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ABSTRACT

A low-complexity adaptive blind subspace channel estimation al-
gorithm is proposed for direct sequence spread spectrum CDMA
systems. Compared with so-called hybrid adaptive channel esti-
mation algorithms, where only the subspace estimation is carried
out adaptively, the proposed algorithm is fully adaptive in that both
subspace and channel estimates are updated recursively. The new
algorithm is derived by exploiting common structural properties
of plane rotation-based subspace trackers (e.g. Proteus, RO-FST,
etc.). It is characterized by a low-complexity of implementation
and numerical robustness over long periods of operation, an es-
sential requirement for wireless radio applications. Moreover, we
find in the case of a heavy loaded system that the proposed algo-
rithm has better performance than the previous hybrid algorithms.

1. INTRODUCTION

Code Division Multiple Access (CDMA) with Direct Sequence
Spread Spectrum (DS-SS) has proven to be an effective multi-
ple access technique for modern wireless communication systems.
Due to the multi-path nature of the wireless channel, CDMA sig-
nals experience a fading phenomenon, which severely degrades
the performance of the receiver and thus limits the capacity of
the CDMA system. Some diversity-combining schemes, such as
RAKE receiver, space diversity, Space-Time Block Codes (STBC),
etc., have been proposed to combat the fading problem. For all of
these schemes, an accurate estimation of the channel response is
necessary for the optimal combining.

Compared with the pilot-based channel estimation methods,
it is more bandwidth efficient to implement blind channel estima-
tion approaches. In the past decade, subspace-based blind channel
estimation algorithms were at first proposed for frequency selec-
tive fading channel [1, 2] and later extended to dispersive channel
[3], multiple antenna channel [4] and STBC channel [5]. A rep-
resentative example of the above family is the batch algorithm by
Liu and Xu [2], which first estimates orthonormal signal and noise
subspaces via SVD on a data block (step 1) and then estimates the
channel response by utilizing the orthogonal property of subspaces
(step 2).

Liu and Xu’s algorithm was originally proposed for time-inva-
riant channels. In order to apply it for on-line estimation of time-
variant channels, some hybrid (adaptive-batch) algorithms have
been proposed that use subspace tracking to adaptively generate
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the subspaces; however, the batch method is still used in the sec-
ond step and requires a considerable amount of computations [6].
Recently, a low-complexity, adaptive channel estimation algorithm
based on the OPAST subspace tracker was proposed in [4]. How-
ever, OPAST only provides a basis of the signal subspace and can-
not track the individual dominant eigenvectors and eigenvalues,
which are needed in advanced subspaced-based multi-user detec-
tion. Furthermore, some numerical stability problems have been
observed with OPAST when running it over a large number of time
iterations.

In this paper, we propose a fully adaptive subspace-based chan-
nel estimation algorithm that overcomes the above limitations. The
new algorithm is derived by exploiting common structural proper-
ties of plane rotation-based subspace trackers (e.g. [7, 8]), whose
numerical robustness has been well established. The main advan-
tage of the proposed algorithm is its low-complexity of implemen-
tation and numerical robustness over long periods of utilization,
an essential requirement for practical operation in wireless radio
applications. Moreover, we find in the case of a heavy loaded sys-
tem that the proposed algorithm has better performance than the
previous hybrid algorithms.

The paper is organized as follows. Section 2 introduces the
system model of a synchronous CDMA system in frequency selec-
tive fading channel. Section 3 describes the proposed algorithm.
Results of computer experiments are presented in Section 4. This
is followed by a brief conclusion in Section 5.

2. SYSTEM MODEL

We develop our algorithm for a synchronous CDMA system op-
erating in a frequency selective fading channel; however, it can
be easily extended to asynchronous systems. In a DS-SS CDMA
system, information symbols are modulated by pre-assigned sig-
nature waveforms of length Lc. For the qth user, the normalized
signature waveform is represented by cT

q = [cq,1, · · · , cq,Lc ]. At
time t, the spreaded transmitted signal of the q-th user xq(t) may
be represented in vector form as

xq(t) = Aq(t)bq(t)cq (1)

where Aq(t) is the amplitude of the q-th user signal and bq(t) is
the corresponding information bit. The frequency selective fading
channel can be modelled as a time-variant FIR filter, namely:

