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ABSTRACT

In this paper, the problem of blind deconvolution of dynam-
ical systems is considered using a state space approach. A
balanced parameterized canonical form is used as a model
for the underlying dynamical system instead of the more
common controller or observable canonical form. The re-
sults are compared with those obtained using a controller
canonical form. It is shown experimentally that using the
balanced parameterized canonical form is more robust than
the ones using a controller canonical form.

1. INTRODUCTION

Blind deconvolution or separation of source signals which
had been mixed by a dynamical system has been extensively
studied in recent years [1, 2, 8]. In this paper we wish to
study the blind deconvolution of source signals of dynami-
cal systems of the following form:

��� � �� � ����� ������ (1)

���� � ����� ������ (2)

where ���� � �� is the source signal. ���� � �� is
the sensor output of this linear time invariant (LTI) system.
���� � �� is the state of the dynamical system 1.

The problem can be stated as follows: given the sensor
output ����, is it possible to recover the source signals ����.
In general, this is not possible. However, if we place a num-
ber of assumptions on the source signals then it becomes
possible to recover the source signals from the sensor out-
puts. The usual assumptions placed on the source signals
are as follows [2]:

1. The source signals are independent.
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1Note that we assume that there are as many sensors as there are number
of sources. This is a particular case of the more general case when there
may be an unequal number of sensors and source signals. In this paper, we
will not deal with this more general case, but instead concentrate on the
particular case when there are equal number of sensors and source signals.

2. At most one of the source signals is a Gaussian dis-
tributed signal.

3. It is only possible to recover the source signals mod-
ulo scale invariance, and polarity.

Since we assume that the source signals are mixed by a
dynamical system, we need to place some further assump-
tions on the dynamical system itself, Common assumptions
on the dynamical systems [6] are as follows:

1. The dynamical system must be causal.

2. The dynamical system is assumed to be time invari-
ant.

3. The dynamical system is assumed to linear.

This problem set in a state space formulation has been
studied by Zhang and Cichocki [8]. To reduce the number of
parameters to be estimated, they have assumed a controller
canonical form for the parameters �������. This is a
valid assumption as it is known that a linear time invariant
(LTI) dynamical system is invariant under coordinate trans-
formations. Hence, the general LTI system as expressed in
Eq(1) and Eq(2) can be transformed into equivalent repre-
sentations, e.g., the controller canonical form using coordi-
nate transformations.

However, there are a number of issues associated with
the approach taken in [8].

� They require the dimension � to be estimated. They
have indicated that such value can be estimated using,
e.g., Akaike Information Criterion or the Final Pre-
diction Error criterion. They have further indicated
that if the dimension is over estimated then it will in-
troduce additional delays in the recovered signals.

� From system theory, it is known that the controller
canonical form has some difficulties, in particular, when
it is used as a parameterization in system identifica-
tion studies. These difficulties include the possibility
of ill conditioning, i.e., the parameter estimation pro-
cess may become unstable due to pole-zero cancella-
tion.
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It is also known in system theory the difficulties encoun-
tered in the application of controller canonical form can be
overcome to a large extent by the use of balanced parameter-
ization, which is another possible parameterization of linear
systems [3, 4]. In this case, we need to assume that the LTI
system is stable. This is a reasonable assumption in most
practical systems.

In this paper, our aim is to explore the possibility of us-
ing balanced parameterization of the LTI system in blind
deconvolution of source signals. While we have not re-
solved completely in this paper the difficulties encountered
in the requirement to estimate the dimension � , the pro-
posed method at least overcomes some of the difficulties
encountered in the implementation of the approach used in
[8], e.g., instability of the parameter estimation process.

The structure of the paper is as follows: in Section 2, we
will give a brief introduction to the balanced realization pa-
rameterization of linear systems. In Section 3 we will give
a description of the estimation algorithm of the unknown
parameters in the balanced parameterized model, while in
Section 4 we will give some comparative results using the
proposed technique and the technique developed by [8]. It
is shown experimentally that using balanced parameteriza-
tion, the results appear to be more robust. Some conclusions
are drawn in Section 5.

