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ABSTRACT

We propose a flexible method for designing space-time block codes
capable of achieving the desired trade-off between diversity and
coding gain. The proposed system is valid for frequency selective,
block fading channels and refers to a block coding scheme capa-
ble of achieving full rate transmission, for any number of transmit
antennas. We derive a closed form expression for the pairwise er-
ror probability and the maximum diversity and coding gain. These
expressions are instrumental to design the coding strategy able to
yield the required trade-off between coding and diversity gain, in
order to reach the desired average BER with the smallest SNR.
Finally, we check our theoretical derivations with simulations and
compare our approach with alternative ones.

1. INTRODUCTION

Since the introduction of space-time coding methods, many efforts
have been devoted to finding out coding strategies able to achieve
the maximum diversity gain and then consider the coding gain as
a by-product of the design. This approach is certainly meaningful,
as the diversity gain controls the slope of the average bit error rate
(BER) curves, at high SNR. However, especially when the maxi-
mum potential diversity gain is high, the maximum slope is often
observed at high SNR, where the average BER can be unneces-
sarily low. In principle, transmitting over a frequency selective
channel withL + 1 multiple rays, usingT transmit andR re-
ceive antennas, the diversity gain can be made equal to the product
Gd = TR(L+1). Clearly, this number can be quite high, even for
small values ofT andR. However, since the ultimate performance
parameter, at the physical layer level, is BER, in many situations,
it would be better to have a lower diversity gain, but a higher cod-
ing gain, so that the desired average BER could be achieved with a
lower SNR. The aim of this work is precisely to propose a coding
strategy able to achieve the desired balance between coding and
diversity gain.

We start with the space-time coding scheme proposed in [2], as
a method able to reach the maximum diversity gain, with full rate
for any number of transmit antennas, with affordable receiver com-
plexity. However, differently from [2], where the coding method
is linear, we use a nonlinear encoding strategy to increase the cod-
ing gain. We also borrow some ideas of [1] about the optimal
coding strategy over Rayleigh flat fading channels. In [1] it was
proved that, as the number of receive antennas increases, the opti-
mal space-time coding matrix can be built by encoding the infor-
mation bits using off-the-shelf error correction codes (ECC) and
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arranging the resulting coded stream into a matrix whose size is
dictated by the number of transmit elements. Building on [2] and
[1], we propose a novel coding strategy that concatenates the sym-
bols transmitted over successive blocks in order to achieve the de-
sired trade-off between coding and diversity gain. We derive a
closed form expression for the pairwise error probability, coding
and diversity gains, which will provide the guideline for the de-
sign of our coding strategy.
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Fig. 1. Block coding scheme.

2. SYSTEM MODEL

We consider a block transmission system withT transmit andR
receive antennas and we make the following assumptions: (a1)
each discrete-time channel is described by an FIR filter of maxi-
mum orderL, whose coefficients are zero-mean complex Gaussian
random variables (Rayleigh fading model), withL = d τmax

Ts
e,

whereτmax is the maximum delay spread of theT R channels;Ts

is the symbol sampling period andd e stands for integer-ceiling;
(a2) all channels are time-invariant within each transmitted block;
(a3) transmitters and receivers are synchronous and channel state
information (CSI) is available only at the receiver; (a4) the re-
ceived data are degraded by zero-mean complex additive white
Gaussian noise (AWGN). The discrete-time baseband equivalent
model of our Concatenated-Space-Time-Coded (CSTC) system is
depicted in Fig.1. The input information bit stream is parsed in
blocks of Lb bits b(n) := [b1(n), . . . , bLb(n)], wheren is the
block index. Each block is then mapped onto a sequence ofLc

