivalent noise variance. This equivalent noise

variance includes the effects of both additive noise and chan-
nel uncertainties. For example, if the channel is exactly
known, i.e., ς2 = 0, the functiond (Cp,q, C1,1) becomes
the Euclidian distance for the received constellations and
σ2
eN = σ2 represents the variance of the additive noise.
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Fig. 3. The experimental SEP evaluation and the error bounds (5) for
a 4QAM modulation for different values of the variance of the channel
estimation error,ς2, when eH = [1; 1].
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Fig. 4. The effect ofς2 on the SEP for different SNRs, wheneH = [1; 1]
andρ = 0; Solid: SNR = -10dB; Dotted: SNR = 0dB; Dashed: SNR =
10dB; Dashed-Dotted: SNR = 20dB. This also shows the effect ofρ on
SEP, whenς2 = 0.12 and eH = [1; 1]; Dashed: SNR = -5dB; Dashed-
Dotted: SNR = 5dB; Dotted: SNR = 15dB; Solid: SNR = 25dB (small
picture).

The functiond(Cp,q, C1,1) is a non-negative quadratic
form of thea priori channel estimatẽH (because the matrix
Re{(C1,1−Cp,q)HC1,1} is non-negative and σ2

ς2|Cp,q| > 0),
i.e., it represents an energy-type function of the known parts
of the channel. This simplification means that the SEP re-
duces when the energy of the known parts of the channel
increases or when the energy of the unknown parts reduces.

As the channel variation is modeled by a Gaussian pdf,
provided thatS = C1,1, R is the summation of two inde-
pendent Gaussian vectors and therefore is Gaussian with a
mean ofC1,1H̃ and a covariance matrixσ2I2 +C1,1Σ̃CH

1,1.
This covariance matrix includes the uncertainties caused by
both channel imperfections and additive noise. To achieve
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a better understanding of the SEP and the above bounds,
simulation results are illustrated in Figures 3 and 4, and the
effects of different parameters are discussed in the following
cases:
• ς2 → 0: In this case, the channel is known,i.e., H =

H̃ and the SEP bounds become identical with those of
a known channel with AWGN, as expected (See Fig-
ure 3).

• ς2 →∞: This condition implies that noa priori infor-
mation is provided about the channel coefficients, and
the receiver detects randomly. This shows that either
an initialization is required or a small subset of con-
stellation points could be used to allow channel identi-
fication (See Figure 3).

• The SEP has a floor which is a function ofς2, because
when the channel uncertainties diminish, the effect of
the additive noise becomes dominant at certain points,
as is evident in Figure 3. In other words, in low SNRs
the additive noise limits the system performance, while
in high SNRs the channel uncertainties mainly limit

the performance (SNR
∆= |S|(2ς2+|| eH||2)

2σ2 ). Therefore, it
is very important to use efficient channel estimators.
Figure 4 depicts the effect of the channel estimation
error, ς2, on the SEP. It also verifies that the effect of
ς2 is considerable in high SNRs while its effect is ne-
glectable in low SNRs. This figure also shows thatρ
has a minor effect on SEP. To study the variation modes
of σ2

eN , which reflects the effect of additive noise and
channel uncertainties, we consider the eigenvalues of
Σ eN as follows:

λ1,2 = σ2 + ς2|S| (1± |ρ|) . (6)

Looking at the larger eigenvalue, we see the effect of
uncertainties in the worst case. Variations ofλ1,2 in
the worst case of|ρ| = 1 show that the eigenvalues lie
betweenσ2 andσ2 + 2ς2 |S|. This intuitively means
that the additive noise is dominant in small SNRs and
the channel uncertainties are dominant in large SNRs.

• H̃ → 0: This condition implies a Rayleigh fading
channel. For a QAM scheme, the detection perfor-
mance of the receiver will be very poor. In this case for
an orthogonal modulation scheme,i.e., cH

p cq = δp,q

as in FSK, this receiver simplifies to a kind of non-
coherent receiver. This case is formulated and studied
in [8]. The system is not bandwidth-efficient in this
scheme. However, this scheme (which involves reduc-
ing the size of the set of the alphabets) could be used
as an important alternative to the training mode, allow-
ing lower data rate communication during the training
mode.

• ||H̃|| → ∞: This condition implies a very strong Line
of Sight (LOS) gain in the transmission. In this case,
the bounds converge to zero and hencePs → 0, as is

obviously expected.
• If ||H̃|| increases, the SEP reduces and the error floor

of SEP occurs at higher SNRs. The bounds are also
tighter when||H̃|| is higher.

• Figure 4 also illustrates the effect of the correlation
between the channel estimate coefficients,ρ, on the
SEP. It is observed that in low SNRs, the SEP does
not depend onρ. This is easily justified in this case
by considering (6) asλ1,2 ' σ2 (See Figure 4 for
SNR<0dB). In high SNRs, from (6) it is observed that
λ1,2 ' ς2|S| (1± |ρ|). In this case, the SEP bounds do
not vary greatly with variations of SNR (See Figure 4
for SNR>15dB). In this case, the SEP is determined
by the channel uncertainties that are characterized by
λ1,2 and the average effect ofρ is less than the impact
of 3dB variations ofς2.

III. C ONCLUSIONS

In this paper an optimal MAP receiver for Transmission
Diversity is proposed that takes channel uncertainties into
account. The channel estimation error is assumed to be
Gaussian. The performance of this detection algorithm is
analyzed using bounds of Symbol Error Probability. Both
the SEP curves obtained by simulations and the bounds indi-
cate that the proposed algorithm is robust and simple. Such
a receiver results in a considerable performance improve-
ment in the presence of channel imperfections and is very
suitable for use in fast fading environments in combination
with an adaptive channel tracking algorithm [9,10].
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