2. BALANCED PARAMETERIZATION OF LINEAR
TIME INVARIANT SYSTEMS

Consider a discrete linear time invariant system 2:

��� � �� � ������ ������� (3)

���� � ������ ������� (4)

where � � �� and � � ��, and � � �� . If the system
is asymptotically stable, the controllability Grammian ��

and the observability Grammian 	�, both � �� matrices,
are respectively given by the following dual discrete time
Lyapunov equations:

�� ������
�
� � ���

�
� (5)

	� ���
�	��� � ��

� �� (6)

Discrete time balanced realization is defined when �� �
	� � �� � 
��
���� ��� � � � � �� �. The quantities ��, � �
�� �� � � � � � are called the Hankel singular values.

In a similar fashion, it is possible to define balanced re-
taliation of continuous LTI systems. In this case, consider:

2Note that in this paper we will not give the most general formulation
of balanced realization or parameterization, as this can be found elsewhere
in the literature; see e.g., [7]. We will only give the formulation which has
the same number of inputs and outputs, which is the case considered here.

�� � ������� (7)

� � ������� (8)

where � � ��, � � ��, and � � �� . The controllability
Grammian �� and observability Grammian	�, both���
matrices, are respectively given by the solution to the dual
Lyapunov equations as follows:

���� � ���
�
� � ����

�
� (9)

��
� 	� �	��� � ���

� �� (10)

The system is said to be balanced if �� � 	� � �� �

��
���� ��� � � � � �� �.

Note that in both the continuous time case and in the dis-
crete time case, the balanced realization is defined through
the diagonalisation of the controllability Grammian and the
observability Grammian. If the system ��� ��� ��� �� or
��� ��� ��� �� are given, this can be performed quite eas-
ily. However, if the system is not known and needs to be
estimated from input output data, then it is quite difficult to
obtain the unknown system, as well as satisfying the dual
Lyapunov equations with a diagonal matrix. As a result, a
number of researchers proposed balanced parameterization
models [7, 3, 4]. These are parameterized models which
will yield a balanced realized state space model, i.e., it al-
lows us to find the particular set of parameters from input
output data which will give a diagonal matrix solution to
the dual Lyapunov equations.

Consider a linear continuous time invariant system with
� states, and � inputs and � outputs, parameterized by the
set of parameters 	 � ��� ��� ��� ��, where

� is the set of singular values, given by �� � ��
� �� � �� . �� � 
.

� � � � �� �� � � � �� �.
�� is a �� � vector and its elements ��� �
���

� �
�
� �.

�� �� � � ����� ����� � � � ����� �
����� is � row vector with real values,
the first element of the row is positive

�� �� � real matrix
Note that here we have taken a simplifying assumption:

all the Hankel singular values are distinct. This assumption
simplifies a number of the structural parameters, which are
usually associated with multiple Hankel singular values. In
practice, this assumption is usually satisfied, as there are
always numerical errors which prevent one Hankel singu-
lar value to be exactly the same as another Hankel singular
value.

The state space matrices��� ��� ��� �� can be obtained
from this parameter set as follows:
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�� ��
� �

�
�����

� �����
� � � � ������

�
�� �� �

�
����� ����� � � � �����

�
where ����� � ����

�
�����������

����� is an � vector
�� �� � ���� � for �� � � �� �� � � � � �
�� �� is an �� � matrix

The elements of � are given as follows:

���� �
�
��� ��� � � � ���

�
(11)

where the elements of �� are given as follows:

��� � �������	��������	� � � � �����	������	�(12)

��� � �������	��������	� � � � �����	������	�(13)

��� � �������	��������	� � � � �����	� (14)

��� � �������	��������	� � � � �����	� (15)
... (16)

������� � �������	��������	� (17)

��� � �������	� (18)

The elements ��� of the matrix �� is given by the fol-
lowing:

��� �

�
� �

�
�
����������

� i = j
�

�
�
�
�
�

�
�

�
������������

� � �������
������

�
i �� j

(19)
The matrices��� ��� ��� �� is balanced with Grammian

� � 
��
���� ��� � � � � �� �.
This is the parameterization of the continuous LTI sys-

tem. There are a total of � � ��� � �� � �� � �� �
��� � ��� parameters. Note that the number of unknown
parameters is more than the corresponding ones in the con-
troller canonical form. Intuitively speaking, it is these extra
parameters which allow the parameter estimation algorithm
to perform better than the parameterization using controller
canonical form.

