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ABSTRACT

In this work, we present a novel space-time orthogonal cod-
ing scheme with full-rate and full-diversity on QPSK con-
stellation for communication systems with four transmit an-
tennas. We also study the performance of the newly pro-
posed coding scheme in comparison with that of half rate
full diversity orthogonal codes as well as full rate half di-
versity quasi-orthogonal codes. We demonstrate that the
proposed coding scheme not only offers full rate but also
outperforms the other two schemes when SNR increases.

1. INTRODUCTION

Diversity techniques are effective ways of combating chan-
nel fading and providing reliable system performance in
wireless communications. To achieve spatial diversity, an-
tenna arrays can be deployed at the transmitter and/or the
receiver. However, considering the fact that receivers of
mobile users are typically required to be small, it may not
be practical to use multiple receiving antennas. Therefore,
transmit diversity technique becomes a promising approach
to achieve diversity in wireless communications. The first
space-time block code, which is also the first full rate full
diversity orthogonal code, was proposed by Alamouti for a
system with two transmit antennas [1]. In [2], Tarokh et al.
developed the construction criteria, and studied trade-offs
between constellation size, data rates, diversity advantage
and complexity. The general design of full diversity orthog-
onal space-time code was presented in [3]. The orthogonal
codes proposed in [3] have a normalized rate of 1 symbol/s
over real constellations; over complex constellations, codes
achieving 1/2 and 3/4 rates are proposed for systems with
three and four transmit antennas. Another obvious advan-
tage of those codes proposed in [3] is that given the knowl-
edge of channel, the maximum-likelihood (ML) decoding
of the information can be achieved with a linear complex-
ity. Unfortunately, it is proved that an orthogonal space-time
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code that can provide full-diversity and full transmission
rate, and can be decoded by simple linear decoder does not
exist for systems with more than two transmit antennas over
complex constellation. Therefore, other researchers made
trade-offs among orthogonality, rate, diversity and decoding
complexity in their subsequent studies. Trading the code
orthogonality and diversity for higher coding rates, a full-
rate and half diversity code, the so called quasi-orthogonal
codes, was proposed in [4], and similar code construction
can be found in [5],[6]. To date there has no full-rate full-
diversity orthogonal design been reported, that can be used
in a system with more than two transmit antennas over com-
plex constellation. In this work, we present a novel full-rate
full-diversity orthogonal space-time coding scheme for sys-
tems employing four transmit antennas using QPSK con-
stellation. The full rate full diversity potential is achieved
at the cost of increased decoding complexity. Since the pro-
posed code is not a linear processing orthogonal codes, there
is no linear decoder for it. The ML detection has to be per-
formed by exhaustive search over four dimensional QPSK
vectors.
We also report the results on performance of the new

code and compare it to those codes with full diversity and
partial rates or full rates but partial diversity. Simulation re-
sults of the one receiver antenna system show that the per-
formance of the new code is very close to that of the quasi-
orthogonal code and is obviously better than that of the half
rate orthogonal code when signal to noise ratio (SNR) is low
(SNR<15 dB). However, as the SNR is high, full diversity
codes work better and benefit more from SNR increasing
than partial diversity code. The new code shows a perfor-
mance gain about 2 dB at the bit error rate (BER) of 10−3,
compared to the half rate orthogonal code. When 2 transmit
antennas are used, the novel code outperforms the quasi-
orthogonal code at a even lower SNR ( 7.5 dB), and a 4
dB performance gain achieved at the bit error rate (BER) of
10−3, compared to the half rate orthogonal code.
The organization of the paper is as follows. Section II

provides a brief summary of space-time block codes. Sec-
tion III proposes a new structure to design full-rate full-
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diversity orthogonal codes for QPSK signals transmitted by
4 transmit antennas. Simulation results and conclusions are
presented in Section IV.

2. SPACE-TIME BLOCK CODES

Space-time block coding [1],[7], provides transmit diver-
sity for a system with multiple transmit antennas in wireless
communications. In general , a complex space-time block
code is given by a T ×N transmission matrixC∈ G. Here,
T represents the number of time slots for transmitting one
block of symbols and N represents the number of transmit
antennas.

2.1. Encoding

At first, the information bits are mapped to constellation
symbols by digital modulation. Let A denote a signal con-
stellation of cardinality 2b. At each block, b × K bits are
input into a digital modulator, hence mapped into K con-
stellation symbols s1, s2, ... , sK . Then, the block of K
constellation symbols is mapped to one transmission ma-
trix C. Usually each element of C still belongs to A. The
nth element of the tth row of C, ctn, represents the sig-
nal transmitted by the nth transmit antenna at the tth time
slot. Therefore, all the transmit antennas transmit simulta-
neously and all the transmitted symbols have the same time
duration. The coding rate is therefore defined asR = K/T .
IfK = T , the code is termed full rate or rate 1 code.

