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ABSTRACT arranging the resulting coded stream into a matrix whose size is
dictated by the number of transmit elements. Building on [2] and

We propose aﬂ?Xi.bIe method _for designing space-time_blocl_< code 1], we propose a novel coding strategy that concatenates the sym-
capable of achieving the desired trade-off between diversity and bols transmitted over successive blocks in order to achieve the de-

coding gain. The proposed system is valid for fre_quency SelecuVe’sired trade-off between coding and diversity gain. We derive a
block fading channels and refers to a block coding scheme capa-

ble of achieving full rate transmission, for any number of transmit closed form expression for the pairwise error probability, coding

. . - and diversity gains, which will provide the guideline for the de-
antennas. We derive a closed form expression for the pairwise €gian of our coding strate
ror probability and the maximum diversity and coding gain. These 9 9 9y-

. . . . Y Q
expressions are instrumental to design the coding strategy able to o) ) LU Y o g
yield the required trade-off between coding and diversity gain, in o o s FC mC:“S;r- CFC RS :
order to reach the desired average BER with the smallest SNR. " encoter s
:

Finally, we check our theoretical derivations with simulations and  CFC = Complex Field Coding
DPS = Digital Phase Sweeping Vi(n)
FEC = Forward Error Correction

STC .
1. INTRODUCTION o w w | v
Dencoder

E(n) 2(n)... 2(n) Ng

compare our approach with alternative ones.

Since the introduction of space-time coding methods, many efforts

have been devoted to finding out coding strategies able to achieve
the maximum diversity gain and then consider the coding gain as Fig. 1. Block coding scheme.
a by-product of the design. This approach is certainly meaningful,
as the diversity gain controls the slope of the average bit error rate
(BER) curves, at high SNR. However, especially when the maxi-

mum potential diversity gain is high, the maximum slope is often We consider a block transmission system vatiransmit andR

observed at high SNR, where the average BER can be UNNECES o ceive antennas and we make the following assumptions: (al)
sarily low. In principle, transmitting over a frequency selective 9 P :

channel withZ, + 1 multiple rays, using’ transmit andR re- each discrete-time channel is described by an FIR filter of maxi-

ceive antennas, the diversity gain can be made equal to the producgglrj]:jno?]:de;[r’.;gr;??;;elg'.cﬁ r;’;s dar:e zrﬁg(()j-g)eanﬁ(;]oTpIeT)iL?Lau33|an
Ga = TR(L+1). Clearly, this number can be quite high, even for =7 v ils the maxi?/nulr?\ delal 3 oy ofltmv%laR cEarEngfsﬂl'
small values of” andR. However, since the ultimate performance Tmaz Yy SP s

parameter, at the physical layer level, is BER, in many situations, is the symbol samplln_g pe_rlod _arfd| s_ta_nds for |nteger_-celllng; .
it would be better to have a lower diversity gain, but a higher cod- (a2) all channels are time-invariant within each transmitted block;

ing gain, so that the desired average BER could be achieved with a(a3) transmitters and receivers are synchronous and channel state

lower SNR. The aim of this work is precisely to propose a coding information (CSI) is available only at the receiver; (a4) the re-

. . : eived data are degraded by zero-mean complex additive white
Zg\r/eeltres}i;til/ Sg:ﬁ to achieve the desired balance between coding an aussian noise (AWGN). The discrete-time baseband equivalent

We start with the space-time coding scheme proposed in [2], asmodel of our Concatenated-Space-Time-Coded (CSTC) system is

. . . . : depicted in Fig.1. The input information bit stream is parsed in
a method able to reach the maximum diversity gain, with full rate - - ;
for any number of transmit antennas, with affordable receiver com- g:ogts. chb béts ?1(%?0(:; . [btlég)’ e bg)d(n)rllt w;er:n (Ies égceof
plexity. However, differently from [2], where the coding method ock Index. tac IS then mapped onto a sequen

is linear, we use a nonlinear encoding strategy to increase the COd]?;:des tﬁgﬁcéré)or;;e”[;i(o? ’hé‘ ) (;chv%?g:h ;S;;Z?éjse?ocié?h set of
ing gain. We also borrow some ideas of [1] about the optimal Pp

coding strategy over Rayleigh flat fading channels. In [1] it was log, §2 bits a complex QAM symbol belonging to a finite alphabet

proved that, as the number of receive antennas increases, the opti‘-j with cardinality€2. The result of this mapping is a sequence of

. . : . : : N := L./log, Q complex symbolsi(n) € 2, whereZ is the
mal space-time coding matrix can be built by encoding the infor- 2
mation bits using off-the-shelf error correction codes (ECC) and set of all possible vectord(n). The elements odl(n) are then

2. SYSTEM MODEL

distributed among a set @ vectors{s'(n),..., s9(n)}, each
This work has been supported by the project IST-2001-32549 (RO- one of lengthM := N, /Q with M > L. Next, we introduce the
MANTIK), funded by the European Community. matricesS(n) := [s'(n),...,s%(n)] and denote by~ the set
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of all possible matrice$(n)*. Then we apply a linear complex-
field (CF) precoding taS(n), multiplying each vectos?(n) by
the N x M matrix F¢, with N > M andg =1,2,...Q.

