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ABSTRACT

The Autocorrelation Matching method is a second order statistics-
based blind MIMO FIR channel equalization technique designed
for wireless communication systems using multiple receiving an-
tennas. This paper presents a closed-form solution to the optimal
zero-forcing equalizer for the Autocorrelation Matching method.
It can recover a transmitted signal with maximum SNR from an
unknown MIMO FIR channel based on the autocorrelation coef-
ficients of the transmitted signal and the autocorrelation matrices
of the received signals. Numerical results obtained from intensive
computer simulations are also given in this paper, which verify the
effectiveness and accuracy of the closed-form solution.

1. INTRODUCTION

Blind MIMO (multiple-input multiple-output) FIR (finite input re-
sponse) channel equalization techniques refer to a category of sig-
nal processing methods that are designed to recover a number of
input signals distorted by an unknown MIMO FIR channel with-
out using training signals to identify the channel. The recovery
of input signals is in general based on some statistical information
about the input signals, the output signals of the channel, and some
structure information about the channel model.

The Autocorrelation Matching (AM) method is a second order
statistics-based blind MIMO FIR channel equalization technique
designed for wireless communication systems using multiple re-
ceiving antennas [1]. It requires (1) the autocorrelation functions
of the signals transmitted into an MIMO FIR channel satisfy a lin-
ear shift-independence condition; and (2) the MIMO FIR chan-
nel itself satisfies an FIR invertible condition. With these condi-
tions satisfied, a transmitted signal is equal to an output signal of a
MISO (multiple-input single-output) FIR equalizer applied to the
received signals from the MIMO FIR channel up to a unitary fac-
tor and a finite delay, if and only if the autocorrelation function of
the output signal equals that of the transmitted signal.

The AM method can be used to design an interference-resist
wireless communication system [2], such as a wireless local area
network operating on an unlicensed spectrum where strong inter-
ference may exist. In such system, the signal sent by a transmitter
is always filtered using a special filter and thus has a unique au-
tocorrelation function different from all interfering signals; it is
separated from the interfering signals and equalized using a MISO
FIR equalizer applied to the received signals of multiple receiv-
ing antennas at a receiver. The AM method can also be used to
design a distributed wireless MIMO communication system with
high spectrum efficiency [1]. In such system, all transmitters send
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signals, each filtered using a distinct filter and thus having a dis-
tinct autocorrelation function, to a receiver over the same carrier
at the same time; these signals are separated and recovered using
a group of MISO FIR equalizers at the receiver, each recovering a
transmitted signal.

The principle of the AM method has been proved in [1, 2, 3].
The algorithms used to evaluate the MISO FIR equalizers in [1, 2,
3] are iterative ones, which suffer from local minima. To solve this
problem, this paper presents a closed-form algorithm to compute
the optimal zero-forcing MISO FIR equalizers for the AM method.
The MISO FIR equalizers are computed based on the autocorrela-
tion functions of the transmitted signals and the autocorrelation
functions of the received signals. The MIMO FIR channel itself,
including the channel order, does not need to be known.

Compared with the closed-form solution given in [4], this so-
lution is based on weaker conditions on the channel and thus has
wider applicability.

2. PROBLEM FORMULATION

This paper is focused on the recovery of one transmitted signal
from an unknown MIMO FIR channel using a MISO FIR equal-
izer. A communication system model based on the AM method for
this scenario is shown in Fig. 1.
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Fig.1 A communication system model based on the AM method

Where,
w(t):  avector of NV information signals.
w(t) = [wi(t), wa(t), -, wn (t)]"
F(z): agroup of N pre-filters.
F(2) = diag(fi(2), f2(2), -, fn(2))
s(t): a vector of IV transmitted signals.
s(t) = [s1(t), 52(t), -+, sn (1))
H(z): an M x N FIR channel.
H(z) = [ZlL:ho hmn(l)zil]%fvjyzl,l
n(t):  avector of M additive noises.
n(t) = [na(t),n2(t), - na ()]
x(t):  avector of M received signals.
x(t) = [x1(t), z2(t), - -, 2n (1))
ei(z): avector of M FIR equalizers for recovery of s1(t).

ei(z) = [ZIL:CO 611(1)247 SR ZIL:CO €1M(z)27l]T
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an estimate of s (¢).
an FIR filter that reverses f1(z) approximately.
an estimate of w1 (¢).
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The above system can be described by,
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where polynomials in [ ] serve as convolution operatorsand ¢ € Z.
The degree of the overall system is L = L, + Le.

The MIMO FIR channel response in Eq(1) can be formulated
using matrices.

