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ABSTRACT

In this paper, the problem of blind deconvolution of dynam-
ical systemsis considered using a state space approach. A
balanced parameterized canonical form is used as a model
for the underlying dynamical system instead of the more
common controller or observable canonical form. The re-
sults are compared with those obtained using a controller
canonical form. It is shown experimentally that using the
balanced parameterized canonical form is more robust than
the ones using a controller canonical form.

1. INTRODUCTION

Blind deconvolution or separation of source signals which
had been mixed by adynamical system has been extensively
studied in recent years [1, 2, 8]. In this paper we wish to
study the blind deconvolution of source signals of dynami-
cal systems of the following form:

x(k+1) =
uk) =

Ax(k) + Bs(k) )
Cx(k) + Ds(k) @)

where s(k) € R" is the source signal. u(k) € R™ is
the sensor output of this linear time invariant (LTI) system.
x(k) € RV isthe state of the dynamical system *.

The problem can be stated as follows: given the sensor
output u(k), isit possibleto recover the sourcesignalss(k).
In general, thisis not possible. However, if we place anum-
ber of assumptions on the source signals then it becomes
possible to recover the source signals from the sensor out-
puts. The usual assumptions placed on the source sighals
areasfollows[2]:

1. The source signals are independent.
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INote that we assumethat there are as many sensors as there are number
of sources. Thisis a particular case of the more general case when there
may be an unequal number of sensors and source signals. In this paper, we
will not deal with this more general case, but instead concentrate on the
particular case when there are equal number of sensors and source signals.
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2. At most one of the source signals is a Gaussian dis-
tributed signal.

3. Itisonly possible to recover the source signals mod-
ulo scale invariance, and polarity.

Since we assume that the source signals are mixed by a
dynamical system, we need to place some further assump-
tions on the dynamical system itself, Common assumptions
on the dynamical systems[6] are as follows:

1. The dynamical system must be causal.

2. The dynamical system is assumed to be time invari-
ant.

3. Thedynamical system is assumed to linear.

This problem set in a state space formulation has been
studied by Zhang and Cichocki [8]. To reducethe number of
parameters to be estimated, they have assumed a controller
canonical form for the parameters A, B,C, D. Thisis a
valid assumption as it is known that a linear time invariant
(LTI) dynamical system isinvariant under coordinate trans-
formations. Hence, the general LTI system as expressed in
Eq(1) and Eq(2) can be transformed into equivalent repre-
sentations, e.g., the controller canonical form using coordi-
nate transformations.

However, there are a number of issues associated with
the approach taken in [8].

e They require the dimension N to be estimated. They
haveindicated that such value can be estimated using,
e.g., Akaike Information Criterion or the Fina Pre-
diction Error criterion. They have further indicated
that if the dimension is over estimated then it will in-
troduce additional delaysin the recovered signals.

e From system theory, it is known that the controller
canonical form has some difficulties, in particular, when
it is used as a parameterization in system identifica-
tion studies. These difficulties include the possibility
of ill conditioning, i.e., the parameter estimation pro-
cess may become unstable due to pole-zero cancella-
tion.
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Itisalso knownin system theory the difficulties encoun-
tered in the application of controller canonical form can be
overcometo alarge extent by the use of balanced parameter-
ization, which is another possible parameterization of linear
systems[3, 4]. In this case, we need to assume that the LTI
system is stable. Thisis a reasonable assumption in most
practical systems.

In this paper, our aim is to explore the possibility of us-
ing balanced parameterization of the LTI system in blind
deconvolution of source signals. While we have not re-
solved completely in this paper the difficulties encountered
in the regquirement to estimate the dimension NV, the pro-
posed method at least overcomes some of the difficulties
encountered in the implementation of the approach used in
[8], e.q., instability of the parameter estimation process.

The structure of the paper isasfollows: in Section 2, we
will give abrief introduction to the balanced realization pa-
rameterization of linear systems. In Section 3 we will give
a description of the estimation algorithm of the unknown
parameters in the balanced parameterized model, while in
Section 4 we will give some comparative results using the
proposed technique and the technique developed by [8]. It
is shown experimentally that using balanced parameteriza-
tion, the results appear to be more robust. Some conclusions
aredrawnin Section 5.