coded bitsc(n) := [c1(n), . . . , cLc(n)]. The sequencec(n)
feeds then a constellation mapper which associates to each set of
log2 Ω bits a complex QAM symbol belonging to a finite alphabet
A with cardinalityΩ. The result of this mapping is a sequence of
Ns := Lc/ log2 Ω complex symbolsd(n) ∈ D , whereD is the
set of all possible vectorsd(n). The elements ofd(n) are then
distributed among a set ofQ vectors{s1(n), . . . , sQ(n)}, each
one of lengthM := Ns/Q with M > L. Next, we introduce the
matricesS(n) := [s1(n), . . . , sQ(n)] and denote byS the set
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of all possible matricesS(n)1. Then we apply a linear complex-
field (CF) precoding toS(n), multiplying each vectorsq(n) by
theN ×M matrixF q, with N ≥ M andq = 1, 2, . . . Q.

The key idea underlying our coding strategy is that the non-
linear encoder concatenates the blockssq(n) in a way that yields
the desired trade-off between coding and diversity gain. But the
concatenation law and the choice of the matricesF q will be made
clear only after we will have derived, in Section 3, a closed form
expression for the pairwise error probability.

Each blocksq(n) passes through a space-time encoder im-
plementing the space-time digital phase sweeping (ST-DPS) en-
coder proposed in [2], which we briefly recall here. As opposed
to the orthogonal space-time encoder, ST-DPS exists for any num-
ber of transmit antennas and does not incur in any rate loss when
T > 2 [2]. In ST-DPS, each vectorF qsq(n) is sent to allT
transmit antennas after multiplication by proper precoding ma-
trices. More specifically, then-th block transmitted by thet-th
antenna isxq

t (n) := OFDM{ 1√
T
P tF q sq(n)√

γ
}, whereγ is a

normalization factor used to enforce the desired transmit power,

P t = diag
�
1, ejΦt , . . . , ejΦt(N−1)

�
, with Φt = −2π(t −

1)(L + 1)/N ∀t ∈ [1, T ], and the symbolOFDM{x} indicates
an Orthogonal Frequency Division Multiplexing (OFDM) proces-
sor which computes the IFFT ofx and appends a cyclic prefix
(CP) at the beginning of the resulting vector. We recall from [2]
that the above choice of the matrices{P t}T

t=1 is used to map the
TR frequency selective(L+1)-length channels intoR equivalent
ones with lengthT (L + 1).

At the receiver, after discarding the cyclic prefix and applying
an FFT, using (a1)...(a4), the blockyq

r from ther-th antenna in the
q-th slot is given by2

yq
r =

1√
Tγ

TX
t=1

Λq
r tP tF qsq + vq

r, r = 1, 2, . . . R. (1)

where:Λq
r t is theN ×N diagonal matrix whose diagonal entries

are the samples of the channel transfer function between thet-th
transmit and ther-th receive antenna in theq-th slot, i.e.{Λq

r t}kk

=
PL

l=0 hq
r t(l) exp(−j 2πkl/N); {hq

r t(l)}L
l=0 denotes the im-

pulse response of the above channel in theq-th slot; vq
r is a N -

length additive gaussian noise vector, with zero mean and covari-
ance matrixCv = σ2

vIN ; IN is theN×N identity matrix. Denot-

ing byhq
r :=

h
hqT

r 1 , . . . ,hqT

r T

iT

the equivalentT (L + 1)-length

channel vector corresponding to ther-th receive antenna and by
WH theN × T (L + 1) FFT matrix with elements{WH}kk :=

exp(−j2πkl/N) /
√

N , it is straightforward to check [2] that, for
r ∈ [1, R]3,

PT
t=1 Λq

r t P t = diag(WHhq
r) := Λq

r, where
Λq

r is the N × N diagonal matrix whose diagonal entries are
{Λq

r}kk :=
PL

l=0 hq
r(l) exp(−j 2πkl/N). The input-output re-

lationship (1) between the blocksq transmitted in theq-th slot and
the received one from ther-th antenna may thus be rewritten as

yq
r =

1√
Tγ

Λq
rF

qsq + vq
r, r = 1, 2, . . . R. (2)

1We assume here, for simplicity, thatNs/Q is even integer. In case this
assumption does not hold true, we can group together a set ofs matrices,
with s such thatsNs/Q is even integer, and proceed on the new matrix as
we do here withS(n).

