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ABSTRACT
Higher-order statistics based inverse filter criteria (HOS-
IFC) proposed by Tugnait and Chi et al. have been
widely used for blind identification and deconvolution
of multiple-input multiple-output (MIMO) linear time-
invariant systems with a set of non-Gaussian measure-
ments. Based on a relationship, that holds true for
finite signal-to-noise ratio, between the optimum in-
verse filter associated with the HOS-IFC and the un-
known MIMO system, an iterative FFT-based blind
system identification (BSI) algorithm for MIMO sys-
tems is proposed in this paper, for which common sub-
channel zeros are allowed and the system order infor-
mation is never needed, and meanwhile its performance
is superior to the performance of Tugnait’s HOS-IFC
approach. Some simulation results are presented to
support the efficacy of the proposed BSI algorithm.

1. INTRODUCTION

Blind identification of a discrete-time multiple-input
multiple-output (MIMO) linear time-invariant (LTI)
system, denoted H[n] (P×K impulse response matrix),
is to estimate H[n] with only a set of non-Guassian
measurements y[n] = (y1[n], y2[n], ..., yP [n])T given by

y[n] = H[n] ∗ u[n] + w[n] =

∞X
i=−∞

H[i]u[n− i] + w[n] (1)

where u[n] = (u1[n], u2[n], ..., uK [n])T and w[n] =
(w1[n], w2[n], ..., wP [n])T are the driving input vector
and measurement noise vector, respectively. Such mod-
els arise in digital multiuser/multiaccess communica-
tions, digital radio with diversity, multisensor systems,
etc. [1, 2] and thus, MIMO blind system identification
(BSI) is essential in these areas.

Tugnait [3] and Chi et al. [4] proposed higher-order
statistics based inverse filter criteria (HOS-IFC) for
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blind deconvolution of MIMO systems (i.e., for esti-
mation of u[n]). Then the system estimate Ĥ[n] is
obtained by cross-correlation of y[n] and the estimate
û[n]. This approach, referred to as the deconvolu-
tion followed by input-output cross-correlation (DEC-
IOCC) method, results in biased system estimates for
finite signal-to-noise ratio (SNR) due to the noise pres-
ence in y[n] and estimation error in û[n] [2].

Recently, Chi and Chen [5] established a connection
between the optimal inverse filter associated with the
HOS-IFC and the non-blind minimum mean-square er-
ror equalizer for MIMO systems. This connection fur-
ther unveils a relationship, which holds true for finite
SNR, between the unknown MIMO system and the op-
timal inverse filter associated with the HOS-IFC. Based
on this relationship, Chi et al. [6] proposed a BSI al-
gorithm for single-input multiple-output systems (K =
1), that outperforms Tugniat’s DEC-IOCC method [3,
4] for finite SNR. Again, based on this relationship,
this paper further proposes a BSI algorithm for MIMO
systems that also outperforms the latter for finite SNR.

2. RELATIONSHIP BETWEEN THE
SYSTEM AND THE OPTIMUM HOS

BASED INVERSE FILTER

For ease of later use, let cum{x1, x2, ..., xp} denote the
joint cumulant of random variables x1, x2, ..., xp and
Fn{·} denote the discrete-time Fourier transform oper-
ator with respect to index n, and define the following
notations

‖ · ‖ : Euclidean vector/matrix norm
E{·} : Expectation operator

Superscript ‘*’ : Complex conjugation
cum{x : p, ...} = cum{x1 = x, x2 = x, ..., xp = x, ...}

Cp,q{x} = cum{x : p, x∗ : q}
γp{x} = Cp,p{x}/C1,1{x}

D{xk; K} = diag{x1, ..., xK} (diagonal matrix)
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Some general assumptions for the noisy output y[n]
of the MIMO system H[n] given by (1) are as follows:

(A1) uk[n], k ∈ {1, 2, ..., K}, is a zero-mean, indepen-
dent identically distributed (i.i.d.) non-Gaussian
random process with Cp,q{uk[n]} 6= 0 and statis-
tically independent of uj [n] for all j 6= k.

