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ABSTRACT

Abstract- We present a two-step maximum likelihood
(TSML) algorithm for blind identification of single-input-
multiple-output (SIMO) channels modeled as autoregres-
sive (AR) system. The AR-TSML algorithm provides a new
and useful alternative to a previously developed TSML al-
gorithm for moving-average (MA) system. The AR-TSML
algorithm is shown to be more robust than the MA-TSML
algorithm if the channel impulse responses have long tails.

1. INTRODUCTION

In wireless communications, the radio energy of transmit-
ted signal is distributed in space. Utilizing the spatially
distributed energy can yield a higher channel capacity or
enhanced signal reception. Spatially distributed antennas
are common for exploiting the spatial diversity. For ac-
coustic or speech communications, an array of microphones
can be deployed to achieve a similar purpose. For applica-
tions like the above, the signals received at the sensors can
be modelled as the output of a single-input-multiple-output
(SIMO) system where the input represents the desired sig-
nal. The impulse response of the SIMO system accounts
for the distortion of the desired signal. For many situations,
one also needs to retrieve the desired signal from the sys-
tem output without the knowledge of the channel response.
This is known as blind identification. Extensive surveys on
blind identification of SIMO systems are available in [1] and
[2]. Among many available techniques, there is one method
known as two-step maximum likelihood (TSML) [3]. The
TSML algorithm approaches the (optimal) performance of
the exact maximum likelihood at a moderate signal-to-noise
ratio (SNR) but only needs to compute the solutions of two
quadratic minimizations. The two-channel special cases of
the TSML algorithm are also available in [4] and [5].

In this paper, we further develop the TSML concept.
While the original TSML algorithm applies to finite-impulse-
response (FIR) or moving-average (MA) channels, the new
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TSML algorithm we develop here is based on the model
of autoregressive (AR) channels. We will refer to them as
MA-TSML and AR-TSML, respectively. For certain appli-
cations such as accoustic reverberation inside a room, the
AR model may be more appropriate than the MA model.
This seems also true if the impulse response of the system
has long tails. A simulation example will support this ob-
seravtion. We note that a more general model would be an
ARMA system. But for an ARMA system, some spectral
information of the input is needed or otherwise the system
is not identifiable. The ARMA system will not be further
addressed here.

The complexity of the TSML algorithm differs signif-
icantly from the two-channel case to the more-than-two-
channel case [3]. To illustrate the AR-TSML concept in
a simple way, we only consider the two-channel case here.
The rest of this paper is as follows.

2. PROBLEM FORMULATION

Consider the following discrete two-channel AR system:

xi(n) =
1

Ai(z)
s(n) (1)

yi(n) = xi(n) + wi(n) (2)

wherei = 1, 2, n = 0, 1, · · · , N − 1, xi(n) is the noiseless
output, s(n) is the input signal,yi(n) denotes the noise-
corrupted measurement ofxi(n), wi(n) is noise, andAi(z)
is defined byAi(z) =

∑L
l=0 ai(l)z−l.

The following assumptions are made on the model (1)-
(2):

A1. All zeros of Ai(z) are strictly inside the unit circle,
which guarantees that the system is stable.

A2. A1(z) andA2(z) have no common factor, which en-
sures the identifiability of the system up to a complex
scalar in the absence of noise.

A3.
∑2

i=1

∑L
l=0 ‖ai(l)‖2 = 1, which removes a real-valued

scaling ambiguity of the system.
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A4. wi(n) is white Guassian noise.

3. BLIND CHANNEL IDENTIFICATION

We now develop a maximum likelihood algorithm for esti-
mating the channel coefficient vectora:

a = [aT
1 aT

2 ]T (3)

whereai = [ai(0), ai(1), · · · , ai(L)]T .
The system (2) can also be expressed asy = x + w

wherey is the measurement vector

y = [yT
1 yT

2 ]T (4)

with yi = [yi(N − 1), yi(N − 2), · · · , yi(0)]T , and the
vectorsx andw are similarly defined.