2. BALANCED PARAMETERIZATION OF LINEAR
TIME INVARIANT SYSTEMS

Consider adiscrete linear time invariant system 2:

x(k+1) =
y(k) =

whereu € R" andy € R", andx € RY. If the system
is asymptotically stable, the controllability Grammian Py
and the observability Grammian @ 4, both N x N matrices,
are respectively given by the following dua discrete time
Lyapunov equations:

AdX(k) + Bdu(k:) 3
Cax(k) + Dqu(k) (4)

Py — AP AT =
Qu—ATQ4Aqs =

Discretetime balanced realizationis defined when Py =
Qe =%X4 = diag(al,ag,. . .,UN). The quantitieso;, i =
1,2,..., N arecaled the Hankel singular values.

Inasimilar fashion, it is possible to define balanced re-
taliation of continuous LTI systems. In this case, consider:

B,Bj} )
CiCq (6)

2Note that in this paper we will not give the most general formulation
of balanced realization or parameterization, asthis can be found elsewhere
in the literature; see e.q., [7]. Wewill only give the formulation which has
the same number of inputs and outputs, which is the case considered here.

X =

A:x+ B.u @)
= CCX + Dcu (8)

wherey € R",u € R*, andx € R". The controllability
Grammian P, and observability Grammian () ., both N x N
matrices, are respectively given by the solution to the dual
Lyapunov equations as follows:

A.P. + P.AT
AZQC + QcAc =

_BCBZ (9)
-C; C. (10)

The system is said to be balanced if P, = Q. = X, =
diag(o1,02,...,0N)-

Notethat in both the continuoustime caseand inthe dis-
crete time case, the balanced realization is defined through
the diagonalisation of the controllability Grammian and the
observability Grammian. If the system A., B.,C., D, or
Ay, By, Cy, D4 are given, this can be performed quite eas-
ily. However, if the system is not known and needs to be
estimated from input output data, then it is quite difficult to
obtain the unknown system, as well as satisfying the dual
Lyapunov equations with a diagonal matrix. As aresult, a
number of researchers proposed balanced parameterization
models [7, 3, 4]. These are parameterized models which
will yield a balanced realized state space model, i.e., it al-
lows us to find the particular set of parameters from input
output data which will give a diagonal matrix solution to
the dua Lyapunov equations.

Consider alinear continuoustime invariant system with
N states, and n inputs and n. outputs, parameterized by the
set of parameters© = {X, B, D.., ¢}, where

Y istheset of singular values, givenby o1 > o2
>.>on.0ony > 0.

¢ o={d ¢ N}
¢;jisan — 1 vector and itselements ¢;; €
-z, %]

B. B.=1{B.1) B.2) ... B(N)}

B.(j) isn row vector with real values,
thefirst element of the row is positive
D. n x nrea matrix
Note that here we have taken a simplifying assumption:
al the Hankel singular values are distinct. This assumption
simplifies a number of the structural parameters, which are
usually associated with multiple Hankel singular values. In
practice, this assumption is usualy satisfied, as there are
aways numerical errors which prevent one Hankel singu-
lar value to be exactly the same as another Hankel singular
value.
The state space matrices A, B., C.., D, can be obtained
from this parameter set as follows:
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B. B! =[B.(1)" B.(2" ... B.(N)"]

Co Ce=[Ce(1) Co2) Ce(N) ]
Wherecc(j) = U(]) Bc(j)Bc(j)T
U(¢;) isann vector

Ac Acz[aij]fori,jzl,Q,...,N

D. D.isann x n matrix

The elements of U are given as follows:

U(G)=[ u1j uzy Upj | (11)

where the elements of u; are given asfollows:

Ulj = COSPp_1,COSPp_2 j...cosps jcosp1(12)

U2j = COSPp—1,COSPp_2 j...cosPs jsingi(13)

Uzj = COSPp_1,;COSPp_2j...5iNP2 ; 19

Usj = COSPp_1,;COSPp_2j...5iNP3 ; (15)
(16)

Un—1)j = COSPp_1,jSiNGn_2; a7
Upj = SiNGp_1 (18)

The elements a;; of the matrix A. is given by the fol-
lowing:

[ e BeBG) -
=\ i (03B )BG)T — o Ce)TCH) ]

(19)

Thematrices A., B., C., D.. isbalanced with Grammian
Y = diag(o1,09,...,0N).

This is the parameterization of the continuous LTI sys-
tem. Thereareatotal of N + N(n — 1) + Nn + n? =
(2N + n)n parameters. Note that the number of unknown
parameters is more than the corresponding ones in the con-
troller canonical form. Intuitively speaking, it isthese extra
parameters which allow the parameter estimation algorithm
to perform better than the parameterization using controller
canonical form.