yq(t) = [yq,1(t), · · · , yq,Lc+L−1(t)]
T

= Aq(t)bq(t)[cq ⊗ hq(t)]
(2)
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where hq(t) is an L× 1 discrete time-variant normalized channel
impulse response vector and ⊗ denotes discrete convolution oper-
ation. Since the length of yq(t) is Lc + L − 1 and the symbol
duration is Lc chips, there exists an (L − 1)-chip overlap at the
receiver, or Inter-Symbol Interference (ISI), between yq(t − 1)
and yq(t). We may assume L � Lc in the case that the time
delay spread of the channel is much smaller than the symbol pe-
riod [2]. To avoid the ambiguity caused by ISI, we will consider
yq(t) = [yq,L(t), · · · , yq,Lc (t)]T , the ISI-free section of yq(t),

in the rest of this paper. Denote K � Lc − L + 1 as the length of
the vector yq(t). Then yq(t) may be expressed as

yq(t) = Aq(t)bq(t)Cqhq(t) (3)

where

Cq �




cq,L(t) · · · cq,1(t)
cq,L+1(t) · · · cq,2(t)

...
...

...
cq,Lc(t) · · · cq,Lc−L+1(t)




︸ ︷︷ ︸
K×L

(4)

Define the effective signature waveform of the q-th user as

wq(t) � Cqhq(t). (5)

Then the received noisy signal is expressed as

r(t) =
∑P

q=1 yq(t) + n(t)

=
∑P

q=1 Aq(t)bq(t)wq(t) + n(t)
= W (t)A(t)b(t) + n(t)

(6)

where
W (t) � [w1(t), · · · ,wP (t)]

A(t) � diag[A1(t), · · · , AP (t)]

b(t) � [b1(t), · · · , bP (t)]T

and n(t) is a zero-mean white Gaussian noise vector.

3. ADAPTIVE SUBSPACE CHANNEL ESTIMATION

Subspace methods utilize the second-order statistics of the received
signal r(t). Define H(t) � W (t)A(t) in (6) and assume that the
transmitted signals from different users are independent to each
other. Then

R(t) = E[r(t)r(t)H ] = H(t)H(t)H + σ2IK (7)

Apply EigenValue Decomposition (EVD) to the correlation matrix
R(t) and arrange the eigenvalues in a non-increasing order:

R(t) = U(t)Σ(t)U(t)H

=
[
Us(t) Un(t)

] [
Σs(t) 0

0 Σn(t)

] [
Us(t)

H

Un(t)H

]
(8)

where eigenvector matrices Us(t) and Un(t) have dimension K×
P and K× (K−P ), respectively. The columns of Us(t) span the
signal subspace with dimension P , while those of Un(t) span its
orthogonal complement, i.e. the noise subspace.

Traditional methods from numerical analysis for EVD of R(t)
have complexity O(K3) [9]. During the last decade, fast subspace
tracking algorithms have been developed which provide a much

cheaper way of adaptively computing the signal subspace eigen-
values and eigenvectors in only O(PK). Among these, plane
rotation-based algorithms are particularly attractive as they natu-
rally maintain eigenvector orthonormality during the updating pro-
cess and can operate over long periods of time without numeri-
cal instability (e.g. [7, 8]). Below, we develop a low-complexity
adaptive blind channel estimation algorithm by exploiting com-
mon structural properties of plane rotation-based subspace track-
ers.

Unlike MUSIC-type algorithms, which use Un(t) as a null
space to determine channel model parameters, the proposed algo-
rithm begins from a different interpretation, namely [2]:

wq(t) ∈ Span(Cq) ∩ Span(Us(t)) (9)

The vector wq(t) can be uniquely determined from the intersec-
tion of Span(Cq) and Span(Us(t)) when the intersection space
is rank-one, which implies P +L ≤ K+1, or P ≤ Lc − 2L+2.

