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ABSTRACT TSML algorithm we develop here is based on the model
of autoregressive (AR) channels. We will refer to them as
MA-TSML and AR-TSML, respectively. For certain appli-
cations such as accoustic reverberation inside a room, the
AR model may be more appropriate than the MA model.
This seems also true if the impulse response of the system
has long tails. A simulation example will support this ob-
seravtion. We note that a more general model would be an
ARMA system. But for an ARMA system, some spectral
information of the input is needed or otherwise the system
is not identifiable. The ARMA system will not be further
1. INTRODUCTION addressed here.

. o i ) The complexity of the TSML algorithm differs signif-
In wireless communications, the radio energy of transmit- icantly from the two-channel case to the more-than-two-
ted signal is distributed in space. Utilizing the spatially -hannel case [3]. To illustrate the AR-TSML concept in

distributed energy can yield a higher channel capacity or 5 simple way, we only consider the two-channel case here.
enhanced signal reception. Spatially distributed antennasrne rest of this paper is as follows.

are common for exploiting the spatial diversity. For ac-
coustic or speech communications, an array of microphones
can be deployed to achieve a similar purpose. For applica-
tions like the above, the signals received at the sensors cal
be modelled as the output of a single-input-multiple-output

Abstract- We present a two-step maximum likelihood
(TSML) algorithm for blind identification of single-input-
multiple-output (SIMO) channels modeled as autoregres-
sive (AR) system. The AR-TSML algorithm provides a new
and useful alternative to a previously developed TSML al-
gorithm for moving-average (MA) system. The AR-TSML
algorithm is shown to be more robust than the MA-TSML
algorithm if the channel impulse responses have long tails.

2. PROBLEM FORMULATION

'Eonsider the following discrete two-channel AR system:

(SIMO) system where the input represents the desired sig- zi(n) — 1 s(n) @
nal. The impulse response of the SIMO system accounts o Ai(2)

for the distortion of the desired signal. For many situations, yi(n) = z;(n)+ wi(n) (2)
one also needs to retrieve the desired signal from the sys-

tem output without the knowledge of the channel response.Wherei = 1,2,n =0,1,--- , N — 1, z;(n) is the noiseless

This is known as blind identification. Extensive surveys on OUtput, s(n) is the input signaly;(n) denotes the noise-
blind identification of SIMO systems are available in [1]and Corrupted measurement of(n), w;(n) is noise, and4;(z)

[2]. Among many available techniques, there is one methodis defined byA;(2) = 3" a; ()2~

known as two-step maximum likelihood (TSML) [3]. The The following assumptions are made on the model (1)-
TSML algorithm approaches the (optimal) performance of (2):

thg exact maximum likelihood at a moderate sigqal—to-noise AL. All zeros of A;(z)
ratio (SNR) but only needs to compute the solutions of two
guadratic minimizations. The two-channel special cases of

are strictly inside the unit circle,
which guarantees that the system is stable.

the TSML algorithm are also available in [4] and [5]. A2. A;(z) and A2(z) have no common factor, which en-
In this paper, we further develop the TSML concept. sures the identifiability of the system up to a complex
While the original TSML algorithm applies to finite-impulse- scalar in the absence of noise.

response (FIR) or moving-average (MA) channels, the new A3, 25:1 ZZL:O la:(1)[[2 = 1, which removes a real-valued

This work was supported in part by the National Science Foundation. scaling ambiguity of the system.
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A4, w;(n) is white Guassian noise.

3. BLIND CHANNEL IDENTIFICATION

We now develop a maximum likelihood algorithm for esti-
mating the channel coefficient vector

a=[a] aj]" 3
Whereai = [ai(O),ai(l), ce 7(11'(L)]T.

The system (2) can also be expressedjas « + w
wherey is the measurement vector

T

y=ly; ]T

4)
,:(0)]7, and the

ys
with y;, = [y;(N — 1),5:(N — 2),---
vectorse andw are similarly defined.

