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ABSTRACT

In this paper, the problem of Blind System Identification (BSI)
of Single-Input Multiple-Output (SIMO) Finite Impulse Response
(FIR) channel is addressed. A plethora of methods and techniques
have been so far proposed in the literature for BSI including the
subspace method. A difficulty with the subspace based identifica-
tion methods is their sensitivity to mis-specification of the channel
order. In this contribution, we propose an identification algorithm
robust to channel order overestimation. This algorithm is based on
the minimization of a Constant Modulus (CM) in conjunction with
subspace orthogonality criteria. Numerical simulations and inves-
tigations are presented to demonstrate the potential of the proposed
algorithms.

1. INTRODUCTION

Blind identification of communication channels stands for those
signal processing techniques that estimate the channel impulse re-
sponse using only its output statistics. For several years, many
methods have been developed to blindly identify the Single-Input
Multiple-Output (SIMO) systems from the Second-Order-Statistics
(SOS) of data [1, 2]. An important class of blind SOS-based iden-
tification algorithms is based on subspace decomposition [3, 4].

One of the important advantages of subspace (SS) technique is
its deterministic property. That is, the channel parameters can be
recovered perfectly in absence of noise, using only a finite set of
data samples, without any statistical assumption over input data.
Therefore, subspace method is promising for applications where
only a few number of output data are available, or the input data is
arbitrary.

However, it is shown in [5] that, subspace method requires the
exact prior knowledge or estimation of the channel order; other-
wise it fails. When the system order is known, the channel can
be estimated up to a constant scalar factor and if an overestima-
tion of system order occurs, there is a linear space of possible but
undesirable solutions.

The general approach, presented in this paper, consists of choos-
ing the appropriate channel estimate (among the linear space of
possible solutions of the SS criterion) which minimizes the Con-
stant Modulus (CM) criterion.

Based on this idea and exploiting the relationship between
Minimum Mean Square Error (MMSE) and CM equalizer (first
observed in [6] and widely studied later), we propose a new algo-
rithm for robust channel identification. Proposed algorithm allows
blind identification of channel without the prior detection of the
system order. It is shown by simulation that this algorithm ensures
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good performance at low/moderate value of signal to noise ratio
even when the channel order is highly overestimated.

2. SUBSPACE ALGORITHM (OVERVIEW)

In this section, the behavior of subspace method when the system
order is overestimated is presented based on the results given in
[5]. Let y(n) be a g-variate discrete-time stationary time series
given by

y(n) > h(k)s(n—k) +n(n) @

k=0

= [h(z)]s(n) +n(n)

where h(z) = 2% h(k)z" isagx1 polynomial transfer func-
tion modeling the channel and {n(n)} is a measurement noise.
It is assumed that {n(n)} is white both temporally and spatially
( E(m(n)n” (n)) = a*1,, where o2 is unknown), and is indepen-
dent from the symbol sequence.

Under the hypothesis that h(z) is full-rank for each z

h(z) # 0 for each z deg(h(z)) =M (2
it has been shown in [1], that h(z) and o2 are identifiable from a
finite number of auto covariance coefficients. A subspace based
identification scheme is presented in [3]. This method is based
on the covariance matrix of the spatio-temporal vector Y (n) ex-
pressed as

Y (n) [y (n), ..y  (n = N+ 1))

Tn(h)S(n) + N(n) (3)
where S(n) = [s(n),...,s(n — N — M + 1)]T and N(n) =
0T (n),...,nT(n — N +1)]%. N is a chosen processing window
length and 7w (k) is a gN x (N + M) block Sylvester matrix

associated to h = [R7(0), ..., KT (M)]T. The covariance matrix
of Y (n) may be expressed as

Ry = Tn(h)STy (h) + 0’ Ign @)

where § £ E(S(n)ST (n)).

The first term in the right hand side of (4) is singular as soon
as gN > (N + M) (this condition is assumed to hold through-
out). In this case, the noise variance o2 is the smallest eigenvalue
of Ry. The eigenspace associated to o2 is referred to as the noise
subspace. S is assumed to be positive-definite and thus the noise
subspace is the orthogonal complement of Range(7~ (h)), the sig-
nal subspace.
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The eigen-decomposition of Ry allows to identify the noise
subspace Range(7x (h))*. Denote by Iy the orthogonal projec-
tion matrix onto Range(7w (h))*

In order to estimate the channel, we have to characterize the set
of all polynomials h'(z) of degree M’, satisfying IIn 7w (h') =
0. The following lemma holds:

Lemma1: Assume (2) holds and N > M. Denote by TIx
the orthogonal projection matrix onto the noise subspace of Ry .
The matrix equation

OxTwn(R') =0 )

does not admit any solution if M’ < M (where M’ = deg(h’(2)).
If M’ > M, the solutions of (5) are of the form h'(z) = r(2)h(z)
where r(z) is a random scalar polynomial of degree M’ — M.