2We drop the indexn for simplicity of notation, since all processing
refers to the same information block.

3To avoid the leakage effect, it has to beN ≥ T (L + 1).

Since the entries ofvq
r are i.i.d random gaussian variables∀r ∈

[1, R], we can apply a maximal ratio combiner (MRC) onyq
r,

without loosing any information aboutsq, so as to get:

zq :=

RX
r=1

Λq∗
r y

q
r =

1√
Tγ
Dq

hF
qsq + evq, q = 1, 2, . . . Q.

(3)
whereDq

h :=
PR

r=1 |Λq
r|2 andevq :=

PR
r=1 Λq∗

r vq
r. To recover

the information bits in then-th block, we need to stack theQ
blockszq. Introducing the vectorz := [z1T

, . . . , zQT

]T and
the block diagonal matriceseF := diag

�
F1, ..,FQ

�
of dimension

Q N×Ns;Dh := diag
�
D1

h, ..,DQ
h

�
of dimensionQ N×Q N ;

S := (s1, . . . , sQ); andV := (ev1, . . . , evQ), we can rewrite (3)
as

z =
1√
Tγ
Dh

eFvec (S) + vec (V) . (4)

To collect the full diversity gain, ML decoding is needed. Denoting
with S = E(b) the nonlinear mapping relating the information
bits with the transmitted blocks, the decoder chooses the vectorb̂,
composed ofLb bits, such that

b̂ = argmin‖z − 1√
Tγ
Dh

eFvec
�
E(b̂)

�
‖2C−1

V
, (5)

where the symbol‖x‖2A denotesxHAx andCV = σ2
vDh is the

covariance matrix ofvec(V ).

3. PERFORMANCE AND DESIGN CRITERIA

We characterize the performance of our transmission system by
deriving a closed form expression for the maximum achievable
diversity and coding gains and an upper bound for the average
pairwise error probability (PEP)P (S → S′) that the matrixS is
transmitted but erroneously decoded asS′ 6= S. We preventively
introduce the following notation:SE := {E := S − S′ |S 6=
S
′
,S,S

′ ∈ S } is the set of all possible error events;ρ(d,d)
is the Hamming distancebetween the vectorsd andd; dH :=
min{ρ(d,d)|d 6= d ∈ D}4 is the minimum Hamming distance;
dmin := min{|dk − dj | |dk 6= dj ∈ A } is the minimumEu-
clidean distancebetween two symbols of the constellation with

alphabetA ; hq :=
h
hqT

1 , . . .hqT
R ,
iT

is theT R(L + 1)-length

vector containing theR elongatedchannel impulse responses. We
use also the eigenvalue decomposition of the channel autocorre-
lation matrixRq

h := E{hqhqH}:= Uq
hΨ

q
hU

qH
h , whereU q

h is
a TR(L + 1) × rq

h para-unitary matrix,Ψq
h is a rq

h × rq
h di-

agonal matrix whose diagonal entries are the non-zero eigenval-
ues ofRq

h arranged in non-increasing order andrq
h is the rank

of Rq
h. Finally, we define theTR(L + 1) × rq

e error matrix

Aq
e := (IR ⊗ Dq

eV )U q
hΨ

q
1
2

h , whereDq
e := diag(F qeq), eq

is theq-th column of the error matrixE, V is aN × T (L + 1)
Vandermonde matrix with[V ]ik = exp(−j2πik/N), and⊗ de-
notes the Kronecker product.