3. DESCRIPTION OF PARAMETER ESTIMATION
ALGORITHM

It is noted that the balanced parameterization is given only
in terms of a continuous LTI system. However, the mea-
surements of sensor outputs are assumed to be in discrete
time, asaresult, wewill need to convert the continuoustime
model using a bilinear transformation into a corresponding
discrete LTI model. Thiswill permit us to use the measure-
ment data to estimate the parameters of the corresponding
discrete LTI model.

The parameters of the discrete LTI system can be es-
timated using the general parameter estimation algorithms
provided by [8].

Now once the parameters are updated using the algo-
rithms given in [8], we will need to perform the inverse bi-
linear transformation into a corresponding continuous LTI
system setting. Through the parameter relationship between
the continuous LTI system parameters and the balanced pa-
rameterization, it is possible to work out a set of new pa-
rameter values for the balanced parameterization which can
be used to update them. Once the parameters are updated,
the cycle can begin again.

The question one wish to ask is: why do we need to go
through this circuitous route in order to obtain an updating
algorithm for the parameters of the balanced parameteriza-
tion form. The answer to this question lies in two aspects:

1. The development of the theory on system identifica
tion using balanced parameterizationis only available
in the continuous time setting. The corresponding
theory of system identification on discrete time bal-
anced parameterization is still unknown. Thisis the
reason why we need to perform the bilinear transfor-
mation so that we can make use of the data which is
assumed to be availablein discretetime. Obvioudly if
we assume that the sampling interval is short then we
can use the continuoustime model directly. However,
in our studieswe do not make this assumption. Hence
we need to develop a general theory which will allow
us to make use of the discrete time data.

2. Had we tackle the parameter estimation of the bal-
anced realization directly, we will need to satisfy the
dual Lyapunov equations at every step. Developing
such an algorithm is a challenge, as it is hot immedi-
ately clear how this can be performed.

A general structure of the parameter estimation can be
described as follows:

Step 1 From the set of parameters ©, obtain the continuous
time balanced parameterization.

Step 2 Use bilinear transformation to transform this contin-
uous LTI system into the corresponding discrete time
parameterization.

Step 3 Estimate the new parameters for the discrete time pa-
rameterization.

Step 4 Convert this new set of parameters for discrete time
parameterization back to continuous time setting us-
ing the inverse bilinear transformation.

Step 5 Convert the new parametersin compatibleformto the
bal anced parameterization.

Step 6 Cyclethrough Steps 1 to 5 until convergence.

The derivation of the parameter updating algorithm is
omitted in this paper due to lack of space.
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Fig. 1. The source signals, the demixed signals, and the
mixed signals respectively using the balanced realization
technique as proposed in this paper.

Fig. 2. The evolution of the source signals, the demixed
signals, and the mixed signals using the method proposed

by [8].

4. EXPERIMENTAL RESULTS

In order to illustrate the issues discussed in previous sec-
tions, we will consider the following experiment.

Experiment 1. n = 2, N = 2. Figure 1 shows the out-
puts from our proposed approach, while Figure 2 shows the
output as obtained from the approach givenin [8].

It isnoted that in the case of evolution of the el ements of
matrices D, and C the approach taken in [8] appear to result
in ayet to be converged system (the parameters do not set-
tle into a steady state, but are oscillating around a constant
value), while in the case of the balanced parameterization,
the results have converged to a steady state.

In addition, though not shown here, the balanced param-
eterization approach does not require the number of states
N of the state space to be known a priori asin [8]. Thisis
determined automatically in the process. Thisis an advan-
tage over the approach taken in [8].

5. CONCLUSION

In this paper, we have considered the possibility of obtain-
ing a balanced redlization of the deconvolution of source
signals mixed by unknown linear time invariant systems.
Our method is based on the work in [8]. The contributions
are threefold: this is the first time that a balanced param-
eterization is applied to blind deconvolution problem, sec-
ondly, in the normal balanced parameterization approach it
reguires access to both the input and output measurements,
while in our case, we do not require the access to source
signals, but instead we work only with the sensor measure-
ments. Thirdly, we have successfully eliminated one of the
assumptions in the approach by [8], viz., we do not require
the number of statesto be known apriori. Instead, the num-
ber of states can be obtained as part of our procedure. All
we need to do is to impose an upper bound for the number
of states, and then our approach will be able to estimate the
number of states online.
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