
BLIND SEPARATION OF BPSK SIGNALS USING NEWTON’S METHOD ON THE STIEFEL
MANIFOLD

Jun Lu, T. N. Davidson and Z.-Q. Luo

Department of Electrical and Computer Engineering,
McMaster University,

Hamilton, Ontario L8S 4K1, Canada.

ABSTRACT

We propose a new approach to solving the problem of blind
separation of BPSK signals. Using the constant modulus
property of the signal, we formulate this problem as a con-
strained minimization problem that can be solved efficiently
using an extended Newton’s method on the Stiefel mani-
fold. Compared with the existing separation methods, the
proposed method is quite robust to additive noise, achieves
a low bit error rate, and enjoys a quadratic convergence
rate and a low computational complexity. Simulation re-
sults show that our method is a competitive blind separation
method.

1. INTRODUCTION

The blind signal separation (BSS) problem consists of re-
covering a set of statistically independent sources from a
group of sensor observations. The challenge of this prob-
lem lies in the fact that the separation is attempted “blindly”;
that is, without the knowledge of the sources nor the mixing
environment. This paper considers a digital communication
scenario in which

�
independent binary signals are trans-

mitted to an antenna array of � antennas (
��� � ). We as-

sume that the sources are synchronized and the delay spread
is negligible. The received signals at the antenna array can
then be modelled as

��� �	��

����� �	������� �	��� (1.1)

where ��� �	� is the sequence of vectors of the received sig-
nals at the antenna array, � is the channel (mixing) matrix,��� �	� is the sequence of vectors of the transmitted signals,
and ��� �	� is the sequence of vectors of additive noise at the
antenna array. The goal is to blindly determine a separating
matrix � such that � ��� �	� resembles ��� �	� . By ‘resemble’
we mean that as the influence of noise decreases, � ��� �	� ap-
proaches ��� �	� up to a permutation and change of signs.
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In the general problem of blind signal separation from
a linear mixture (1.1), the sources are arbitrary indepen-
dent signals and higher-order statistics are usually required
to determine the separating matrix � . However, for dig-
ital communication signals, the sources are constrained to
a finite alphabet and more efficient separation algorithms
can be designed by exploiting this property [1, 4, 5, 8–10].
Unfortunately, the iterative least squares method in [8] and
the ‘hypercube’ method in [4, 5] require the solution of
non-convex optimization problems and hence these meth-
ods must include careful detection and management of lo-
cally optimal solutions. The clustering-based method in [1]
is sensitive to mis-classification caused by additive noise,
the analytic constant modulus method in [9] suffers from
sensitivity to noise and occasional divergence and the ‘poly-
hedral’ method in [10] is quite sensitive to the direction of a
randomly chosen initial vector. In this paper, we use the
constant modulus property of the signal to formulate the
BSS problem as a constrained optimization problem over
the Stiefel manifold and solve it using Edelman’s extended
Newton’s method [3]. Our method enjoys a quadratic con-
vergence rate, and simulation results show that it is robust to
additive noise and that it achieves a low bit error rate (BER).

2. PROBLEM FORMULATION

For clarity in the exposition, we will restrict our discussion
to the case of binary phase shift keying (BPSK) for which all
elements of ��� �	� are ��� . However, our method can be easily
generalized to the general M-ary PSK modulation case. We
consider the model given in (1.1) and assume that the mix-
ing matrix � has full column rank. Suppose � vectors of
data samples have been collected at the antenna array. Then
the model (1.1) can be re-written in matrix form as

� 
�� ����!"� (2.1)

where
� 
$#%��� � ���'&'&'&(�)��� � �%* and !+
$#%��� � ���'&'&'&(�)��� � �%*

are �-,.� matrices, and �"
/#0��� � ���'&'&'&��1��� � �%* is a
� ,.�

matrix.
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In common with many other BSS algorithms, our
method starts with the pre-processing step of pre-whitening
the received signals. By doing so, the cross-correlations
among the received signals are removed, and the prob-
lem dimension is reduced to

� , � . Let the signal cross-
correlation matrix be denoted by

� 
 # ��� � * ����� & The
pre-whitening step can be carried out by first computing the
eigen-decomposition of

�� 
������ � 
 � �
	��
��
�	'��� ��	 �� ����
�	�� � � � 	� � ��
�	 � �
(2.2)

where � is orthonormal, the (nonnegative) diagonal ele-
ments of � are arranged in nonincreasing order, ��	 and����
�	 consist of the first