The key idea underlying our coding strategy is that the non-
linear encoder concatenates the blogké) in a way that yields
the desired trade-off between coding and diversity gain. But the
concatenation law and the choice of the matrie¥swill be made
clear only after we will have derived, in Section 3, a closed form
expression for the pairwise error probability.

Each blocks?(n) passes through a space-time encoder im-

Since the entries ob{ are i.i.d random gaussian variableés <
[1, R], we can apply a maximal ratio combiner (MRC) afi,
without loosing any information about;, so as to get:

:L g=1,2,...Q.

R
21:=3 ALy
; VI
3

whereD? := 3% A% and?? == 327 AY vl To reco(vgr
the information bits in the:-th block, we need to stack th@
blocks z¢. Introducing the vector := [z!",..., 29" |7 and

D{F’s" + %",

plementing the space-time digital phase sweeping (ST-DPS) en-the block diagonal matrice® := diag (F", .., F?) of dimension

coder proposed in [2], which we briefly recall here. As opposed

to the orthogonal space-time encoder, ST-DPS exists for any num-
ber of transmit antennas and does not incur in any rate loss whensS := (s',.

T > 2 [2]. In ST-DPS, each vectaF'?s?(n) is sent to allT
transmit antennas after multiplication by proper precoding ma-
trices. More specifically, the-th block transmitted by theé-th
antenna isef(n) = OFDM{ﬁPth Sq\/;)}, where~ is a
normalization factor used to enforce the desired transmit power,

P, = diag (Lejq)f,...7 I (IN=1)) with &, —27(t —
1)(L+1)/N Vt € [1, T], and the symbaD F DM {x} indicates
an Orthogonal Frequency Division Multiplexing (OFDM) proces-
sor which computes the IFFT af and appends a cyclic prefix
(CP) at the beginning of the resulting vector. We recall from [2]
that the above choice of the matricgP, }7, is used to map the
TR frequency selectiveL + 1)-length channels int® equivalent
ones with lengthl'(L + 1).

At the receiver, after discarding the cyclic prefix and applying
an FFT, using (al)...(a4), the blogk from ther-th antenna in the
g-th slot is given by

1,2,...R. (1)

T
1
Y= e > AL PFIsT ol v

VT =
where: A, isthe N x N diagonal matrix whose diagonal entries
are the samples of the channel transfer function betweettthe
transmit and the-th receive antenna in theth slot, i.e.{AZ, } s

= S F (1) exp(—j 2kl /N); {h?, (1)}, denotes the im-
pulse response of the above channel in gk slot; v is a N-

length additive gaussian noise vector, with zero mean and covari-

ance matrixC, = o021y Iy istheN x N identity matrix. Denot-
ing by h{ : [hﬁ?, cee hﬁ?]T the equivalen’(L + 1)-length
channel vector corresponding to theh receive antenna and by
W the N x T(L + 1) FFT matrix with element§ W } ;. :
exp(—j27kl/N) /v/N, itis straightforward to check [2] that, for
r € [1, RP, Y[, AL, P, = diag(W"h?) := AZ, where
Al is the N x N diagonal matrix whose diagonal entries are
{AZ}k := S hi(1) exp(—j 27kl/N). The input-output re-
lationship (1) between the bloak, transmitted in the-th slot and
the received one from theth antenna may thus be rewritten as

1

VTH

1We assume here, for simplicity, that; /Q is even integer. In case this
assumption does not hold true, we can group together a setnaftrices,
with s such thats N /@ is even integer, and proceed on the new matrix as
we do here withS(n).

2We drop the index: for simplicity of notation, since all processing
refers to the same information block.

3To avoid the leakage effect, it has to he> T'(L + 1).

q

y?! AlFis? + v, r=1,2,...R. 2

Q N x Ny; Dy, := diag (D}L, DS) of dimension) N x Q N;

..,89);andV = (%',..., 59), we can rewrite (3)
1

“4)
VT
To collect the full diversity gain, ML decoding is needed. Denoting
with § = £(b) the nonlinear mapping relating the information

bits with the transmitted blocks, the decoder chooses the véptor
composed of; bits, such that

as
z

Dy Fuec(S) +vec(V).