2.2. Channel Model and Data Formulation

A wireless communication system with N transmit anten-
nas at the base station andM receiving antennas at the mo-
bile host is considered. The wireless channel is assumed
to be quasi-static so that the path gains are constant over
a frame, and vary from one frame to another (block fad-
ing channel). Within each block, the path gain coefficients
from transmit antenna n to receive antenna m, hn,m’s, are
modeled as a normalized samples of independent complex
Gaussian random variables, hn,m ∼ CN (0, 1).
At time slot t, the received signal at antennam, yt,m, is

given by

yt,m =
NX
n=1

hn,mct,n + vt,m, (1)

where the noise samples vt,m are spatially and temporally
independent samples from a zero mean complex Gaussian
random family, i.e. vt,m ∼ CN (0, 1/SNR). Note that the
average energy of the symbols transmitted from each an-
tenna is normalized to be 1/N . The average power of the
received signal at each receiver antenna is normalized, so
that the signal to noise ratio SNR=σ−2 is presented as the
effective noise variance at each receiving antenna.

We can recast this model in an equivalent matrix form

ym = C hm + vm, (2)

where ym and vm are T × 1 vectors obtained by stacking
rt,m and vt,m during processing time slots of dimension T ,
respectively. hm =

£
h1,m · · · ht,m

¤T is the N × 1
fading channel vector , where “T ” denotes the transpose op-
erator.
If all theM receiving antenna are considered the system

model is
Y = CH+V (3)

where Y = { y1 y2 · · · ym } is the T ×M receive
matrix,H = { h1 h2 · · · hm } is theN ×M fading
channel matrix, andV ={ v1 v2 · · · vm } is the T×
M noise matrix.

2.3. Coherent Detection

Most work on space-time coding has assumed that perfect
channel state information (CSI) is available at the receiver.
It means that the receiver (but not the transmitter) knows
the fading channel matrix H. When H is known at the re-
ceiver, the pdf of the received data given that C ∈ G was
transmitted is,

p(Y|H,C) = exp(−σ−2tr{(Y −CH)(Y −CH)H})
(πσ2)TM

(4)
where “tr” is the trace, “H” is conjugate transpose.
Maximum-likelihood (ML) receiver reduces to the min-

imum Euclidean distance detector, i.e.bC = argmax
C

p(Y|H,C) (5)

= argmax
C
tr{(Y −CH)(Y −CH)H}

For unit-energy design,CHC = IN×N , Eq. (5) can be
simplified as,

bC = argmax
C

Re
(

MX
m=1

yHmC hm

)
. (6)

3. NEW SCHEME OF FULL RATE FULL
DIVERSITY ORTHOGONAL SPACE-TIME BLOCK

CODE

3.1. Alamouti Code and Quasi-Orthogonal Code

Alamouti scheme is an example of full-rate full-diversity
complex space-time block code. The scheme can be defined
by the following transmission matrix, so called Alamouti
matrix[1]:

C =

µ
s1 s2
−s∗2 s∗1

¶
(7)
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It is the only case for complex linear processing orthogo-
nal design[3]. It means that, if we try to design a complex
orthogonal transmission matrix CN×N with entries chosen
from ±s1, ±s2, ..., ±sN , and their conjugates ±s∗1, ±s2∗,
..., ±sN∗, or multiples of these by ±j where j =

√−1,
the design exists if and only if N = 2. In [3], the full-rate
full-diversity real linear processing orthogonal design and
partial-rate full-diversity complex linear processing orthog-
onal design for 4 and 8 transmit antenna scenario are also
provided.
As an example of full-rate partially diversity scheme, Ja-

farkhani proposed a so called quasi-orthogonal space-time
block code for a system with four transmit antenna system
in [4]. The scheme was defined by the following transmis-
sion matrix,

C =


s1 s2 s3 s4
−s∗2 s∗1 −s∗4 s∗3
−s∗3 −s∗4 s∗1 s∗2
s4 −s3 −s2 s1

 =

µ
C1 C2
−C∗2 C∗1

¶
(8)

This kind of code achieves a diversity of 2M , instead of
full diversity 4M , while the rate of the code is one.

3.2. Full-Rate Full-Diversity Orthogonal Code for QPSK
Signal

It has been proved in [3] that the maximum diversity of
4M for a rate one complex linear processing orthogonal
code is impossible in a 4 transmit antenna system. How-
ever, the possibility of constructing orthogonal space-time
block code by non-linear processing has not been studied.
Without the linear processing constrains, the full-rate full-
diversity orthogonal codes may be find for complex symbols
of some special constellations.
In this work, we present the design of the QPSK sym-

bols transmitted through a system with 4 transmit antennas.
The goal in our design is to achieve full rate and full diver-
sity, while remaining the orthogonality of code. Now, let us
consider the following space-time block code for the choice
of system parameters: N = T = K = 4. We construct a
novel transmission matrix as follows

C =
1√
2

µ
C1 C2

−CH1 CH2 C1 CH1

¶
(9)

=
1√
2


s1 s2 s3 s4
−s∗2 s∗1 −s∗4 s∗3
−x∗1 x2 s∗1 −s2
−x∗2 −x1 s∗2 s1

 ,
where si belongs to the signal constellationA, defined asA =n
ej(kπ/2+π/4)√

2

o3
k=0

, and x1 = Re {s3} − jIm{2s1s2s∗4},
x2 = s

∗2
1 s4 + s

2
2s
∗
4 + s

∗
1s2s3 − s∗1s2s∗3 .

