ON THE NUMBER OF SAMPLES NEEDED TO IDENTIFY A MIXTURE OF
FINITE ALPHABET CONSTANT MODULUS SOURCES

Amir Leshem"?? and Alle-Jan van der Veen'

'Delft University of Technology, Dept. ITS/Electrical Eng., 2628 CD Delft, The Netherlands
2Metalink Broadband Access, Yakum Business Park, 60972, Yakum, Israel
3 School of Engineering, Bar Ilan University, 52900, Ramat-Gan, Israel
leshem@cas.et.tudelft.nl, allejan@cas.et.tudelft.nl

Constant-modulus algorithms try to separate linear mix-
tures of sources with modulus 1. We study the identifia-
bility of this problem: how many samples are needed to
ensure that in the noiseless case we have a unique solu-
tion? For finite-alphabet (L-PSK) sources, finite sample
identifiability can hold only with a probability close to but
not equal to 1. In a previous paper, we provided a sub-
exponentialy decaying upper bound on the probability of
non-identifiability. Here, we provide an improved exponen-
tialy decaying upper bound, based on Chernoff bounds. We
show that under practical assumptions, this upper bound
is much tighter than previously known bounds.

1. INTRODUCTION

The constant modulus algorithm (CMA) [1] is very popular
for blind equalization and for source separation of multiple
constant modulus (CM) signals using antenna arrays. It
was soon recognized that the underlying CM cost function
can be used for the separation of non-Gaussian signals as
well, and more specifically for finite alphabet signals. Al-
though many CMAs are implemented as adaptive LMS-type
algorithms, block algorithms such as the blind analytic al-
gorithm ‘ACMA’ [2] demonstrate that good performance
can be achieved with already a relatively small number of
samples. With sufficiently good initialization, the same is
seen in the block-iterative finite alphabet algorithms ILSP
and ILSE [3].

While practical algorithms do exist, the issue of identifi-
ability is still relevant. Identifiability is an important issue,
establishing that the only solutions in the noiseless case are
the original source signals, up to inherent indeterminacies
of permutation and phase. Identifiability analysis has been
mostly based on the expected value of the CM cost func-
tion, so that the results are only valid for infinitely many
samples and ergodic scenarios. Not much is known about
identifiability based on a finite number of samples.

For the separation of a linear mixture of d continu-
ous CM sources, [2] conjectured that about 2d samples
should be sufficient. The provided argument was unsatisfy-
ing and based on counting the number of equations and un-
knowns, ignoring possible indeterminacies. For binary sig-
nals (BPSK), a sufficient condition for identifiability in [3]
was based on the premise that all 227! combinations of
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constellation points (up to sign) have been received. This
means that an average of approximately (d—1)2*~Y) many
samples is needed for BPSK signals and much more for
higher constellations. Moreover there is always a nonzero
probability that any finite number of samples does not pro-
vide identifiability (e.g., if all inputs are identical). The
proof in [3] does not generalize to continuous CM sources.

In this paper we give a rigorous proof of identifiability
of a mixture of d discrete alphabet complex CM sources,
with finitely many samples. First, we use the linearization
technique of [2], together with a simple inductive argument,
to show that for continuous CM sources, d(d — 1) + 1 many
samples suffice with probability 1. The analysis of the finite
alphabet case is harder because there is a nonzero probabil-
ity that sample vectors are repeated. For sufficiently large
N, we specify an upper bound on the probability that a
data set with N samples is not yet identifiable. In a pre-
vious submission [4], we showed a sub-exponentialy decay-
ing upper bound on the probability of non-identifiability.
Here, we provide an improved exponentialy decaying upper
bound.

2. PROBLEM DEFINITION

Consider an array with p sensors receiving d narrow-band
constant modulus signals. Under standard assumptions for
the array manifold, we can describe the received signal as
an instantaneous linear combination of the source signals,

x(n) = As(n) 1)
where
x(n) = [z1(n),--- ,xp(n)]T is a p x 1 vector of re-

ceived signals at discrete time n (¥ denotes matrix
transposition),

A =Jay, - ,aq], where a; is the array response vec-
tor towards the i-th signal,

s(n) = [s1(n),- -

signals at time n.

,54(n)]T is a d x 1 vector of source

We further assume that all sources have constant modulus,
ie. for all n, |si(n)]=1(¢=1,---,d), and that A has full
column rank (this implies p > d).