L e e
ﬁDhTU@C (g(b)) ‘|C‘717

where the symba|z||%4 denotest” Az andCv = o7 D, is the
covariance matrix obec(V).

(5)

b = argmin||z —

3. PERFORMANCE AND DESIGN CRITERIA

We characterize the performance of our transmission system by
deriving a closed form expression for the maximum achievable
diversity and coding gains and an upper bound for the average
pairwise error probability (PERY? (S — S') that the matrixS is
transmitted but erroneously decodedSis# S. We preventively
introduce the following notation.¥z := {E := S — S’\S #
S', S, s ¢ 1 is the set of all possible error evenis(d, d)
is the Hamming distancdoetween the vectord andd; dy :=
min{p(d,d)|d # d € 2}*is the minimum Hamming distance;
dmin = min{|dx — d;||dx # d; € </} is the minimumEu-
clidean distancebetween two symbols of the constellation with
T

alphabetes; h? = [h‘{T,...h‘gT,] is theT R(L + 1)-length
vector containing thé? elongatecchannel impulse responses. We
use also the eigenvalue decomposition of the channel autocorre-
lation matrix RY := E{h?h""}:= UI®IU", whereU? is
aTR(L + 1) x r} para-unitary matrix,®? is ary x r} di-
agonal matrix whose diagonal entries are the non-zero eigenval-
ues of R} arranged in non-increasing order anflis the rank
of R}. Finally, we define thel'R(L + 1) x r¢ error matrix

1

A? = (Ir @ DIV)UI ¥}, whereD? := diag(Fie?), e,
is theg-th column of the error matriE, V isaN x T(L + 1)
Vandermonde matrix witfV],, = exp(—j2wik/N), and® de-
notes the Kronecker product.

3.1. Pairwise error probability

Assuming perfect CSlI at the receiver and high SNR (i.e. high val-
ues ofﬁ), we have computed the upper bound of the PEP, using

4Clearlydy; is less or equal to the minimum Hamming distance of the
adopted GF code.
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the same approach as in [3], and the result is
) _
: /T o Yce
AW/ G

o-)<(2) " )

Where{)\g(l)}g1 are the non increasing eigenvalues of the ma-

trix A2 AZ; v is the rank ofA%; G, := [JL, 7¢ is the di-

versity gain andG.. = 1/T (H§:1 ! Ag(l)j/cd’c de-
notes the coding gain for the symbol error evét SinceGg,.
andG. . depend on the choice df, we define the diversity and
coding gains of our system &s; = ming_ ., G, andG. =
minEeyC G.,c, respectively. The maximum achievable diversity
order isG3** = QTR(L + 1) and it is reached iff the chan-
nel correlation matrice\sR‘}L}qQ:1 and the error matrice{suclz}ff:1

are full rank. It is interesting to observe that the maximum value
of the diversity gain is given by the product of three factors: i) the
space diversity, given by the product of the number of transmit and
receive antennas; ii) the multipath diversity, equal to the number
of independent pathg + 1; iii) the time diversity, given by the
number of independent channel fading blo€ksover which we
span ourn-th coded block. Under the maximum diversity gain,
the maximum coding gain is (see the appendix):

2
dmin

T

1

G = | R fu Q)7 (6)
_ 1/Q

where f4, (Q):(HqQ:O [%]) €[, di] and Q€[L, dul.

Note thatfs,, (dg)=1 and fq,, (1)=dr. FromG7** andG7*®

expressions, we infer that: i) the upper bound of the coding gain

depends on both the Hamming distandg ) of the chosen ECC

as well as on the minimum Euclidean distandg,.{,) depend-

ing on the chosen constellation; ii) for a given CF and ECC cod-

ing strategy, there exists a tradeoff between the maximum achiev-

able coding and diversity gains. To better understand the relation-

ship between them, in Fig. 2, we plot tlié. loss, defined as

(GT** —G.)/G7", as afunction o737 /(TR(L + 1)) = Q

for dg = 7,10,15. Interestingly, we can see that tli& loss is

almost exactly inversely proportional &7

3.2. Design Criteria

We have several degrees of freedom for designing our system: i)
the number of blocks); ii) the ECC coding; iii) the strategy for

Average BER

ST-DPS, 2x2

=

TR
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Fig. 3. Average BER of our C-STC method (dashed lines) vs. ST-
DSP (dotted line); PEP curves (solid line) i, /Ny (dB).

mapping the elements of the ECC coded ved(t) within the
blockss?(n); iv) the constellation structure, and v) the precoding
matrices{Fq}qQ:I. We will adopt the PEP bouficind the closed
form expression of the coding gain as the guidelines for choos-
ing the system’s parameters in order to satisfy the requirements.
Specifically our design criterion is the following.