(A2) The K-input P -output system H[n] is stable and
P ≥ K.

(A3) w[n] is zero-mean Gaussian, and statistically in-
dependent of u[n].

Processing y[n] by a P -input one-output inverse fil-
ter, denoted v[n] = (v1[n], v2[n], ..., vP [n])T, yields the
deconvolved signal

e[n] = vT[n] ∗ y[n]. (2)

Under the assumptions (A1) through (A3), Chi et al.
[4] find the optimum v[n] by maximizing the following
HOS-IFC (including Tugnait’s HOS-IFC [3])

Jp,q(v[n]) =
|Cp,q{e[n]}|

|C1,1{e[n]}|(p+q)/2
, p + q ≥ 3. (3)

The optimum e[n] = û`[n] (an estimate of u`[n] for
finite SNR) is shown to be α`u`[n− τ`] for SNR equal
to infinity, where α` and τ` are unknown scale factor
and time delay, respectively, and ` ∈ {1, 2, ..., K} is
unknown. Tugnait’s DEC-IOCC method [3] estimates
the `th column of H[n] by

ĥ`[n] =
E{y[m + n]û∗` [m]}

E{|û`[m]|2} . (4)

Through the multistage successive cancellation proce-
dure reported in [3], all of the K driving inputs and
the system H[n] can be estimated, though the resul-
tant system estimate of H[n] is not unbiased for finite
SNR [2].

Consider the HOS-IFC Jp,p (p = q ≥ 2) and define
H(ω) = Fn{H[n]}
V (ω) = Fn{v[n]} associated with Jp,p

Py(ω) = Fk{E{y[n]yH[n− k]}}
Λu = PT

HD {xk = Cp,p{uk[n]/αk}; K}PH

H̃(ω) = H(ω)Γ(ω)APH = Fn{H̃[n]} (5)

sk[n] : kth entry of s[n] = H̃T[n] ∗ v[n]

where Γ(ω) = D{xk = e−jωτk ; K} is a “time-shift”
diagonal matrix, A = D{xk = αk;K} is a scaling di-
agonal matrix, and PH is a K×K permutation matrix.
The nonlinear relationship between V (ω) (P ×1 filter)
and H(ω) is described by the following fact.
Fact 1: (Derived from Property 2 in [5]) For finite
SNR and sufficient length of v[n],

PT
y (ω)V (ω)γp{e[n]} = H̃∗

(ω)ΛuG(ω) (6)

where G(ω) is a K × 1 vector with the kth element
Gk(ω) = Fn{|sk[n]|2(p−1) · sk[n]}.

¤
Let vk[n] (or V k(ω) = Fn{vk[n]}), k = 1, 2, ..., K

denote the optimum inverse filters associated with the
HOS-IFC Jp,p with respect to the inputs uk[n], k =
1, 2, ..., K, respectively. Furthermore, let us define

V[n] = (v1[n],v2[n], ...,vK [n])
V(ω) = Fn{V[n]} = (V 1(ω),V 2(ω), ..., V K(ω))

Ṽ(ω) = V(ω)PV (i.e., Ṽ[n] = V[n]PV)
ek[n] = vT

k [n] ∗ y[n]
Λe = PT

VD {xk = γp{ek[n]}; K}PV

si,j [n] : (i, j)th element of S[n] = H̃T[n] ∗ Ṽ[n]

where PV is a K × K permutation matrix. Concate-
nating the K relations of (6) associated with vk[n], k =
1, 2, ..., K yields the nonlinear relationship between V(ω)
(P×K system) and H(ω) as described by the following
fact.
Fact 2: For finite SNR and sufficient length of vk[n]’s,

PT
y (ω)Ṽ(ω)Λe = H̃∗

(ω)ΛuG(ω) (7)

where G(ω) is a K×K matrix with the (i, j)th element
[G(ω)]i,j = Fn{|si,j [n]|2(p−1) · si,j [n]}.

¤
Note that the relationship given by (7) implies that

H[n] can be estimated (up to a time-shift matrix, a
scaling matrix and a permutation matrix; see (5)) from
the cross-spectral matrix Py(ω) and the optimal in-
verse filter Ṽ(ω) (a permutated version of V(ω)). Next,
let us present an iterative algorithm for estimating H[n]
based on the relationship given by (7).