3.1. Pairwise error probability

Assuming perfect CSI at the receiver and high SNR (i.e. high val-
ues of 1

γTσ2
v

), we have computed the upper bound of the PEP, using

4ClearlydH is less or equal to the minimum Hamming distance of the
adopted GF code.
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Fig. 2. Gc loss vs.Gmax
d /(TR(L + 1)) = Q.

the same approach as in [3], and the result is

℘
�
S → S

′�≤� 1

γσ2
v

�−Gd,e

0@ QY
q=1

rq
e−1Y
l=0

λq
e(l)/T

1A−1

=

�
1

γσ2
v

Gc,e

�−Gd,e

where{λq
e(l)}rq

e
l=1 are the non increasing eigenvalues of the ma-

trix AqH

e Aq
e; rq

e is the rank ofAq
e; Gd,e :=

QQ
q=1 rq

e is the di-

versity gain andGc,e := 1/T
�QQ

q=1

Qrq
e−1

l=0 λq
e(l)
�1/Gd,e

de-

notes the coding gain for the symbol error eventE. SinceGd,e

andGc,e depend on the choice ofE, we define the diversity and
coding gains of our system asGd = minE∈Se

Gd,e andGc =
minE∈Se

Gc,e, respectively. The maximum achievable diversity
order isGmax

d = QTR(L + 1) and it is reached iff the chan-
nel correlation matrices{Rq

h}Q
q=1 and the error matrices{Aq

e}Q
q=1

are full rank. It is interesting to observe that the maximum value
of the diversity gain is given by the product of three factors: i) the
space diversity, given by the product of the number of transmit and
receive antennas; ii) the multipath diversity, equal to the number
of independent pathsL + 1; iii) the time diversity, given by the
number of independent channel fading blocksQ over which we
span ourn-th coded block. Under the maximum diversity gain,
the maximum coding gain is (see the appendix):5

Gmax
c = |Rh|1/TR(L+1) fdH (Q)

d2
min

T
, (6)

wherefdH (Q)=
�QQ

q=0

l
dH−q

Q

m�1/Q

∈[1, dH ] andQ∈[1, dH ].

Note thatfdH (dH)=1 andfdH (1)=dH . FromGmax
d andGmax

c

expressions, we infer that: i) the upper bound of the coding gain
depends on both the Hamming distance (dH ) of the chosen ECC
as well as on the minimum Euclidean distance (dmin) depend-
ing on the chosen constellation; ii) for a given CF and ECC cod-
ing strategy, there exists a tradeoff between the maximum achiev-
able coding and diversity gains. To better understand the relation-
ship between them, in Fig. 2, we plot theGc loss, defined as
(Gmax

c −Gc)/Gmax
c , as a function ofGmax

d /(TR(L + 1)) = Q
for dH = 7, 10, 15. Interestingly, we can see that theGc loss is
almost exactly inversely proportional toGmax

d .

3.2. Design Criteria

We have several degrees of freedom for designing our system: i)
the number of blocksQ; ii) the ECC coding; iii) the strategy for

5We have assumed that the channels have the same statistical properties
during the transmission ofQ blocks, that isRq

h = Rh,∀q ∈ [1, Q].
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Fig. 3. Average BER of our C-STC method (dashed lines) vs. ST-
DSP (dotted line); PEP curves (solid line) vs.Eb/N0 (dB).

mapping the elements of the ECC coded vectord(n) within the
blockssq(n); iv) the constellation structure, and v) the precoding
matrices{F q}Q

q=1. We will adopt the PEP bound6 and the closed
form expression of the coding gain as the guidelines for choos-
ing the system’s parameters in order to satisfy the requirements.
Specifically our design criterion is the following.
1. We start with a certaindH and choose the numberQ ∈ [1, dH ]
of blocks over which we want to spread our concatenated code.
Then, we insure the maximum diversity gainGd = QTR(L+1).
A sufficient, although not necessary, criterion for guaranteeing
maximum diversity is that, for eachQ, the matrices{Aq