�
and last # ��� � * diagonal ele-

ments of � , respectively, and � is partitioned conformally
with � to form �
	 and �
��
�	 . The pre-whitening matrix
can be chosen as � 
�� 
������	 � � 	 & The pre-whitened signal
is then given by  


 � � 
"! � �$#! �
where ! 
%� 
������	 � � 	 � and #! 
%� 
������	 � � 	 ! . Since
the BPSK sources are assumed to be zero-mean, of unit-
variance and statistically independent, the matrix ! is or-
thonormal. Our goal is then to determine an orthonormal
separating matrix & such that'� 
 &  
 & ! ��� & #! (2.3)

resembles the source signal � . Mathematically, by ‘resem-
ble’ we mean & !/
�(�) (2.4)

where ( is a diagonal matrix with diagonal entries being
��� , and ) is a permutation matrix. Consequently, we have'�

*(�)�� � & #!"� implying that in the noise free case,

'�
and � are identical up to a row permutation and change of
signs. Now the separated signals

'� should be ��� . Using+-,/.
to denote the #10 ��2.* th element of a matrix 3 , we can

write
'4-5 6 
87 	9;: ��< 5 9>=?9 6 . We propose to solve the BSS

problem using the following constant modulus formulation:

minimize

	@ 5 : �BA@6 : �DCFEEE
	@9;: � < 5 9�=?9 6 EEE

� � �HG �
subject to & � & 
�IH	 & (2.5)

The following proposition indicates that every optimal solu-
tion of problem (2.5) is a separating matrix when � is large
enough. Therefore, we can solve this minimization problem
(2.5) for the separating matrix & .

Proposition 1 Suppose the noise power is zero. Let � be a� ,KJ 	 matrix containing all J 	 possible combinations of ���
in its columns. Let & be an optimal solution of # J & L * . Then& is a separating matrix; i.e. (2.4) holds.

Proof: Let M 
 & ! . Then
'� 
 M � . Since & is the

optimal solution of (2.5), & must be orthonormal and the
entries of

'� are ��� . Since ! is orthonormal, it follows thatM is also orthonormal. We will show that there is only one
non-zero element on each row and column of M , and this
element can only be ��� . Then M 
"(�) . To show this, we
only need to show that there is only one non-zero element
on each row of M . Once this is established, we can use
the property MNM � 
*I to conclude that all other elements
on the same column as this non-zero element must be zero,
and this non-zero element can only be ��� .

Let O � be a row of matrix M . In the absence of noise,
the corresponding row in

'� is'� � 
 O � � � or
'� 
 � � O � (2.6)

We will use induction on
�

to show that there exists only
one non-zero entry in O . In the case of

� 
 � , (2.6) reduces
to
'� 

�-P , where

'� and � are J , � vectors, and P is a scalar.
Since the entries of

'� and � are ��� , P can only be ��� . The
proposition holds true in this case.

Suppose that the proposition holds true for
� 
RQ ; i.e.,

if
'� 9 
 � � 9 O 9 � then O 9 has only one non-zero element. Now

we will prove that the statement is true for
� 
"Q�� � case;

i.e., for '� 9;S � 
 � � 9;S � O 9;S � � (2.7)

there is only one non-zero entry in vector O 9;S � . Rewrite
(2.7) as � '� �'� � � 
T�VU � � 9� U � � 9 � � PW�O �X� � (2.8)

where
'� � and

'� � are J 9 , � vectors, U is a J 9 , � vector with
all its entries being � ’s, PY� is the first element of O 9;S � , andO � contains the remaining entries of O 9;S � . If PW��
Z� , the
first row of (2.8) becomes

'� � 
 � � 9 O � . From the inductive
hypothesis we know that there is only one non-zero entry inO � . Therefore, only one element in O 9;S � can be non-zero,
proving the proposition in this case. If P?�\[
]� , subtracting
the second row of (2.8) from the first, we have'� � � '� � 
 J PW� U & (2.9)

Since the entries of
'� � and

'� � are ��� , PW� can only be ��� .
Suppose PW� 
 � , then from (2.9) we know there can only be'� � 
 U and

'� � 
 � U . Substituting PY� 
 � and
'� � 
 U into

the first row of (2.8), we get U 
 U � � � 9 O � & This impliesO � 
_^ because � � 9 has full column rank. Therefore, vectorO 9;S � has only one non-zero entry, namely P?� , proving that
the proposition is true in this case. The case P?� 
 � � can
be treated similarly. This completes the induction on

�
and

the proof of proposition. Q.E.D.