We can regard the AR channels as MA channels of in-
finitely long impulse responses, i.e.,

zi(n) =Y hi(l)s(n 1) (5)
=0
whereh;(I) = 0forl > M >> L.
DefineH;(z) = > ;2 hi(1)z~", then
A1(2)Hi(2) = A2(2)Ha(2) = 1 (6)

The equation (5) can be rewritten as = Hs with
H = [H] HI]", whereH,isamatrix of N x (M + N)
defined add; =

hi(0) - hi(M + N — 1)
hi(0) hi(M + N —2)
o . ™
i(0) (M)
ands = [s(N —1),s(N —2),---,5(0), -+ ,s(=M)]T

Note that in theoryM can be arbitrarily large.

The maximum likelihood (ML) estimation of the chan-
nel coefficient vectoa is obtained by (e.g., see [6])
maxq s f(y) Or equivalently

min J = min ||y — Hs|? (8)
wheref(y) is the probability density function (PDF) gf.

It is well known that the optimal input vector is given
by s = H"y where H™" is the pseudoinverse df, and
hence the cost function becomes

J =y — HH y|]” = ||(I - Pr)y|? 9)
where Py is the orthogonal projector onto the range space

of H. Note thatH does not have a full rank in either row
or column in general.

Now we develop a relationship betwekesin) anda;(n),
where the latter are considered to be the free (i.e., uncon-
strained) unknowns. From (6), we can obtain

L L
> hi(n=Dar(l) = ha(n—Naz(l) =1  (10)
=0 =0
and hence
miAl —mial = | ay

whereH ; is defined in (7), and; is a matrix of(N — L) x
N, defined aA; =

a;(0) a;(L)
a; (0 e a;(L
.( ) .( ) 12)
a;(0) a;(L)
The equation (11) implies
AT
[ HT HQT}[_;TFO (13)
2
which is equal to
H7A=0 (14)
whereA is defined by
AH
A= ! ] (15)
i
In the appendix, we will prove that:
R(A) = N(H) (16)

whereR(-) denotes the range space akd-) denotes the
null space. Making use of (16), we can write
P,=P=1-Py (17)

Inserting (17) into (9) yields the following cost function:

J=|Pay|® =y"AATA)T ATy (18)
Next we can observe
Aly=[ A1 —-A; |y= Ay, — Aoy, (19)

Itis easy to show that the following structural relation holds:

whereY; =
yi(N = 1) yi(N —2) yi(N —L—1)
5 : (21)
yi(L+1) yi(L) yi(1
yi(L) yi(L —1) vi(0)
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Inserting (20) into (19) yields the following expression: 4. SIMULATION

Ay — [ Y, -Y, ] a9 | _ya (22) We congidered a simple tvvo—channgl system, where eaph
as channel is a second-order AR filter with the channel coeffi-

cients defined as follows:
By inserting (22) into (18), we can obtain

Ai(z) = 1.0000 + 1.4000z* + 0.9800z 2

J=ad"Y"W,'Ya (23) ~ ~
A 1 2
As(z) = 0.9490 — 1.30972~" +0.9037z"2 (29)

where .
The system was driven by a sample sequence of speech

Wa=A"A= A1A1H + A2A§’ (24) signal. The noise was additive white Gaussian. After the
channel coefficient vectat was estimated, two estimates
Hence, the ML estimate af can be obtained by mini-  of the channel impulse response were obtained using two
mizing J shown above. This expression #fsuggests the  different values of\/. Using the firstN samples of each
following iterative two-step estimation procedure, i.e., AR- estimated channel impulse response, the input was then es-

TSML: timated. Fig. 1 shows the performance of the AR-TSML
o HoH ] ] method versus SNR. We can see that the lafgeis, the
Stepl: Minimize a”Y " Y a with |a| = 1 toyielda.. more accurate is the estimate of the input. Note that the es-