e}Q
q=1

must be full rank. Sincerank{Aq
e}= rank{Dq

e}, this implies
that, for every error eventE ∈ Se, the vectors{F qeq}Q

q=1 must
have all non-zero entries. To insure that, it is sufficient that: i) for
each given ECC strategy, we accept, among the different alterna-
tives for distributing the symbolsd(n) among the blocks{sq}Q

q=1,
only those strategies such that each error matrixE ∈ Se has all
columns with at least one nonzero entry7; ii) the CF coding ma-
trices{F q}Q

q=1 should be chosen such that the vectorF qeq con-
tains nonzero entries for alleq 6= 0, ∀q ∈ [1, Q]. This prob-
lem has been already solved in [5], where a class of redundant
constellation-independent precoders is given, and in [4] where a
class of non-redundant, but constellation-dependent precoders is
suggested. Using a Vandermonde redundant CF precoding, the
maximum diversity is guaranteed and the achievable coding gain
belongs to the following interval (see Appendix):

|Rh|1/TR(L+1) d2
min

T
≤ Gc ≤ |Rh|1/TR(L+1) fdH (Q)

d2
min

T
,

(7)
Note that, ifQ=dH , fdH (dH) = 1 and thenGc must coincide
with the inferior extreme of (7). However, if we takedH ≥ Q, the
interval (7) increases and higher values ofGc can be reached by
properly choosing the ECC.
2. To achieve the required coding gain, we choose the ECC param-
eter (dH ), the modulation order (dmin) and the number of blocks
Q, according to (7) and to the tradeoff between spectral efficiency

6In the next section we will prove, via simulation, that the PEP curve
follows quite closely the simulation results and thus it is indicative of the
average BER.

7In [3] it has been shown that, for each ECC, such a mapping strategy
always exists.
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and diversity gain. Then, the specific ECC can be chosen accord-
ing to the hierarchy defined by the PEP curve versus SNR, as will
be clarified with the simulation results illustrated in the next sec-
tion.

4. SIMULATION RESULTS

In Fig. 3, we compare the PEP (solid line) and the average BER of
our proposed C-STC method (dashed line) versusEb/N0, where
Eb is the average bit energy at the transmitter andN0 is the power
spectral density of the AWGN at the receiver. We have adopted the
following system parameters:T = R = 2; Lh = 2; BCH cod-
ing with code-rate=1/3; CF non-redundant coding [5];Lb = 5,
Lc = 15, dH = 7. We assumedQ = 2 (circles) orQ = 4
(squares). The difference between the PEP and BER curves is
due to the fact that the PEP curve refers to the worst case, i.e.
maxE∈SE

P(E), whereas the BER curve is the average bit-
error rate. In spite of such a difference, from all our simulations
we have always observed that the hierarchy established by the PEP
formula is the same as the one given by the BER simulations, so
that the PEP formula is a useful tool to rank different coding strate-
gies. Interestingly, for meaningful average BER values, the curve
with Q = 2 gives a lower SNR than the curve withQ = 4, even
though in the latter case the diversity gain is higher. This happens
because of the higher coding gain, achieved withQ = 2. In Fig. 3,
we also compare our method with the ST-DPS method [2], using
M = 5, BCH coding with code rate=1/3 and Vandermonde non-
redundant precoding withN = 16. We implemented the ST-DPS
method as in [2], for time-invariant channels. However, in such a
case, our method would benefit of the time diversity, thanks to the
code concatenation overQ independent blocks. Hence, to com-
pare the two methods with the same diversity gain in both cases,
we adopt, in the ST-DPS scheme,2 and4 receive antennas. Note
that, thanks to the optimal concatenated strategy, our method out-
performs [2] also for the same available diversity gain. This advan-
tage is obtained at the price of a higher decoding delay (because of
the interleaving overQ independent blocks) and a slight increase
of complexity. Further investigations should address the problem
of optimal interleaving and the fitness of the independent block
fading model with experimental channel measurements.