A standard method for computing the intersection of two sub-
spaces is given in [9]. At first, a QR decomposition is applied to
Cq, i.e. Cq = QqRq, where Qq is a K × L orthonormal basis of
Span(Cq) and Rq is an upper-triangular matrix. Thus

wq(t) = Cqhq(t) = QqRqhq(t) = Qqh
′
q(t) (10)

where h′
q(t) = Rqhq(t). Then h′

q(t) can be estimated as the
dominant left singular vector of QH

q Us(t). An adaptive channel
estimation algorithm based on this approach is presented under Al-
gorithm 1. We refer to Algorithm 1 as an hybrid approach, for the
signal subspace eigenvectors are updated adaptively with a sub-
space tracker but the subspace intersection (9) is computed using
an exact (non-adaptive) Singular Value Decomposition (SVD).

Algorithm 1 Hybrid channel estimation

Us(t) is given by the subspace tracker
Initialization:

[Qq, Rq] = QR decomposition of Cq

Recursion:
for t = 1, 2, . . . do

[U, S, V ] = SV D(QH
q Us(t))

h′
q(t) = U(:, 1)

wq(t) = Qqh
′
q(t)

end for

The complexity of this hybrid algorithm is L(P + 1)K +
O(L3) per time iteration: the first term is contributed by the ma-
trix product computations while the second one is contributed by
the SVD operation needed to calculate the dominant left singular
vector. We note that the complexity of Algorithm 1 exceeds the
O(PK) figure characterizing fast subspace trackers.

Here, we propose a new complexity reduction technique for
the recursive update of wq(t) by utilizing the special updating
form of plane rotation-based subspace/EVD trackers, including
PROTEUS-2 [7], RO-FST [8], etc. The common feature of these
trackers is that the signal subspace eigenvectors are updated as

[
Us(t) ua

n(t)
]

=
[
Us(t− 1) ub

n(t)
] ∏

i

Gi (11)

where ub
n(t) = (IK−Us(t−1)Us(t−1)H)r(t)

||(IK−Us(t−1)Us(t−1)H)r(t)|| is defined as the

noise eigenvector before the update, ua
n(t) is the corresponding
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eigenvector after update, and {Gi} is a sequence of O(P ) plane
(or Givens) rotations which depend on the specific subspace/EVD
tracker being used. Define G �

∏
i Gi and then GGH = IK .

Note that the dominant left singular vector of QH
q Us(t) is

identical to the dominant eigenvector of matrix

Dq(t) � QH
q Us(t)Us(t)

HQq

By using the special form in (11), we may develop a simple recur-
sive update for Dq(t):

Dq(t) = QH
q

[
Us(t) ua

n(t)
] [

Us(t)
H

ua
n(t)H

]
Qq

−QH
q ua

n(t)ua
n(t)HQq

= QH
q

[
Us(t− 1) ub

n(t)
]
GGH

[
Us(t− 1)H

ub
n(t)H

]
Qq

−QH
q ua

n(t)ua
n(t)HQq

= QH
q Us(t− 1)Us(t− 1)HQq +QH

q ub
n(t)ub

n(t)HQq

−QH
q ua

n(t)ua
n(t)HQq

= Dq(t− 1) + vb
q(t)v

b
q(t)

H − va
q (t)va

q (t)H

(12)
where vb

q(t) � QH
q ub

n(t) and va
q (t) � QH

q ua
n(t). By using

(12), complexity of updating QH
q Us(t)Us(t)

HQq is reduced from
O(LPK) to 2LK + L2.

A further reduction in complexity can be achieved if we con-
sider the SVD operation in the hybrid algorithm. Indeed, we note
that only the dominant left singular vector is required for chan-
nel estimation. The power method is an iterative approach for
searching the dominant eigenvector with low complexity [9]. In
the present application, where the true channel estimate is varying
slowly over time, a single iteration of the power method can be
applied at each time step to update h′

q(t). Specifically:

h′
q(t) = Dq(t)h

′
q(t− 1)

h′
q(t) = h′

q(t)/||h′
q(t)|| (13)

In a stationary environment, the power method will converge to
the dominant eigenvector of Dq ≡ Dq(t) when the initialization
is not orthogonal to the eigenvector [9]. Based on (12) and (13), a
fully adaptive subspace channel estimation algorithm is developed
as Algorithm 2.