3. DESCRIPTION OF PARAMETER ESTIMATION
ALGORITHM

It is noted that the balanced parameterization is given only
in terms of a continuous LTI system. However, the mea-
surements of sensor outputs are assumed to be in discrete
time, as a result, we will need to convert the continuous time
model using a bilinear transformation into a corresponding
discrete LTI model. This will permit us to use the measure-
ment data to estimate the parameters of the corresponding
discrete LTI model.

The parameters of the discrete LTI system can be es-
timated using the general parameter estimation algorithms
provided by [8].

Now once the parameters are updated using the algo-
rithms given in [8], we will need to perform the inverse bi-
linear transformation into a corresponding continuous LTI
system setting. Through the parameter relationship between
the continuous LTI system parameters and the balanced pa-
rameterization, it is possible to work out a set of new pa-
rameter values for the balanced parameterization which can
be used to update them. Once the parameters are updated,
the cycle can begin again.

The question one wish to ask is: why do we need to go
through this circuitous route in order to obtain an updating
algorithm for the parameters of the balanced parameteriza-
tion form. The answer to this question lies in two aspects:

1. The development of the theory on system identifica-
tion using balanced parameterization is only available
in the continuous time setting. The corresponding
theory of system identification on discrete time bal-
anced parameterization is still unknown. This is the
reason why we need to perform the bilinear transfor-
mation so that we can make use of the data which is
assumed to be available in discrete time. Obviously if
we assume that the sampling interval is short then we
can use the continuous time model directly. However,
in our studies we do not make this assumption. Hence
we need to develop a general theory which will allow
us to make use of the discrete time data.

2. Had we tackle the parameter estimation of the bal-
anced realization directly, we will need to satisfy the
dual Lyapunov equations at every step. Developing
such an algorithm is a challenge, as it is not immedi-
ately clear how this can be performed.

A general structure of the parameter estimation can be
described as follows:

Step 1 From the set of parameters 	, obtain the continuous
time balanced parameterization.

Step 2 Use bilinear transformation to transform this contin-
uous LTI system into the corresponding discrete time
parameterization.

Step 3 Estimate the new parameters for the discrete time pa-
rameterization.

Step 4 Convert this new set of parameters for discrete time
parameterization back to continuous time setting us-
ing the inverse bilinear transformation.

Step 5 Convert the new parameters in compatible form to the
balanced parameterization.

Step 6 Cycle through Steps 1 to 5 until convergence.

The derivation of the parameter updating algorithm is
omitted in this paper due to lack of space.
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Fig. 1. The source signals, the demixed signals, and the
mixed signals respectively using the balanced realization
technique as proposed in this paper.
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Fig. 2. The evolution of the source signals, the demixed
signals, and the mixed signals using the method proposed
by [8].

4. EXPERIMENTAL RESULTS

In order to illustrate the issues discussed in previous sec-
tions, we will consider the following experiment.

Experiment 1. � � �, � � �. Figure 1 shows the out-
puts from our proposed approach, while Figure 2 shows the
output as obtained from the approach given in [8].

It is noted that in the case of evolution of the elements of
matrices�, and� the approach taken in [8] appear to result
in a yet to be converged system (the parameters do not set-
tle into a steady state, but are oscillating around a constant
value), while in the case of the balanced parameterization,
the results have converged to a steady state.

In addition, though not shown here, the balanced param-
eterization approach does not require the number of states
� of the state space to be known a priori as in [8]. This is
determined automatically in the process. This is an advan-
tage over the approach taken in [8].

5. CONCLUSION

In this paper, we have considered the possibility of obtain-
ing a balanced realization of the deconvolution of source
signals mixed by unknown linear time invariant systems.
Our method is based on the work in [8]. The contributions
are threefold: this is the first time that a balanced param-
eterization is applied to blind deconvolution problem, sec-
ondly, in the normal balanced parameterization approach it
requires access to both the input and output measurements,
while in our case, we do not require the access to source
signals, but instead we work only with the sensor measure-
ments. Thirdly, we have successfully eliminated one of the
assumptions in the approach by [8], viz., we do not require
the number of states to be known a priori. Instead, the num-
ber of states can be obtained as part of our procedure. All
we need to do is to impose an upper bound for the number
of states, and then our approach will be able to estimate the
number of states online.
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