5. APPENDIX

We derive, under the maximum diversity gain assumption (MDGA),
the closed form expression for the upper bound of the coding gain,
and we will show how , using Vandermonde redundant CF precod-
ing, the available coding gain is given by (7).
From (MDGA), it follows thatGd=QTR(L+1), with Q∈[1, dH ]
andrank{Rq

h}=rank{AqH
e Aq

e}=TR(L + 1) ∀q∈[1, Q]. The
coding gain for the generic error eventE∈Se becomesGc,e=1/TQQ

q=1

��AqH
e Aq

e

��1/Gd= 1/T|Rh|1/TR(L+1) QQ
q=1

��V HDq∗
e Dq

e

V |1/QT (L+1), where we have assumedRq
h =Rh ∀q ∈ [1, Q].

In order to find the upper bound of the coding gain, we need to
maximize

��V HDq∗
e Dq

eV
�� for all q ∈ [1, Q]. It is straightfor-

ward to check thatV HDq∗
e Dq

eV is a T (L + 1) × T (L + 1)
matrix, whose diagonal entries are all equal totrace{Dq∗

e Dq
e}

= ‖F qeq‖2. SinceDq
eV is full column rank (becauseAqH

e Aq
e is

full rank), the matrixV HDq∗
e Dq

eV is positive definite, thus we
may apply Hadamard’s inequality and write

��V HDq∗
e Dq

eV |≤
‖F qeq‖2T (L+1). Introducing the above expression in the defini-

tion of coding gainGc, we get

Gc ≤1/T |Rh|1/TR(L+1) min
E∈Se

(

QY
q=1

‖F qeq‖2)1/Q.

Since{F q}Q
q=1 are para-unitary matrices, under the MDGA (there

exists at least one non zero entry in each vectoreq), the minimum
value of the upper bound of the coding gain depends only on the er-
ror eventsE, havingdH non-zero entries. In such a caseminE∈Se�QQ

q=1‖F qeq‖2
�

= minE∈Se

�QQ
q=1‖eq‖2

�
=
QQ

q=0

l
dH−q

Q

m
.

This proves (6). Now we show that, using anN×M Vandermonde
CF coding matrixV , with N≥M + T (L + 1), the available cod-
ing gain is lower bounded by|Rh|1/TR(L+1)d2

min/T . We need to

show thatminE∈Se

QQ
q=1

��V HDq∗
e Dq

eV
��1/Q ≥ d

2T (L+1)
min when

{F q}Q
q=1=V . We focus on

��V HDq∗
e Dq

eV
��. Since anN×M Van-

dermonde matrix is formed by the firstM columns of aN × N
FFT matrixWH

N , F qeq is theN -point FFT ofeq. Hence, we
can writeDq

eV =WH
N
eCq

e
eI=WH

NCq
e, where eCq

e is anN × N
circulant Toeplitz matrix with first column[eqT , 0, . . . , 0]T and
first row [eq(1), 0, . . . , eq(M), . . . , eq(2)]; eI is theN×T (L + 1)
matrix containing the firstT (L + 1) columns of aN×N identity
matrix andCq

e:=eCq

e
eI is theN×T (L+1) Toeplitz matrix with first

columneq and first row[eq(1), 0, . . . , 0] . We decomposeCq
e as

[CqT
e1 ,CqT

e2 ,CqT
e3 ]T , whereCq

e2 is aT (L + 1)×T (L + 1) lower
triangular matrix whose diagonal entries are all equal to the first
non-zero component ofeq, whereasCe1 andCe3 come out as a
consequence of the partitioning. Using this setup, we may write8��V HDq∗

e Dq
eV
�� =

���CqH
e1 C

q
e1+C

qH
e2 C

q
e2+C

qH
e3 C

q
e3

���≥ |Cq
e2|2.

HenceminE∈Se

QQ
q=1

��V HDq∗
e Dq

eV
��1/Q ≥ minE∈Se

QQ
q=1

|Cq
e2|2/Q = d

2T (L+1)
min .
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