%x(t) = Hs(t) + n(t)

where, the M (L.+1)-vector signal x(t), the N (L~+1)-vector sig-
nal §(¢), and the M (L.+1)-vector signal () are re-arrangements
of the received vector signal x(¢), the transmitted vector signal
s(t), and the noise vector signal n(t) respectively. In detail,

x(t) = [X(),%3 (1), Xy ()"
s(t) = [T(1),85(t), .85 (1)
a(t) = [p7(t),83 (1), - 0y 0)]"

in which %, (t), 8, (t), and ., (¢) are given by,

Zn(t) = [2m(t),zm(t—1), -, xm(t — Le)]T
Sn(t) = [sn(t),sn(t—1), -, sn(t — L)]T
Am(t) = [m(t),nm(t = 1), nm(t — Le)]”

form =1,2,---, M;the M(L. +1) x N(L + 1) matrix His a
matrix representation for the MIMO FIR channel H(z),

r a M,N
H= [Hmn]m,nzl,l

in which H,,,.’s are (L. + 1) x (L + 1) Toeplitz matrices,

hmn(()) hmn(Lh) T 0 0
0 hmn(O) mn(Ly) e 0
0 e 0 hmn(()) hmn(Lh)

The channel matrix H can also be deemed as a row of N Sylvester
matrices, ~ L B
H=[H,Hy, -, Hy]|
in which each Sylvester matrix H., contains a column of M Toeplitz
matrices H.»,’s.
The composite system response in Eq(1) can also be formu-
lated using matrices.

y1(t) = &1 Hs(t) + &1 n(t)

where, the M (L. + 1)-vector e; denote the MISO FIR vector
equalizer ey (z) that recovers s (¢). In detail,

_ ~T ~T ~T 1T
€1 = [611,812, , 1]
in which each entry is given by,
~ T
€1m = [€1m(0)7 €im(1)s """ elm(Lc)]

form=1,2,---, M.

The objective of this paper is to design the optimal zero-forcing
equalizer e; that minimizes ||€1]| subject to

elH =[f7,1(l),07,---,07]

where f(;.1)({1) is a unitary (L + 1)-vector with the (i1 + 1)™"
entry being one and all other entries being zero. This is done using
the autocorrelation function of x(¢) and the autocorrelation func-
tion of s1(¢t). The MIMO FIR channel H(z), the channel degree
Ly, and the autocorrelation functions of s2(t), ss(t), - -, sn(t)
do not need to be known.

The following assumptions are needed throughout this paper.

AS1: wi(t) is a wide-sense stationary vector sequence with
zero mean and unitary variance. It is temporally white and spa-
tially uncorrelated, i.e., E(w(t)w" (t — k) = 6(k)Ifork € Z.

AS2: n(t) is wide-sense stationary vector sequence with zero
mean and unknown variance [o7, 03, - - -, 03,7 . It is temporally
white and spatially uncorrelated, i.e, E(n(t)n” (t — k) = 5(k)
diag(oi, o3, --,0%) fork € Z.

AS3: n(t) and w(t) are temporally uncorrelated, i.e., E(w(t)
n(t—k)=0forke 2.

3. CONDITIONS

It may be impossible to recover a transmitted signal from a MIMO
FIR channel using a MISO FIR equalizer. In addition, second or-
der statistics are in general insufficient for blind MIMO FIR chan-
nel equalization [5]. In order to assure the validity of using the
AM method in the wireless communication system shown in Fig.
1, the following conditions must be satisfied.

3.1. Channel Condition

In order to assure the existence of a MISO FIR equalizer e (z)
that can recover s;(¢) with delay ! from a MIMO FIR channel
H(z), the channel must satisfy Condition 1 below.

Condition 1

The (I + 1)*" column vector in H; is independent of all col-
umn vectors of Hy_n and all other nonzero column vectors of
1:11, where 1:1271\{ = [I:IQ,I:IS, oo ,I:IN].
Theorem 1

A signal s1(¢) can be equalized from a MIMO FIR channel
H(z) with equalization delay {, 0 < I < L, using a MISO FIR
filter e1(2) if and only if Condition 1 is satisfied. (proof omitted)

In order to equalize a signal s1(t) from a MIMO FIR chan-
nel H(z) using a blind equalization method, we need a stronger
condition on the channel than Condition 1. It is stated below.

Condition 2

The (I + 1)*" column vector in H; is independent of all col-
umn vectors of Ho_,,; and all nonzero column vectors of H; are
linear independent.

Note that the above conditions are weaker than the necessary
conditions often cited in the literature of blind MIMO FIR channel
equalization, such as that H(z) is irreducible [6] and that the de-
terminants of all N x N minors of H(z) is coprime [7]. The above
conditions imply that one or more signals can be recovered from
a MIMO FIR channel even though the entire MIMO FIR channel
cannot be reversed using a MIMO FIR equalizer.

3.2. Signal Condition
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In order to assure that a transmitted signal can be recovered by
an output signal of a MISO FIR equalizer by matching the autocor-
relation functions of them, the transmitted signals need to satisfy
Condition 3 below.