In our problem, the array is assumed to be uncalibrated
so that the array response vectors a; are unknown. Un-
equal source powers are absorbed in the mixing matrix.
Phase offsets of the sources after demodulation are part
of the s;. Thus we can write s;(n) = ¢/%(™)| where ¢;(n)
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is the unknown phase modulation for source 7, and we de-
fine ¢p(n) = [p1(n),--- ,¢a(n)]” as the phase vector for all
sources at time n. Note that this leads to the fundamental
indeterminacy of phase exchange between a source and the
corresponding column in the mixing matrix. Furthermore
we can permute the sources and simultaneously permute the
columns of A. Thus, A is determined only up to a permu-
tation of its columns and a complex unit-modulus scaling
of each column.

The identifiability problem asks for the number of sam-
ples needed in order to ensure (with probability 1) that in
the noiseless case we have a unique solution up to the above
indeterminacies.

3. IDENTIFIABILITY WITH INFINITELY
MANY SAMPLES

Let T = {z: |z| = 1} be the complex unit circle, and let T¢
be the Cartesian product of d copies of T, representing the
collection of d-dimensional CM source vectors. Topologi-
cally this collection is a d— dimensional torus embedded in
a d dimensional complez vector space C¢.

We first characterize linear transformations G mapping
T¢ into itself. Consider the set G,

G= {G € ™% | G invertible; s € T* = Gs € 'JI‘d} .

Lemmal Let G € G. Then G = PA, where P is a
permutation matriz and A o diagonal matriz with diagonal
elements on the unit circle.

The proof of the lemma appears in [4]. Based on this,
we have the following identifiability theorem for an infinite
number of samples:

Theorem 2 Consider an infinite collection of wvectors
s(n) € T¢, n = 1,--- ,00, and suppose that the collec-
tion is dense in T?. Suppose that we have available the
observations x(n) = As(n), where A € C°*¢ s full column
rank d. Then A is uniquely determined by the observations,

up to a permutation and a unit-modulus complex scaling of
the columns.

The proof of the theorem is in [4] and starts from the
premise that if there exists another matrix A’ then G :=
A’A is such that s = Gs € T. Since this holds for an
infinite collection of vectors {s(n)}, it follows that G € G,
and Lemma 1 gives the result.

The question is whether the same can be proved using
a finite set of vectors.

4. IDENTIFIABILITY WITH FINITELY MANY
SAMPLES

In this section, we derive a sufficient condition on the num-
ber of samples needed to guarantee identifiability. Based on
the discussion of the previous section we can restrict our-
selves to invertible linear transformations from T¢ to T<.

Consider a collection of N vectors § = {s(n) € T¢,
n=1,...,N}, and let
¥ =

L si(Ds3(1) si(s() - si(1)sar(D)

: : : : @)
1s1(N)s3(N) 83 (N)sa(N) - 53(N)sa1(N)

where * denotes complex conjugate and ¥ has size N X
d(d—1) +1. Note that the n-th row of ¥ contains all cross

products of the signals at time n, taking into account the
fact that we already know that |s;|? = 1 for all 4.

We call & “persistently exciting” if ¥ has full column
rank. Note that this implies that N > d(d — 1) + 1. It
also implies that the constellation is complex (for BPSK
constellations, columns of ¥ are repeated and a modified
definition can be introduced).

Lemma 3 Let N > d(d— 1)+ 1, and let § = {s(n) €
T¢, n = 1,...,N} be a persistently ezciting collection.
Consider an invertible linear transformation G € C#*¢
such that Gs(n) € T, forn = 1,...,N. Then G = PA,
where A is a diagonal matriz with unit norm diagonal en-
tries A and P is a permutation matriz.

The proof is again in [4] and makes use of ideas in ACMA [2]
to show that Gs € T¢ = ¥p =1, withp = [1,0,--- ,0]7 as
an obvious solution. Persistence of excitation, by definition,
implies that p is unique, which allows to derive that G =
PA.

Combining with theorem 2 we obtain
Theorem 4 Identifiability as in theorem 2 already holds
for a finite collection of source signals s(n), n=1,--- N,
where N > d(d — 1) + 1, if this collection is persistently
ezciting.