Matrix equation (5) is solved in a least squares sense. Since
the Sylvester matrix depends linearly on its parameters, the least
squares criterion can be rewritten as a quadratic form

TH(TE (W)INTw () = BT Qnh

On denotes a g(M' + 1) x g(M' + 1) symmetric matrix. When
the degree M is known or correctly estimated, h’(z) can be written
as h'(z) = oh(z) (where « is a real scalar) according to lemma
1. Therefore, the channel can be estimated up to a scale factor by
minimizing in k' the above mentioned criterion under a suitable
constraint.

On the other hand, when M’ > M, there are many solutions
of the form h/(2) = r(2)h(z). In this case, we have the following
result:

Proposition 1: Under the above mentioned conditions, matrix
Qn is singular with a null space of dimensiond = M’ — M + 1.

Consequently, the linear space of solutions can be obtained
using L > d eigen-vectors, represented here by matrix Uy, as-
sociated to the L least eigen-values of Q. Mathematically, the
desired solution can be expressed as

h, =ULv (6)

where Uy, denotes a g(M’ + 1) x L matrix, v stands for an L-
dimensional vector to be estimated and

R, =[h's(0),...h' s (M)
3. PROPOSED ALGORITHM

In this section, we mention first a well known property concerning
the CM criterion. Godard was the first who observed that the mean
square error performance of CMA is close to that of the MMSE
equalizer [6]. For several years, a lot of research efforts was made
to confirm or prove that, under several conditions, the CM min-
ima remain in the vicinity of MSE minima for different choices of
delay and sign (see [11, 10] and [12]). Among other works, we
can cite an approach used in [9]. It consists of plotting the contour
of CM cost function in equalizer space and compare the location
of CM minima and MMSE equalizer. This approach confirms the
above mentioned result, under certain conditions.

As mentioned before, the main idea of this paper is to find the
L-dimensional vector v, minimizing the CM cost function under
the CM assumption i.e. Vn |s(n)] = C. Where C > 0 is
a given constant. More precisely, given the channel estimate in

(6), we can express an MMSE equalizer vector as a function of v
according to :

hy (M)
w = R
" 1, (0)
Ogv—mr—1),1
= Wv @)
Where
Ur,m
W2 Ry :
Uro

Oy(v—nrr—1),L
U r,; denotes the ¢ x L matrix corresponding to the i_th block of
matrix Uz, (i.e. Ur = [U7 g,..., U] op]"). The desired vector
v associated to the desired channel estimate (the desired channel
estimate corresponds to ki, = a[qu L hT,0 q(M, M—k), JF.
for a given scalar constant « and a positive |nteger k) is obtained
by minimizing the following CM criterion:

min J(w) = minE(w Y(n)|*—r)?
= mnBE(V'Z@P-r)"  @©)

where Z(n) = WTY(n) and r represents the dispersion con-
stant.

In order to minimize equation (8), we constrain v to be of unit
norlm and we use a parameterization based on the following result
[71":

Lemma 2 : Each unit norm row vector can be represented as
the last row of an orthogonal matrix P given by:

- I ( II re)) ®

1<p<it.nb *1<i<L-1
where 8 are a set of rotation angles in] — 7 /2, w/2] and

I; 1
, cos(85) . — sin(6})
P = ) . (10)
. Ir_;1 .
sin(85) cos(85)

Consequently, we propose a recursive minimization algorithm,
where at each step, the cost function (8) is written as a function of
rotation angle 6, :

min 7 (6;,) = E(|vg (P(8,)" Z(n)]” —r)* (1)
v is a row vector of length L with all components equal to zero
except the last one which is equal to one. This choice of v per-
mits us to select the last row of orthogonal matrix P(65).

At each iteration, the angle 9}, that minimizes the cost function
(11) is computed. The algorithm is stopped when P(G},) are close
to identity matrix for all 1 < ¢ < L — 1. More precisely, we have
the following iterative process :

INote that constraining v to be of unit norm is equivalent to constrain
||k, || = 1 since Uy, is unitary.
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1. Initialization ?;
vol =0, ...,0,1] (12)
N——

2. Fori =1,2,...,L — 1 and the current iteration p, find the
rotation which minimizes the cost function :

6;, = argmin{J (6;)} (13)

The minimization details are discussed below.
3. Compute the new values of Z and v:

= P©6) z
P@)v

v =

where Z £ [Z(N), ..., Z(T)] (T being the sample size).

4. If 9}; forall1 < i < L — 1 are close to zero, then stop.
Else,p = p + 1 and go to step 2.

Here, we describe how the cost function 7 (8}) is minimized. This
cost function can be written as (we replace the expectation by time
averaging):

2

T = 3 (1 sin@)) 2 (n) + cos(63) 2% (n)]* — )
= an(‘LlTiui(n)+0t"(n))2 (14)
= (Y ymym)u+2(d dm)y'm)u

N E P " Q B

Swhere |

=[Gt ] @
and

; _ Zi(n)® — Z5(n)?) /2
v = [ EOLZ" ]
Zim)’ +2"(n)"

a’(n) .