1. We start with a certaidy and choose the numbé) € [1, du]

of blocks over which we want to spread our concatenated code.
Then, we insure the maximum diversity gdify = QT R(L +1).

A sufficient, although not necessary, criterion for guaranteeing
maximum diversity is that, for eacty, the matrices.{Ag}qQ:1
must be full rank. Sinceank{A?}= rank{D{}, this implies
that, for every error ever € .7, the vectors{quq}qQ . must

have all non-zero entries. To insure that, it is sufficient that: i) for
each given ECC strategy, we accept, among the different alterna-
tives for distributing the symbold(n) among the block$sq}§:1,

only those strategies such that each error mdirix .. has all
columns with at least one nonzero eftrii) the CF coding ma-
trices,{Fq}qQ:1 should be chosen such that the veditfe? con-

tains nonzero entries for al? # 0, Vg € [1, Q]. This prob-

lem has been already solved in [5], where a class of redundant
constellation-independent precoders is given, and in [4] where a
class of non-redundant, but constellation-dependent precoders is
suggested. Using a Vandermonde redundant CF precoding, the
maximum diversity is guaranteed and the achievable coding gain
belongs to the following interval (see Appendix):

IR

d72'nin

)
Note that, ifQ=dx, fay (dr) = 1 and thenG. must coincide
with the inferior extreme of (7). However, if we talde; > @, the
interval (7) increases and higher valuestaf can be reached by
properly choosing the ECC.
2. To achieve the required coding gain, we choose the ECC param-
eter ), the modulation orderd,.») and the number of blocks
Q, according to (7) and to the tradeoff between spectral efficiency

2
VTR Tnin o < Ry TR 1 (Q)

6In the next section we will prove, via simulation, that the PEP curve
follows quite closely the simulation results and thus it is indicative of the
average BER.

5We have assumed that the channels have the same statistical properties “In [3] it has been shown that, for each ECC, such a mapping strategy

during the transmission @) blocks, that isR‘}L = Ry Vq € [1,Q].

always exists.
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and diversity gain. Then, the specific ECC can be chosen accord-tion of coding gainG., we get
ing to the hierarchy defined by the PEP curve versus SNR, as will

be clarified with the simulation results illustrated in the next sec- Q
1/TR(L+1 . 251
tion. Ge S1/T R0 min ([T 154,
€

e g=1

4. SIMULATION RESULTS Since{F’Z}ff:1 are para-unitary matrices, under the MDGA (there
In Fig. 3, we compare the PEP (solid line) and the average BER of exists at least one non zero entry in each veefdr the minimum
our proposed C-STC method (dashed line) versysNy, where value of the upper bound of the coding gain depends only on the er-
E, is the average bit energy at the transmitter afds the power ror eventsE, havingd g non-zero entries. In such a casénp,_ .,

spectral density of the AWGN at the receiver. We have adopted the /¢ aan2) _ - Q a2\ _ @ [dy—qg
following system parameter§® = R = 2; L, = 2; BCH cod- (Hq:l”F e’ ) =ming. ., ( q:1||6_> I ) = quO[ Q ]
ing with code-ratet/3; CF non-redundant coding [5F;, = 5, This proves (6). Now we show that, using &ix M Vandermonde

L. = 15,dy = 7. We assumed) = 2 (circles) orQ = 4 CF coding matrixV’, with N>M + T(L + 1), the available cod-

(squares). The difference between the PEP and BER curves igng gain is lower bounded bRy, [/ T EEF D G2, /T. We need to
due to the fact that the PEP curve refers to the worst case, i.e.show thatming_,, HqQ:1|VHDg*DgV|1/Q > 27D \when

maxp. . Z(E), whereas the BER curve is the average bit- {Fq}§:1:v_ We focus odVHDZ*D2V|. Since aerxM Van-

error rate. In spite of such a difference, from all our simulations jermonde matrix is formed by the firt columns of aN' x N
we have always observed that the hierarchy established by the PER matrix W, Fie? is the N-point FFT ofe?. Hence, we

that the PEP formula o a ussful 150110 rank diferent coding atate. <21 W DAV =W X CIT=W X G, whereC is an x N
9 circulant Toeplitz matrix with first columie?”, 0,...,0]” and

ies. Interestingly, for meaningful average BER values, the curve ~.
g 9y g g first row [e9(1),0, ..., (M), . .., e?(2)]; T is the NxT(L + 1)

with @ = 2 gives a lower SNR than the curve with = 4, even : e . . ;
though in the latter case the diversity gain is higher. This happensMatrix containing the first'(Z + 1) columns of aVx N identity

because of the higher coding gain, achieved wtk: 2. In Fig. 3, matrix andC¢:=C'. I is the NxT'(L + 1) Toeplitz matrix with first

we also compare our method with the ST-DPS method [2], using columne? and first row[e?(1),0, ..., 0] . We decompos€'{ as