_ A - . . timate of the channel coefficient vectetis not affected b
Step2: Minimize aHYHWAlYa with ||a|| = 1 to yield M y
L1, ) -
a., whereW , is constructed frona. according to We also considered a two-channel MA system of order
(12) and (24). 15. The impulse response of the channels was generated

. . L by an i.i.d random sequence of values chosen within [-1, 1]
A It can be sr;ow;: tha:]the s.tep_l |sbconS|stent, i.e.,ityields and then multiplied by an enveloges”. This generated
the exact _resutw ent enoiseisa se_nt. long tail impulse responses. We applied both AR-TSML
To estlmate.s(k;)z we first need to estimate (/) from a. (assuming AR ordef, — 2) and MA-TSML (assuming MA
Note that (10) implies orderL = 15) to this MA system for 100 independent runs

—T at each SNR. For each run, independent channel impulse
Ajhi=e (25) responses and independent additive noise were generated.
withe = [1,0,0,--- ,0]T, hy = [7:(0), hi(1),- -+, hs(M — _Ong realization of the channel impulse responses is_shown
1)]7, andA; is anM x (M + L) matrix defined asi; = in Fig. _2. The m_ean-squared-errors (MSE) of th_e es_tlmated
input signals using the two methods are shown in Fig. 3. It
a;i(0) - <o ai(D) is clear that the AR-TSML method yielded much better per-
a;i(0) - <o ai(L) formance than the MA-TSML method. In fact, the results
, ] (26) from the MA-TSML algorithm were too poor to be useful
- - - in this case.
a;i(0) - o ai(D)
Thus we can obtain the estimatefofby: 5. CONCLUSION
h; = (ZiT)Jre (27) We have developed the AR-TSML algorithm based on a
two-channel SIMO AR system. The AR-TSML algorithm
This estimate is consistent &6 becomes large. provides a new and useful alternative to the previously de-

Now, the estimation o§ is straightforward by using the  veloped MA-TSML algorithm. For channels with long tails,
expression following (8). If we know that(k) = 0 for the AR-TSML algorithm appears more robust than the MA-

k < 0, then we defindl = [H, H,|” where TSML algorithm.
hi(0) - cee e AN =) 6. APPENDIX
_ hi(0) -~ hy(N —2)
H; = : : (28)

Proof of (16): Making use of (14), we can obtaR(A) C
h-&o) N (H). But we also need to shaW (H) ¢ R(A).
‘ To show the above equation, we note that for any vector

I ¢ e R*N¥! which satisfiesH © ¢ = 0 or equivalently
and then computé = H y. H has a full column rank in

general. Hici=-Hjc, =g, (30)
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Fig. 1. Performance of the AR-TSML method
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Fig. 2. Channel Impulse Response

with g&' = [90(0),90(1), -+ ,go(N + M — 1)] andec =

[ eI &l ", wheree? = [¢;(0), ci(1), - e (N —1)].
Hence we have
hi(n) * c1(n) = —ha(n) * ca(n) = go(n) (31)

or equivalently (assuming/ is arbitrarily large)

Hy(2)C1(2) = —H2(2)C2(z) = Go(2) (32)
where Go(z) = St go(l)2~!. Making use of (6)
yields:

() = (s = Golz) (39)

A (z) As(2)

Hence,

Ca(z) = —A2(2)Go(2) (34)
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Fig. 3. Performance of AR-TSML and MA-TSML

Sincedeg(C;(z)) = N — 1 anddeg(A;(z)) = L, then
deg(Go(z)) = N — L — 1, wheredeg(-) denotes degree
of polynomial. Hence, only the firsN — L elements of
g, are nonzero, i.egl = [ggT,O,O, . ,0} with g, =
[90(0),90(1),---,g0(N — L — 1)]. Hence, the equation (34)
can be rewritten into matrix forme; = AT g, ande, =
—ATg,. Henceforth,c* = Ag,", which meansc* ¢
R(A). Here,(-)* denotes conjugation. The above implies
thatV(H) C R(A). Therefore, the proof is completed.
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