5. PERSISTENCE OF EXCITATION

The remaining issue is to establish when a collection of vec-
tors in T¢ is persistently exciting. As usual, this is hard to
characterize in a deterministic setting. In a stochastic sense,
any “sufficiently random” collection of N > d(d — 1) +1
complex vectors in T¢ is expected to be persistently ex-
citing. Although this appears a reasonable argument, the
inter-relations of the elements of ¥ make it not completely
evident that this is the case. Moreover, in the case of dis-
crete alphabet CM sources, e.g. QPSK, proofs are harder
because pathological cases appear with positive probability.

5.1. Large deviations bound for arbitrary discrete
alphabets

Let s(n), for n = 1,..., N, be a collection of zero mean
independent identically distributed complex vectors in T¢
with stochastically independent and circularly symmetric
components, or more explicitly,

(ISzI) =1,

By 0 i)

513 =0, 1tF)

E(sis’) =0, i#] @
E(sis;5i2) =0, i#j#k,

E(sisjsis;) =0, i#j#k#L

Denote a generic n’th row of ¥ by

v(n) = [1, s1(n)s2(n), s2(n)si(n),---]. (4)
Then (omitting the index n) we have

1 s185 s287 ---
* 2 %2
S287 1 sps87°---

VH(")V("): s183 82832 1

With the assumptions (3), it follows that E(v¥v) = 1. Note
that +~¥"® — E(v”v) as N — co. Hence for sufficiently
large N, ¥ must have full column rank. Following this ar-
gument, we conclude that, for continuous and “sufficiently
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random” CM sources, N > d(d — 1) + 1 is sufficient w.p. 1.
However, for discrete-alphabet sources it can happen that
the same constellation vector is received multiple times and
hence N might have to be larger.

We next quantify the probability that N samples of the
array output are sufficient. We first provide a simple ar-
gument which leads to a sub-exponentially decreasing up-
per bound on the probability of non-identifiability. Subse-
quently, in the next subsection, we provide a more accurate
(but also more complex) analysis providing an exponen-
tially decreasing upper bound.

Let

. 1 g 1 o "

Ry = N‘Il v = N T;v(n) v(n)
As we have shown E(Ry) = I. We now analyze the rate
of convergence of Ry to I and provide an upper bound on
the probability that Ry is singular. To that end we use the
following consequence of Gershgorin’s theorem.
Theorem 5 ( [5, p.349]) Let A = [a;;] be a Hermitian
matriz. Assume that for all i, |ai;| > 0, and that A is
diagonally dominated, i.e., for all i

laiil > laij]
J#i

then A 1is strictly positive definite.

Assume that all off-diagonal elements of Ry have mag-

nitude less than d(d}W' Then for all 4
. d(d—1) ~ .
S < gt < @ =1 ©)

and by theorem 5 we can conclude that Ry is strictly posi-
tive definite. It remains to compute a bound on the proba-
bility that all off-diagonal elements of Ry have magnitude
less than m. This will provide a lower bound on the
probability of persistence of excitation since as discussed
above, if Ry is non-singular then ¥ is full rank.

To obtain the first bound we use large deviation theory
as in [6]. This leads to the following result:
Theorem 6 The probability of having a data set that is not
persistently exciting is asymptotically less than

1 N
de 2079 @a—nF1)ioglog ¥

(for any € > 0).

The proof of the theorem is omitted but will appear in [7].
Note that this is an asymptotic result (large N), and that
the dependence on N is sub-exponential.

5.2. Chernoff bound and finite alphabet CM signals
‘We now provide a more accurate bounding using the Cher-
noff bound on finite alphabet L-PSK signals. This bound
holds for all values of N. Furthermore it also shows that
for any fixed N > d(d — 1), increasing the alphabet size
L decreases the probability of non-identifiability at least as

LNl_l. Our goal is to bound

. 1 al 1
P((RN)ij>d(d+1) =P Z (n)v;(n) > (d—l—l))

i ®)
(¢ # j) where vi(n),v;(n) are the i’th and j’th entry of
v(n), the n-th row of ¥ as defined in (4). To that end fix

i # j. Let z, = vi(n)*v;(n). For every n, z, is uniformly
distributed over the L’th order roots of unity (the roots of
unity form a multiplicative group and the convolution of a
uniform distribution on the group with any other distribu-
tion is uniform). Since in practical applications L is always
even (and actually a power of 2), let L = 2K. Using the
fact that L is even we obtain that if @ is a symbol also —a
is a symbol. Let the alphabet be