If si ∈ A, obviously x1 ∈ A. Then we prove x2 ∈ A.
Generally, let si = ej(

ki
2 π)s1, where ki = 1, 2, 3, 4 and

k1 = 0. Simple manipulation provides following formulas
for x2:

x2 = |s1|2 (ej
k4
2 πs∗1 + e

j
2k2−k4

2 πs1 + e
j
k2+k3

2 πs1

−ej k2−k32 πs∗1) (10)

=
1

2
ej

k2
2 π(ej

k4−k2
2 πs∗1 + e

j
k2−k4

2 πs1 + e
j
k3
2 πs1

−ej−k32 πs∗1)

= ej
k2
2 π
³
Re
n
ej

k2−k4
2 πs1

o
+ j Im

n
ej

k3
2 πs1

o´
From (10), it is clear x2 ∈ A. Therefore, our coding process
does not expand the QPSK constellation.
Since x1 =Re{s3} − jIm{2s1s2s∗4}, and s3 is inde-

pendent to s1s2s∗4, to avoid the expansion of constellation,
signal formed by any combination of possible real part and
imaginary part of symbols from certain constellation should
still belong to that constellation. Hence, we conclude that
QPSK signal is the only possible complex MPSK signal,
that has the full-rate orthogonal design by our scheme. Note
that for BPSK constellation, using our design scheme, we
have si = ±

√
2/2, x1 = s3, x2 = s4, which simply yields

the rate one orthogonal code with linear processing devel-
oped in [3].
The diversity property of the new code can be examined

by testing the rank conditions of all the possible matrices
C(s1 − es1, s2 − es2, s3 − es3, s4 − es4). The non-singularity
of all possibleC(s1−es1, s2−es2, s3−es3, s4−es4) confirms
that the new proposed code indeed provides full transmit
diversity over a quasi-static fading channel [2].
Since the new scheme is also a unit-energy design, to

reduce decoding complexity, we can use Eq.(6) to realize
ML detection instead of using Eq.(5).

4. SIMULATION RESULTS AND CONCLUSIONS

In this section, we provide simulation results for the pro-
posed new space-time code in Eq. (9) and compare it to
the results for the half-rate orthogonal codes [3] and quasi-
orthogonal codes presented in [4], respectively. Fig.1 pro-
vides simulation results for the transmission of 2/bits/s/Hz
by 4 transmit antennas and 1 receiving antenna using QPSK
modulated full-rate full-diversity code and full-rate quasi-
orthogonal code, and 16 QAM modulated half rate full-
diversity code.
Simulation results from Fig.1show that the performance

of the new code is close to that of the quasi-orthogonal code
and is better that of the half rate orthogonal code when sig-
nal to noise ratio (SNR) is low. However, as the SNR in-
creases, full diversity codes work better and benefit more
from SNR increase than partial diversity code. The new
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Fig. 1. Bit-error probability versus SNR for space-time
block codes at 2 bits/s/Hz. 4 transmit antennas and 1 re-
ceive antenna are used.

space-time coding scheme demonstrates a performance gain
about 2 dB at the bit error rate (BER) as 10−3, compared to
the half rate orthogonal code. Since the degree of diversity
is reflected by the slope of the BER-SNR curve at high SNR,
the similar slopes of the BER-SNR curve for new code and
the full-diversity half-rate code at high SNR also prove the
full diversity of new proposed code.
Fig.2 provides simulation results for the transmission of

2/bits/s/Hz by 4 transmit antennas and two receiving an-
tenna using the proposed QPSK modulated full-rate full-
diversity code and full-rate quasi-orthogonal code, and 16
QAM modulated half rate full-diversity code. When two
transmit antennas are used, the novel code outperforms the
quasi-orthogonal code at a even lower SNR ( 7.5 dB), and
a 4 dB performance gain is achieved at the bit error rate
(BER) of 10−3, compared to the half rate orthogonal code.
This work demonstrate the existence of a QPSK full-

rate full-diversity space-time orthogonal coding for a sys-
tem with four transmit antennas.
It should be pointed out that the receiver of the half-rate

full-diversity codes can decode the symbols one by one, and
that of the full-rate half-diversity quasi-orthogonal codes
can decode the symbols pair by pair [4]. This means that
the full rate full diversity potential of the proposed space-
time coding scheme is achieved at the cost of increased de-
coding complexity. For QPSK the decoding complexity of
new orthogonal codes is nearly 8 times of that of the quasi-
orthogonal codes. The encoding complexity of the proposed
orthogonal codes is a little higher than that of the other two,
although all the codes have very low encoding complexity.
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Fig. 2. Bit-error probability versus SNR for space-time
block codes at 2 bits/s/Hz. 4 transmit antennas and 2 re-
ceive antennas are used.
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