3. BLIND IDENTIFICATION OF MIMO
SYSTEMS

Let ωl = 2πl/L, l = 0, 1, ...,L − 1, and let

H[l] = H(ωl) (similarly for Py, V ,G, etc.)
ak = (ak[0]T, ..., ak[L − 1]T)T, k = 1, 2, ...,K

bk = (bk[0]T, ..., bk[L − 1]T)T, k = 1, 2, ...,K

where ak[l] and bk[l] are the kth column of the matrices(
PT

y [l]Ṽ [l]Λe

)
and

(
H̃∗

[l]ΛuG[l]
)
, respectively.

Finding the MIMO system H(ω) that satisfies the
relationship given by (7) is equivalent to finding H[l],
l = 0, 1, ...,L − 1, such that

a = (aT
1 , aT

2 , ..., aT
K)T = b = (b

T

1 , b
T

2 , ..., b
T

K)T. (8)
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Equation (8) implies that H̃(ω) can be estimated up
to a scale factor by maximizing the following objective
function:

C(H̃) =
|aHb|

‖a‖ · ‖b‖ (9)

because 0 ≤ C(H̃) = C(βH̃) ≤ 1 for any non-zero
scale factor β and C(H̃) = 1 as a = cb for any non-
zero constant c. Thus, H[n] can be estimated (up to
a time-shift matrix, a scaling matrix and a permuta-
tion matrix) by the following iterative algorithm with
a given set of finite measurements y[n].

BSI Algorithm:

Step 1. Blind Deconvolution and Cross-spectral Matrix
Estimation

(S1) Obtain the K optimum inverse filters v̂k[n] and
êk[n], k = 1, 2, ..., K associated with the HOS-
IFC Jp,p, and then form Ṽ[n] = (v̂1[n], v̂2[n], ...,
v̂K [n]), Λ̃e = D{xk = γp{êk[n]}; K} and Λ̃u =
D{xk = Cp,p{êk[n]};K}.

(S2) Obtain the cross-spectral matrix estimate P̂y[l]
by multichannel power spectral estimation meth-
ods, and then compute A[l] = P̂T

y [l]Ṽ [l]Λ̃e.

Step 2. System Identification

(S3) Set i = 0. Set initial values H̃0[l] for H̃[l] and a
convergence tolerance ε > 0.

(S4) Update i by i + 1. By Fact 2, compute Gi−1[l]
from H̃i−1[l] and Ṽ [l] and then obtain

H̃i[l] =
(
A[l]G−1

i−1[l]Λ̃
−1

u

)∗

which is then normalized by
∑

l ‖H̃i[l]‖2 = 1.

(S5) If C(H̃i) > C(H̃i−1), go to (S6); else compute
∆H̃i[l] = H̃i[l]− H̃i−1[l] and update H̃i[l] via

H̃i[l] = H̃i−1[l] + µ ·∆H̃i[l]

where µ is chosen such that C(H̃i) > C(H̃i−1),
and then normalize H̃i[l] by

∑
l ‖H̃i[l]‖2 = 1.

(S6) If
C(H̃i)− C(H̃i−1)

C(H̃i−1)
> ε,

then go to (S4); otherwise, the frequency response
estimate Ĥ[l] = H̃i[l], l = 0, 1, ...,L − 1, and its
L-point inverse FFT Ĥ[n] are obtained.

Several worthy remarks regarding the proposed BSI
algorithm are as follows.

(R1) In Step 1, Chi and Chen’s fast algorithm (Al-
gorithm 2 in [5]) with certain initial conditions
for vk[n]’s suggested by Inouye and Tanebe [7]
can be used to obtain the K optimum inverse fil-
ters v̂k[n]’s. The Blackman-Turkey multichannel
spectral estimator can be used to obtain P̂y[l].