A ={a1,—a1,a2,—as,...,ax,—ax}

We now have that

K

Zmn = Z nia; — N—;Q;) (7)

where n; is the number of occurences of a; and n_; is the
number of occurences of —a;, among z1,...,zx. Therefore
we can bound

N
P (% ‘En=1 Tn

> k) =P (% ‘Zle(’nz —n_i)ai| > k)
<P (4 TE, Ini—ni| > k)
=P (Efil |n; —n_s| > kN) .
(8)

Using the uniformity of the distribution we obtain that the
previous equation becomes

P (% ‘22;1 Tn

>k) <K P(jni —n_s| > kN)
<KP (n1 —n_1| > kN) 9)
=2KP(n1 —n_1 > kN)
=LP(ny —n_1 > kN)

The inequality uses the fact that there must be at least one
element greater than or equal to the mean, and the last
inequality uses symmetricity of the distribution. We now
finish the bounding using the Chernoff bound [8]. Define a
sequence of i.i.d. random variables y; with distribution

1 with probability +
y; = { —1 with probability f
0 with probability

(10)

Then, for any v > 0,

N
P (Z yi > kN) < Be"(ZimavihN) — o —vkN (g (gruiy)N

i=1
(11)

The parameter v is used to obtain a tighter fit of the in-

equality. Using the distribution of y; (10) we obtain

B () = %sinh(u). (12)
Optimizing v (see appendix) we obtain that the best choice
is
v =tanh ' (k) . (13)
Substituting into (11) and simplifying we find

(N ) P 1l (k)N k N
P(S g kN g(—) gktan (7>
i=1 L V1—k?

(14)
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Figure 1. Finite alphabet CM sources: Upper bound on
the probability that N source samples are not
persistently exciting. d sources and L-PSK con-
stellations.

Substituting k = m as in (6) and using equation (9) we
obtain

P ((Rw)i > 757
=P (% S vi(n) v (n) > m)
<LP (L), y: > kN)

N
<2(2)"! ¢ atarn @b (Gt <+>

\/d2(d+1)2-1
(15)

The matrix Ry is nonsingular if all entries (Rx)i; above
the main diagonal are smaller than 1/(d(d + 1)). There
are [d(d — 1) + 1][d(d — 1)] < 1d* such entries. Finally
using the fact that for any x such that 0 < =z < 1 we
have (1 — z)" > 1 — nz, we can bound the probability of
identifiability of d sources using N vector samples taken
from L-PSK i.i.d. sources, P;q(L,d, N) as follows:
Theorem 7 Consider a linear mizture of N samples of
d i.i.d. sources with L-PSK alphabet. The probability
P,4(L,d,N) that the data set is identifiable satisfies

N
a2V aaE e () (o
1-d'()" e JEan
(16)
This is better than the large deviation bound in theorem
6, since the dependence on NN is exponential and not sub-
exponential and is also valid for all values of N. Moreover
we can see that as the alphabet size is increased the prob-
ability of non-identifiability approaches 0 as L~W-1,

6. SIMULATIONS

We now illustrate a comparison of the new upper bound on
identifiability, theorem 7, to the bound by Talwar [3], see
figure 1. We can clearly see that the new bound is much
better with orders of magnitudes less samples necessary for
a given probability of identifiability.

7. CONCLUSION

We presented a rigorous proof of a sufficient condition for
the identifiability of mixtures of finite alphabet CM signals,
based on finitely many samples. For finite-alphabet cases,
only an upper bound on the probability of identifiability
given alphabet size, number of sources and number of sam-
ples could be derived. However the new bound is much
tighter than previously known bounds.
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Appendix: Optimizing v in the Chernoff bound
The optimal value of v satifies the equation (see e.g., [8]
page 54)
Ey;e”¥ —ke" =0

Using equation (10) we obtain

1 v —v k v —v

z(e —e )—E(e +e )=0.
Simplifying we obtain tanh(v) = k, hence the optimal v
is given by v = tanh™! (k). Using the equality cosh?(v) —
sinh®(v) = 1 we finally obtain
_k
V1 — k2
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