(16)
where Z%(n) denotes the i-th entry of Z(n). Therefore, mini-
mizing 7 (6},) versus 6, is equivalent to minimizing the following
equation subject to ||u||* = 1.

J() = min (u"Gu+ 2g"u) @17

min
[la][2=1 [lu][2=1
In order to minimize equation (17), we use the method of Lagrange
multipliers [8]. By zeroing the gradient of (17), we obtain the
following expression of u:

u = —(G+AI)'g (18)
(uig) (u3g)
oMt

2This initialization corresponds to choosing at first the channel estimate
of the standard subspace algorithm that is given by the least eigenvector of
Qn, i.e. the last column vector of Uy, .

3In (14), we omit a constant term independent from 6;’,.

where G = Muiul + Aausul is the eigen decomposition of G.
Using the fact that ||u||? = 1, A must satisfy:

[&fij2+hyfij2=l (19)

This corresponds to a polynomial equation of degree 4. By solv-
ing this equation and choosing A equal to its real root, we obtain
u from equation (18). Consequently, the corresponding 9; can
be found. If there are more than one real root to the above equa-
tion then, the solution which minimizes the cost function (17) is
selected as the desired one.

Remark: Inthe case where the source signal is not of constant
modulus, the minima of MMSE and CM criteria do not coincide
(or at least are not close) [9] and thus the proposed algorithm fails
to provide a consistent channel estimate.

4. SIMULATION RESULTS

In this section, we present simulation results in order to assess the
performance of our algorithm. We have considered a one-input
two-output system. The input sequence is an i.i.d. zero mean unit
variance BPSK process. We consider a normalized channel of de-
gree 2. The channel coefficients are :

—0.2931 — (0.0151)z™" — (0.1497)z >
0.5029 + (0.7448)z~" + (0.1505)z~>

hi(z) =
h2 (Z) =

The algorithm performance is measured in terms of distance be-
tween estimated and real channel, as in [13], by :

2

R A R qu,l
MSE(R) £  min Hah - h H
k2 Og(mr—m—k)1
o qu,l ?
= min H(I —hh™) h
£>0

Og(m/—M—k) 1

where A" = " /||h||2. Statistics are evaluated over 100 Monte-
Carlo runs.
Figure 1 presents the MSE of the estimated channel for different
values of SNR with a sample size T = 1000. For this simulation
L isfixed to M" — M + 1. The performance of the algorithm when
an overestimation of channel order occurs remains acceptable. For
example, foraSNR=25dB, M’ = M+2and L = 3, the distance
between estimated and real channel is -23 dB.

Table 1 provides simulation results for several values of M’
and L. The SNR is fixed to 30 dB. It is shown that even for large
values of M’ and L we obtain relatively good performance.

MSE (dB)
M’ L=M'—M+1 L=M'—M+2 L=M'—-M+3
3 —32.15 —20.37 —26.45
4 —24.10 —23.22 —21.35
5 —19.77 —17.84 —18.18
6 —16.17 —18.76 —18.35

Table 1. Channel estimates MSE using CMA approach
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Fig. 1. MSE versus SNR

Table 2 demonstrates the performance of proposed algorithm
for a SNR=30 dB. Different values of T and M’ have been consid-
ered. The value of L is equal to M’ — M + 1. The performance of
the algorithm depends on the sample size. A sample size T = 500
seems to be sufficient to achieve acceptable MSE even for large
values of the estimated order M'.

MSE (dB)
T |M=M+1|M=M+2]| M =M+3
100 —15.23 —12.39 —7.65
250 —22.38 —18.96 —15.78
500 —28.42 —20.49 —18.27

Table 2. Channel estimates MSE using CMA approach

5. CONCLUSION

In this contribution, we propose an identification algorithm robust
to channel order overestimation. This algorithm is based on the
minimization of a CM cost function in conjunction with a sub-
space based criterion. It is shown by simulation that when con-
stant modulus source signal is used, this algorithm achieves good
performance in low/moderate signal to noise ratio.

APPENDIX
(COMPLEX CASE)
For simplicity, we have considered previously the case where the
signals and the channels are real-valued. In the complex case, the
proposed algorithm remains essentially the same except for the
fact that the rotation matrices are function of two angle parameters
6 and « (i.e., — sin(6) and sin(6) are replaced by — sin(6)e’* and
sin(@)e =7, respectively).
In that case, optimizing the CM cost function versus these an-
gle parameters leads to:
min J(d) = min (@’ Gu+ 2g 1) (20)

[[T]|2=1 [[T]2=1
where

G = Z@i ('n)gz (n)T and §= Zai(n)ﬂi(n)

[cos(26), sin(26) cos(a), sin(26) sin(a)]”,

: (12 )" —12"(n)) /2
y'(n) = —Re(Z ()2 (n)") |,
—Sm(Z'(n)Z*(n)")
- _ 12+ 1z m)P?
a'(n) 5 r,

that can be solved in the same way as equation (17).
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