Notice that the objective function in (2.5) is smooth in& . This makes it possible to apply existing optimization
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techniques to solve (2.5). However, the orthonormal con-
straint & � & 
 I is cumbersome to handle computation-
ally. Geometrically, the feasible set defined by & � & 
*I
corresponds to the so called Stiefel manifold. Our approach
is to apply the extended Newton’s method over the Stiefel
manifold [3] to this problem by following the geodesic di-
rections (i.e., the shortest curve between two points on the
manifold). Since the iterates are confined to the Stiefel man-
ifold, the problem is effectively reduced to an unconstrained
one [3]. (See [6] for an alternative algorithm which does not
take geodesic steps and [7] for the application of that algo-
rithm to a different BSS problem.) If we let

� # & * denote the
objective in (2.5), the application of Edelman’s algorithm to
our blind signal separation problem is as follows:

1: Choose an initial separating matrix & such that & � & 
I ;
2: Compute the gradient of

� # & * at point & , which is given
by � 
���� �\& � � � & � where ��� is the

� , � matrix of
partial derivatives of

� # & * with respect to the elements
of & ; i.e. � �����15 6 
��	��	
�� 
 ;

3: Compute the Newton direction � such that & � � 
��� � & and

����� # � * � &�������� #�� � � � * ��������� # � � � � * &� �J � � & � ��� 
 ��� �
where ������� # � *�
 # � � �\� * �WJ , � 
 I ��&\& � and����� # � * is defined by

� ����� # � *��
9�� 
 J @ 5�� 6 � � �

� < 5 6 � < 9�� � � �15 6! 
4: Move along the Newton direction � from & to & #�")*

using the geodesic formula, & #�")*�
 &#�%$'& #�" & � � * �
where the step size " is determined via an Armijo-type
line search [2];

5: Repeat from step 2 until the norm of the Newton direc-
tion � is smaller than a pre-set threshold.

3. SIMULATION RESULTS

We now compare the performance of our method with two
methods which exploit the geometry of the pre-whitened
BPSK signal separation problem, namely Hansen’s hyper-
cube method [4, 5] and Xavier’s polyhedral method [10].
The scenario we consider is that in [4]; i.e.,

� 
)( BPSK
signals, � 
 L antennas and � 
 � �Y� data samples,
with the elements of the mixing matrix � being indepen-
dent zero-mean Gaussian random variables of the same vari-
ance. As in [4] the columns of � are normalized to have
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Fig. 1. Raw bit error rates

unit norm, and matrices with a correlation between a pair
of columns greater than 0.95 are excluded. A total of LW�Y�Y�
Monte Carlo runs were performed for each SNR point, and
the ambiguity in the BSS problem (2.4) was resolved via
differential encoding and best fit selection. Since these three
blind methods are ‘zero-forcing’ in nature, we provide re-
sults for a ‘zero forcing’ separator with full channel knowl-
edge as a benchmark. In that case,

'� 
 � ���+*)!"� where�+* is the pseudo inverse of the matrix � .
Fig. 1 shows the raw bit error rates (BERs) of the three

blind methods of interest and the reference zero-forcing
method, from which it is clear that our method is much
closer to the benchmark than the other two methods. How-
ever, the raw BER can be distorted by ‘failures’ of the blind
methods; i.e., when & ! is not close to (�) [see (2.4)]. By
computing the Frobenius norm of the difference between& ! and the nearest matrix of the form (�) we can identify
such failures and remove the corresponding records. The re-
sulting BER curves are shown in Fig. 2 and the correspond-
ing failure rates are shown in Fig. 3. Again our method
appears to have a clear advantage.

Finally, we compare the number of floating point oper-
ations (FLOPs) required to calculate & in our implemen-
tations of the blind methods (see Fig. 4). Our method ap-
pears to have a significant advantage here too. It is inter-
esting to note that Hansen’s hypercube methods requires
more FLOPs at higher SNR. This is because the hypercube
method employs an SNR dependent statistical test to deter-
mine whether a globally optional solution to the embedded
non-convex optimization problem has been achieved. If the
test is negative, the optimization routine is repeated, at ad-
ditional computational cost.
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