M = 5, BCH coding with code ratet/3 and Vandermonde non-  [C%],C%, C43 )7, whereCY, is aT(L + 1)xT(L + 1) lower
redundant precoding withh = 16. We implemented the ST-DPS  triangular matrix whose diagonal entries are all equal to the first
method as in [2], for time-invariant channels. However, in such a non-zero component a&f?, whereasC.; andC.3 come out as a
case, our method would benefit of the time diversity, thanks to the consequence of the partitioning. Using this setup, we may Svrite
code concatenation ové) independent blocks. Hence, to com- |VHDZ*DZV| = ‘CZ{’CZ#C@?CZ#CZ?C@S > |C9, %
pare the two methods with the same diversity gain in both cases, ) Q H oo 1/Q ) o

we adopt, in the ST-DPS schenteand4 receive antennas. Note Henceming_ ., [[, [V DT DIV | > ming_ ., [1<,
that, thanks to the optimal concatenated strategy, our method out-|ch\2/Q = dfnTiflLH)-
performs [2] also for the same available diversity gain. This advan-

tage is obtained at the price of a higher decoding delay (because of

the interleaving ovef) independent blocks) and a slight increase

of complex_ity. Further investigati_ons should a(_idress the problem [1] E.Biglieri, G.Taricco, A.Tulino, “Performance of space-time
of c_nptlmal mter_leavmg gnd the fitness of the independent block codes for a large number of antennd&EE Trans. on Infor-
fading model with experimental channel measurements. mation Theory\ol. 48, pp. 1794—1803, July 2002.

6. REFERENCES

[2] X.Ma, G.B. Giannakis, “Space-time-multipath coding using
5. APPENDIX Digital Phase SweepingRroc. of GLOBECOM '02Taipei,
Taiwan, Nov. 17-21, 2002.

We derive, under the maximum diversity gain assumption (MDGA), [3] S.Barbarossa, G.Scutari, G.Paccapeli “Concatenated space-

the closed form expression for the upper bound of the coding gain, ~ * time block coding with maximum diversity gainRroc. of

and we will show how , using Vandermonde redundant CF precod- ICC ’'03, Anchorage, Alaska USA, 11-15 May 2003.

ing, the available coding gain is given by (7). . . . o .

From (MDGA), it follows thatG'y=QT R(L + 1), with Q€[1, dz] [4] Z.Liu, Y.Xin, G.B.Giannakis, “Non-redundant unitary pre-

andrank{R’ };mnk{AqHAq}fTR(L 4 1),qu[1 Q]’ The coding for OFDM with Maximum Multipath diversity and
hJS— e eJ— ) .

coding gain for the generic error evelBE.7, becomes. =1/T goding gains’, submitted WEEE Trans. on Communica-
tions,June 2001.

Q | A9H pga/CGa_ 1R, |VTREAD T1Q |y H pa pa
IL | | /TR I | [5] Y. Xin, Z. Wang, G.B. Giannakis, “Space-time constellation-

1/QT(L+1) ¢ _
V| , Where we have assumell] = Ry Vq € [1, Q). rotating codes maximizing diversity and coding gairiatc.

In order to find the upper bound of the coding gain, we need to f GLOBECOM 11 455-4 A i0 (TX
maximize |V D DV | for all g € [1, Q]. It is straightfor- 2539?\]0\/(:2%0101 vol-1, pp.455-459, San Antonio (TX),

ward to check thaW " D* DIV is aT(L + 1) x T(L + 1)

matrix, whose diagonal entries are all equattace{D* D}

= ||F?e?||*. SinceDZV is full column rank (becausd 2" A¢ is 8The inequality follows from A + B| > |A|, when A is positive
full rank), the matrixVH_Dg*D’,{_V is pOSit_ive}gefinitev thus we  gefinite andB is positive semi-definite. Note tha®?:= ccl +
may apply Hadamard's inequality and W”|IV DI DIV|< CZ?CZB is positive semi-definite becau$€?];;[C9],;>|[CY];;|? for
| F9e?||*TE*+Y) Introducing the above expression in the defini- 4, j=1,2,..., T(L + 1).

IV - 336