(R2) In (S3) of Step 2, the initial values H̃0[l] can be
chosen as the FFT of the associated channel es-
timates (ĥ1[n], ĥ2[n], ..., ĥK [n]) obtained by Tug-
nait’s DEC-IOCC method (see (4)). Moreover,
the convergence of the BSI algorithm is guaran-
teed because C(H̃i) is upper bounded by unity
and its value is increased at each iteration.

(R3) The proposed BSI algorithm is never limited by
the length of Ĥ[n] as long as the FFT size L is
chosen sufficiently large such that aliasing effects
on the resultant Ĥ[n] are negligible. In other
words, the knowledge of system order is never
needed, and meanwhile, the system H[n] is also
allowed to have common subchannel zeros.

(R4) The obtained Ĥ[n] is robust against Gaussian
noise since Fact 2 (i.e., (7)) is valid for any SNR,
although v̂k[n]’s and P̂y[l] depend on SNR.

4. SIMULATION RESULTS

Two examples are provided to justify the efficacy of the
proposed BSI algorithm for MIMO systems. In each ex-
ample, fifty independent runs were performed for differ-
ent data length N and noise being white Gaussian with
SNR , E{‖y[n]−w[n]‖2}/E{‖w[n]‖2} over the range
between 0 and 20 dB. Synthetic y[n] were processed by
Tugnait’s DEC-IOCC method [3] and by the proposed
BSI algorithm with the inverse filters vk[n] associated
with the HOS-IFC J2,2 assumed to be causal FIR filters
of order equal to 24, FFT size L = 64, and the con-
vergence tolerance ε = 10−10. The overall normalized
mean-square errors (ONMSE) (defined in [3]) between
the estimate Ĥ[n] and the true H[n] were calculated as
the performance index.
Example 1. 2× 2 MA(6) system (taken from [3])

The driving inputs u1[n] and u2[n] were assumed
to be mutually independent, zero-mean i.i.d., binary
sequences taking values ±1 with probability 0.5 each.
Figure 1 shows ONMSE versus SNR associated with
the proposed BSI algorithm (solid lines) and the DEC-
IOCC method (dashed lines), from which one can ob-
serve that the proposed BSI algorithm performs much
better than the DEC-IOCC method (lower ONMSE).
Example 2. 3× 2 MA(6) system (taken from [3])

The two driving input signals were assumed to be
mutually independent, zero-mean i.i.d. sequences for
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Case 1: uk[n], k = 1, 2 are both binary and Case 2:
u1[n] is exponentially distributed and u2[n] is binary.
Figures 2(a) and 2(b) show ONMSEs associated with
Cases 1 and 2, respectively. Again, one can observe,
from these figures, that the proposed BSI algorithm
performs much better than the DEC-IOCC method.

The above examples demonstrate the efficacy of the
proposed BSI algorithm. As a final remark, typically,
only 6 ∼ 9 iterations in Step 2 were spent in obtaining
Ĥ[n] in the above two examples.

5. CONCLUSIONS

Based on the relationship (see Fact 2) between the op-
timum inverse filters associated with the HOS-IFC Jp,p

(see (3) with p = q ≥ 2) and the unknown MIMO sys-
tem, a frequency-domain BSI algorithm has been pre-
sented which iteratively estimates the unknown MIMO
system from the optimum inverse filters and an esti-
mate of the multichannel cross-spectral matrix of mea-
surements. The unknown MIMO system is allowed to
have common subchannel zeros, and the system order
information is never needed. Some simulation results
were provided to support that the proposed BSI algo-
rithm outperforms Tugniat’s DEC-IOCC method.
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Figure 1. Simulation results of Example 1. Plots of ONM-

SEs versus SNR associated with the proposed BSI algorithm

(solid lines) and the DEC-IOCC method (dashed lines), re-

spectively, for data length N = 1500 (‘◦’), 3000 (‘�’), and

6000 (‘¦’).
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Figure 2. Simulation results of Example 2 for (a) Case 1,

and (b) Case 2, respectively. Plots of ONMSEs versus SNR

associated with the proposed BSI algorithm (solid lines)

and the DEC-IOCC method (dashed lines), respectively,

for data length N = 1500 (‘◦’), 3000 (‘�’), and 6000 (‘¦’).
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