Algorithm 2 Adaptive channel estimation

Us(t) is given by the subspace tracker
Initialization:

[Qq, Rq ] = QR decomposition of (Cq)
h′

q(0): an arbitrary vector
Dq(0) = QH

q Us(0)Us(0)
HQq

Recursion:
for t = 1, 2, . . . do

vb
q(t) = QH

q ub
n(t)

va
q (t) = QH

q ua
n(t)

Dq(t) = Dq(t− 1) + vb
q(t)v

b
q(t)

H − va
q (t)va

q (t)H

h′
q(t) = Dq(t)h

′(t− 1)
h′

q(t) = h′
q(t)/||h′

q(t)||
wq(t) = Qqh

′
q(t)

end for

The complexity of this algorithm at each iteration is 3LK +
2L2 + 2L, which is an order of magnitude lower than that of the
hybrid algorithm. A comparison of the complexity for both algo-
rithms is presented in Table 1 for reference.

Table 1. Complexity Comparison in the Second Step

Hybrid Algorithm L(P + 1)K + O(L3)
Adaptive Algorithm 3LK + O(L2)

Table 2. Average Failure Time of OPAST

Forgetting factor α Average failure time
0.99 3038
0.995 6293
0.9975 12337

4. COMPUTER EXPERIMENTS

Computer experiments have been conducted to compare the per-
formance of the proposed adaptive algorithm and the hybrid algo-
rithm in time-variant channels. The performance of the OPAST
based scheme in [4] is also discussed briefly. All simulations as-
sume a down-link CDMA system with Lc = 32 and L = 4.
In the down-link environment, all the users share the same chan-
nel: hq(t) = h(t), for q = 1, . . . , P . The signature wave-
forms are randomly generated. All the users have equal-power.
The channel is assumed to be a first-order AR model h(t) =
βh(t−1)+(1−β)f(t), where f(t) is an i.i.d complex white Gaus-
sian source. Parameter β is used to control the rate of change of
the radio channel. The plane rotations based EVD tracker used in
the simulations is PROTEUS-2, with forgetting factor α = 0.995.
The performance measure is the relative mean square error of w1,
that is:

MSE = E[
‖∆(w1(t))‖
‖w1(t)‖

2

] (14)

Here we use a time average over T = 104 iterations to approxi-
mate the expectation E[·].

Three simulation experiments were conducted to test the per-
formance in the case of different number of users, different Sig-
nal/Noise Ratio (SNR), and different rate of change of the AR
channel, respectively. The corresponding results are presented
in Fig. 1 to 3, respectively. In all cases, the performance of the
fully adaptive algorithm is comparable or superior to that of the
hybrid scheme. For the same set of experiments, the OPAST-
based scheme [4] failed as a result of numerical instability: the
average number of time iterations before divergence (10 run aver-
age) is reported in Table 2. We note from Fig. 1 that in the case
of a heavy loaded system, i.e. large P , the proposed adaptive al-
gorithm performs better than the hybrid algorithm. Fig. 4 (top)
compares the time evolution of the square error produced by both
algorithms during a single run in the case P = 26; Fig. 4 (bottom)
shows the time evolution of the first two dominant eigenvalues of
QH

1 Us(t)Us(t)
HQ1 during the same experiment. In general, we

find that the proposed adaptive algorithm is more robust than the
hybrid algorithm when the second eigenvalue is close to 1.

5. CONCLUSION

A low-complexity adaptive blind subspace channel estimation al-
gorithm was proposed for direct sequence spread spectrum CDMA
systems. Compared with so-called hybrid adaptive channel esti-
mation algorithms, where only the subspace estimation is carried
out adaptively, the proposed algorithm is fully adaptive in that both
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Fig. 1. MSE vs. P, SNR=10dB, β=0.995
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Fig. 2. MSE vs. SNR, P=10, β=0.995

subspace and channel estimates are updated recursively. The new
algorithm is derived by exploiting the special updating form of
plane rotation-based subspace trackers, whose numerical robust-
ness has been well established. The main advantages of the pro-
posed algorithm are its low-complexity of implementation and nu-
merical ability to operate over long periods of time, an essential
requirement for wireless radio applications. Moreover, we find in
the case of a heavy loaded system that the proposed algorithm has
better performance than the previous hybrid algorithms.
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