Condition 3
The set of shifted autocorrelation functions of these signals,
{rn(k=0n=1,2,---,N;1=0,%+1,+2,--- L}, is linearly
independent for |k| > L., where r, (k) = E(sn(t)s,(t — k)).
Condition 3 is called a linear shift-independence condition. It
can be equivalently stated as follows.

The N(2L +1) x N(2L + 1) matrix S = [S1, Sz, -+, Sn]
has full rank for some 1%, 1%, - - - , Ty (2+1) € Z, With |T1], |13,
-~ |Tn@rt+1)| > Le, Where S,,’s are given by,

rn (1)
’f’n(Tz)

rn(Tl =+ L)
Sn — ’f’n(TQ =+ L)

rn(Tl - L)
’f’n(TQ — L)

Theorem 2

In a noisy MIMO FIR system y1(t) = [e] (2)H(2)](s(t)) +
[eT (2)](n(t)) with H(z) satisfying Condition 1 and s(t) satisfy-
ing Condition 3, the transmitted signal s1(¢) is recovered by the
output signal y1(¢) up to a unitary factor and a finite delay, i.e.,

y1(t) = disi(t — 1) + &1 n(t) )

if and only if there exist 71, T%, - - -, Tv(2p4+1) € Z With |T1| #
|Ta| # -+ # [Tnert1)| > Le such that E(yi(t)yi(t — k) =
ri(k) fork = T1,Ts,- -, Tn(2r+1)- (see [3] for proof)

According to Theorem 2, a match of autocorrelation functions
between y1(t) and s1(¢) theoretically guarantees a perfect zero-
forcing equalization regardless of the noise power. In practice, the
accuracy of the zero-forcing equalization is still affected by the
noise because the autocorrelation function of y (¢) is estimated
from data samples of x(¢) and thus becomes less accurate as the
noise power increases. Nonetheless, given a SNR, the accuracy of
zero-forcing equalization can be improved by using a large number
of data samples in the estimation.

Note that the information signal w(¢) in general does not sat-
isfy Condition 3. This is why the pre-filter F(z) is introduced in
the AM method to convert w(¢) into s(¢) that satisfies Condition
3, as shown in Fig. 1.

Although Condition 3 looks very complicated, it is mild and
thus there are many choices for the pre-filter [1]. In this paper, we
use a two-tap pre-filter. It is given by,

fa(2) = 140327 LD ®)

forn=1,2,---,N.

4. A CLOSED-FORM SOLUTION

With the channel satisfying Condition 2 and the transmitted sig-
nal satisfying Condition 3, the following algorithm can be used
to compute a MISO FIR equalizer e, that recovers the transmit-
ted signal s1(¢) from the MIMO FIR channel H(z) with delay I,
based on the N (2L + 1) autocorrelation matrices of the received
signal x(t), i.e, Rx(T1), Rx(12), - - -, Rx(Tn(2041)), and the
N (2L + 1) autocorrelation coefficients of the transmitted signal
si(t),i.e, ri(T1), r1(T2), - - ri(Twn(2n+1)-

Algorithm 1
1. Compute the Singular Value Decomposition of S; below,

Si = [Usis, Usin]diag(Ds1,0)[Vsis, Vsin]”

where Ugiy = [ug] isan N(2L + 1) x (N — 1)(2L + 1) or-
thogonal matrix representing the null space of ST

2. Using entries in U g1y and autocorrelation matrices R (71),
Rz (T2), - -+, Rz (Tn(20+1) compose the following M (L. +1) x
M (L. + 1) matrices,

N(2L+1

)
Ru(j)= Y uiyRx(T)

for j =1,2,---, (N —1)(2L + 1). Let Ry, = [Rop (1), Ru(2),
<, Ry ((N = 1)(2L + 1))] and R. = RYR,,. Note that

R. = Ho_yRscxHj y

where Rscx isa (N — 1)(L + 1) x (N — 1)(L + 1) positive
definite matrix.
3. Compute the Eigenvalue Decomposition of R.. below,

R. = [Uges, Ugren]diag(Dre, 0)[Ures, Uren]”

where U g isan orthogonal matrix representing the null space of
H,_ . Every column of Ug.y is an eigenvector corresponding
to a zero eigenvalue.