We can regard the AR channels as MA channels of in-
finitely long impulse responses, i.e.,

xi(n) =
∞∑

l=0

hi(l)s(n− l) (5)

wherehi(l) ∼= 0 for l > M >> L.
DefineHi(z) =

∑∞
l=0 hi(l)z−l, then

A1(z)H1(z) = A2(z)H2(z) = 1 (6)

The equation (5) can be rewritten asx = Hs with
H = [HT

1 HT
2 ]T , whereHi is a matrix ofN×(M +N)

defined asHi =



hi(0) · · · · · · · · · hi(M + N − 1)
hi(0) · · · · · · hi(M + N − 2)

.. .
.. .

.. .
...

hi(0) · · · hi(M)


 (7)

and s = [s(N − 1), s(N − 2), · · · , s(0), · · · , s(−M)]T

Note that in theory,M can be arbitrarily large.
The maximum likelihood (ML) estimation of the chan-

nel coefficient vectora is obtained by (e.g., see [6])
maxa,s f(y) or equivalently

min
a,s

J = min
a,s

‖y −Hs‖2 (8)

wheref(y) is the probability density function (PDF) ofy.
It is well known that the optimal input vector is given

by ŝ = H+y whereH+ is the pseudoinverse ofH, and
hence the cost function becomes

J = ‖y − HH+y‖2 = ‖(I − P H)y‖2 (9)

whereP H is the orthogonal projector onto the range space
of H. Note thatH does not have a full rank in either row
or column in general.

Now we develop a relationship betweenhi(n) andai(n),
where the latter are considered to be the free (i.e., uncon-
strained) unknowns. From (6), we can obtain

L∑

l=0

h1(n− l)a1(l) =
L∑

l=0

h2(n− l)a2(l) = 1 (10)

and hence

HT
1 AT

1 = HT
2 AT

2 =
[

I
0

]
(11)

whereHi is defined in (7), andAi is a matrix of(N−L)×
N , defined asAi =



ai(0) · · · · · · ai(L)
ai(0) · · · · · · ai(L)

. ..
.. .

. . .
.. .

ai(0) · · · · · · ai(L)


 (12)

The equation (11) implies

[
HT

1 HT
2

] [
AT

1

−AT
2

]
= 0 (13)

which is equal to
HHA = 0 (14)

whereA is defined by

A =
[

AH
1

−AH
2

]
(15)

In the appendix, we will prove that:

R(A) = N (H) (16)

whereR(·) denotes the range space andN (·) denotes the
null space. Making use of (16), we can write

P A = P⊥
H = I − P H (17)

Inserting (17) into (9) yields the following cost function:

J = ‖P Ay‖2 = yHA(AHA)−1AHy (18)

Next we can observe

AHy =
[

A1 −A2

]
y = A1y1 −A2y2 (19)

It is easy to show that the following structural relation holds:

Aiyi = Y iai (20)

whereY i =



yi(N − 1) yi(N − 2) · · · yi(N − L− 1)
...

...
...

...
yi(L + 1) yi(L) · · · yi(1)

yi(L) yi(L− 1) · · · yi(0)


 (21)
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Inserting (20) into (19) yields the following expression:

AHy =
[

Y 1 −Y 2

] [
a1

a2

]
= Y a (22)

By inserting (22) into (18), we can obtain

J = aHY HW−1
A Y a (23)

where

W A = AHA = A1A
H
1 + A2A

H
2 (24)

Hence, the ML estimate ofa can be obtained by mini-
mizing J shown above. This expression ofJ suggests the
following iterative two-step estimation procedure, i.e., AR-
TSML:

Step1: Minimize aHY HY a with ‖a‖ = 1 to yieldac.

Step2: Minimize aHY HŴ
−1

A Y a with ‖a‖ = 1 to yield

ae, whereŴ
−1

A is constructed fromac according to
(12) and (24).

It can be shown that the step 1 is consistent, i.e., it yields
the exact result when the noise is absent.

To estimates(k), we first need to estimatehi(l) from a.
Note that (10) implies

A
T

i hi = e (25)

with e = [1, 0, 0, · · · , 0]T , hi = [hi(0), hi(1), · · · , hi(M−
1)]T , andAi is anM × (M + L) matrix defined asAi =



ai(0) · · · · · · ai(L)
ai(0) · · · · · · ai(L)

. ..
.. .