4. Find an N(2L + 1)-vector v = [v1,v2, -, Un(2r+1)]
that minimizes ||v|| subject to STv = for1(L + 1), where
for+1(L 4 1) is a unitary (2L 4 1)-vector with the (L + 1)*"
entry being one and other entries being zero. Using v compute a
matrix R as follows,

N(2L+1)
Ro = Ufl.n( Z viR%(T3))Uren

i=1
Note that
RO = Uchﬂl:[:I{IURCN
5. Find an N (2L + 1)-vector w = [w1, w2, - -, Wn(ar+1)]
that minimizes ||w/|| subject to STw = far 1 (L + 1 + 2) +

f2L+1(l), where f2L+1(L+l+2) =0when! = L and f2L+1 (l) =
0 when [ = 0. Using w compute a matrix R; as follows,

N(2L+1)
R; = Uch( Z 'LUiR:Z(Ti))URcN

=1
Note that
R, = UL vH, (3 4+ @3N EHNYHEI Ugey

where Jisa (L + 1) x (L + 1) shifting matrix defined below,

0 0 0
e
0 10

6. Find a vector g such that R;g = 0 subject to g7 Rog = 1.
The MISO FIR equalizer e, is given by,

€1 = Ugrcng
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Note that g is a generalized eigenvector of R; and Ry that corre-
sponds to the zero generalized eigenvalue of R; and Ry.

Using Algorithm 1, we can compute zero-forcing equalizers
with all possible equalization delays (from 0 to L). Among them,
the optimal zero-forcing equalizer is the one with the minimum
norm, because it introduces the minimum noise power into the
equalized signal (see Eq(2)).

5. COMPUTER SIMULATIONS

Three computer simulations are conducted to equalize two trans-
mitted signals using four receiving antennas from a MIMO FIR
channel with degree 1, 2, and 3 respectively.

In each simulation, 100 bursts are tested. In each burst test,
two uncorrelated white random sequences on [-1, 1] are generated
as two information signals, each of which has 10000 symbols and
10 of them serve as train symbols for the purpose of identifying
the delay and polarization after the signal is recovered. These two
information signals are filtered using two-tap pre-filters f1(z) and
f2(z) (see Eq(3)) respectively, and then transmitted through a ran-
domly generated MIMO FIR channel H(z). Every entry of H(z)
yields the standard Gaussian distribution. The channel is quasi-
static, i.e., constant in every burst but different from one burst to
another. The received signals are fed to a MISO FIR equalizer
to recover the first transmitted signal. The equalizer is designed
using Algorithm 1 based on the knowledge of f1(z) and the esti-
mated autocorrelation matrices of the received signals. The degree
of equalizer is 1, 2, and 3 in three simulations respectively. After
the transmitted signal is equalized, it is filtered by an approximate
reverse FIR filter, and then converted into hard symbols 1 or -1. At
last, the delay and the polarization are identified by correlating the
training symbols with the estimated information signal.

Fig. 2 shows the BER vs. SNR curves for these simulations.
The upper curve is for the channel with degree 3, the middle one
for the channel with degree 2, and the lower one for the channel
with degree 1. In this figure, each sample point is an average over
106 runs. Note that these BER curves show raw bit error rates. No
error correction coding techniques are applied.

BER vs. SNR

Fig.2 Performance of the closed-form algorithm

In one of these simulation runs, a MIMO FIR channel H(z) =
[hann (2)]3,2,—1 1 is randomly generated as follows,

hi1(z) = —0.2858 —0.9109z7" +0.7621272
hia(z) = —0.6707 —0.241027* —0.47982~>
ho1(z) = —0.5294 —0.321927" 4 0.62422 2
hoo(z) = —0.3053 4+ 1.135427" — 0.3714272
h3i1(z) = —0.1551 —0.78452"" —0.1249272
hi2(z) = 1.3780 —0.0493z~' — 0.63202 2

hai(z) = —1.4213 4 0.6630z~" + 0.0607z2
haz(z) = —0.2695 4 0.38502~" — 0.9653272

The corresponding MISO FIR equalizer e1(z) = [e11(2), e12(2),
e13(2), e14(2)]7 is evaluated using Algorithm 1. It is given below,

(2) = —0.0998 — 0.17312~! + 0.20542 2
e12(z) = 0.0808 — 0.30432~" — 0.3108272

(2) = —0.1434 — 0.04062~" — 0.30672 >

(2)

The composite system response between y, (¢) and s1 () is,

yi(t) = 1.003s1(t) —0.029s1 (t — 1) +0.009s1 (¢ — 2)
+0.00481(t ) =+ 0. 01681(t — 4)
+0.03452(t) + 0.01582 (t — 1) — 0.064s2 (t — 2)
—0.039s2 (¢ — 3) — 0.0365 (¢ — 4)

6. CONCLUSIONS

The Autocorrelation Matching method is a second order statistics-
based blind MIMO FIR channel equalization technique designed
for wireless communication systems using multiple receiving an-
tennas. This paper presents a closed-form solution to the optimal
zero-forcing equalizer for the Autocorrelation Matching method.
It can recover a transmitted signal with maximum SNR from an
unknown MIMO FIR channel based on the autocorrelation coef-
ficients of the transmitted signal and the autocorrelation matrices
of the received signals. Numerical results obtained from intensive
computer simulations are also given in this paper, which verify the
effectiveness and accuracy of the closed-form solution.
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