. . .
. ..

ai(0) · · · · · · ai(L)


 (26)

Thus we can obtain the estimate ofhi by:

ĥi = (A
T

i )+e (27)

This estimate is consistent asM becomes large.
Now, the estimation ofs is straightforward by using the

expression following (8). If we know thats(k) = 0 for

k < 0, then we defineH = [H
T

1 H
T

2 ]T where

Hi =




hi(0) · · · · · · hi(N − 1)
hi(0) · · · hi(N − 2)

.. .
...

hi(0)


 (28)

and then computês = H
+
y. H has a full column rank in

general.

4. SIMULATION

We considered a simple two-channel system, where each
channel is a second-order AR filter with the channel coeffi-
cients defined as follows:

A1(z) = 1.0000 + 1.4000z−1 + 0.9800z−2

A2(z) = 0.9490− 1.3097z−1 + 0.9037z−2 (29)

The system was driven by a sample sequence of speech
signal. The noise was additive white Gaussian. After the
channel coefficient vectora was estimated, two estimates
of the channel impulse response were obtained using two
different values ofM . Using the firstN samples of each
estimated channel impulse response, the input was then es-
timated. Fig. 1 shows the performance of the AR-TSML
method versus SNR. We can see that the largerM is, the
more accurate is the estimate of the input. Note that the es-
timate of the channel coefficient vectora is not affected by
M .

We also considered a two-channel MA system of order
15. The impulse response of the channels was generated
by an i.i.d random sequence of values chosen within [-1, 1]
and then multiplied by an envelope0.5n. This generated
long tail impulse responses. We applied both AR-TSML
(assuming AR orderL = 2) and MA-TSML (assuming MA
orderL = 15) to this MA system for 100 independent runs
at each SNR. For each run, independent channel impulse
responses and independent additive noise were generated.
One realization of the channel impulse responses is shown
in Fig. 2. The mean-squared-errors (MSE) of the estimated
input signals using the two methods are shown in Fig. 3. It
is clear that the AR-TSML method yielded much better per-
formance than the MA-TSML method. In fact, the results
from the MA-TSML algorithm were too poor to be useful
in this case.

5. CONCLUSION

We have developed the AR-TSML algorithm based on a
two-channel SIMO AR system. The AR-TSML algorithm
provides a new and useful alternative to the previously de-
veloped MA-TSML algorithm. For channels with long tails,
the AR-TSML algorithm appears more robust than the MA-
TSML algorithm.

6. APPENDIX

Proof of (16): Making use of (14), we can obtainR(A) ⊂
N (H). But we also need to showN (H) ⊂ R(A).

To show the above equation, we note that for any vector
c ∈ R2N×1, which satisfiesHT c = 0 or equivalently

HT
1 c1 = −HT

2 c2 = g0 (30)
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Fig. 1. Performance of the AR-TSML method
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Fig. 2. Channel Impulse Response

with gT
0 = [g0(0), g0(1), · · · , g0(N + M − 1)] andc =[

cT
1 cT

2

]T
, wherecT

i = [ci(0), ci(1), · · · , ci(N − 1)].
Hence we have

h1(n) ∗ c1(n) = −h2(n) ∗ c2(n) = g0(n) (31)

or equivalently (assumingM is arbitrarily large)

H1(z)C1(z) = −H2(z)C2(z) = G0(z) (32)

whereG0(z) =
∑N+M−1

l=0 g0(l)z−l. Making use of (6)
yields:

1
A1(z)

C1(z) = − 1
A2(z)

C2(z) = G0(z) (33)

Hence,

C1(z) = A1(z)G0(z) C2(z) = −A2(z)G0(z) (34)
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Fig. 3. Performance of AR-TSML and MA-TSML

Sincedeg(Ci(z)) = N − 1 anddeg(Ai(z)) = L, then
deg(G0(z)) = N − L − 1, wheredeg(·) denotes degree
of polynomial. Hence, only the firstN − L elements of

g0 are nonzero, i.e.gT
0 =

[
g
′
0

T
, 0, 0, · · · , 0

]
with g

′
0

T
=

[g0(0), g0(1), · · · , g0(N − L− 1)]. Hence, the equation (34)
can be rewritten into matrix form:c1 = AT

1 g
′
0 andc2 =

−AT
2 g

′
0. Henceforth,c∗ = Ag

′
0

∗
, which meansc∗ ∈

R(A). Here,(·)∗ denotes conjugation. The above implies
thatN (H) ⊂ R(A). Therefore, the proof is completed.
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