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ABSTRACT

This paper proposes a novel grouping decision approach for
blind deconvolution of FIR channels with binary sources.
First, necessary and sufficient conditions for recoverability
are derived. For single-input systems, a new deterministic
algorithm based on grouping and decision is proposed to
recover the source up to a delay. Then the algorithm is ex-
tended to deal with high noise case and long decaying chan-
nel case. Furthermore Blind deconvolution for multi-input
systems also can be carried out as with the case of single
input systems. All sources can be recovered sequentially.
Finally, the validity and performance of the algorithms are
illustrated by several simulation examples.

1. INTRODUCTION

Binary signals play important roles in pattern recognition,
digital signal processing, and especially wireless communi-
cations. When multiple binary signals are transmitted from
different sources, the mixtures of them are often received
by sensors. In this paper we consider a dynamically mixing
model described as,
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where s(k) = [s1(k),- -+, s,(k)]T (n > 1) is an unknown
source vector with mutually independent binary components;
this can take only two discrete values {d;, d-=}, typically
{0,1} or {—1,+1}. x(k) = [z1(k), - ,zm(K)]T (m > 1)
is an available sensor signal vector (convolutive mixture),
a; p = [ali,;m 7ami,p]T’i: 13 y I, P = 07 aLare
unknown coefficient column vectors, v = [vq, - -+, v,,]7 is
the additive white Gaussian noise vector with mutually in-
dependent components.

The task of blind deconvolution is to recover sources
s1,- -+ ,8n Upto an arbitrary delay and a scale from the ob-
servable convolutive mixture x.

Recently, there have existed several references on in-
stantaneous blind separation of digital sources, e.g., [1, 2,
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3, 4]. These existing algorithms can be divided into two
classes: deterministic algorithms and iterative algorithms.
The computational burden of deterministic algorithms in-
creases exponentially with respect to the number of sources,
and the noise tolerance is very low. Iterative algorithms are
limited by poor convergence and computational complexity.

There also have been many relevant references on blind
deconvolution (i.e., equalization) with finite alphabet sources,
e.g., [5, 6, 7]. In almost all other existing algorithms, a in-
verse filter system (equalizer) is designed under one or more
of the following conditions:

1. There are no zeros on the unit circle for the case
of mixing dynamic systems; that is, the mixing systems are
assumed to be non-singular systems. If the algorithm is exe-
cuted online, the mixing systems should be minimum-phase
systems. 2. For MIMO systems, the sensor number is larger
than the source number. 3. The sources are temporarily in-
dependent (e.g., i.i.d. sequence), or are at least temporally
uncorrelated.

The present paper discusses blind deconvolution for sin-
gle input systems and multi-input systems with binary sources.
We develop a new grouping decision algorithm that addresses
some of the aforementioned limitations of previous approaches.
Using this approach, rather than an approach based on in-
verse filtering, blind deconvolution can be carried out with-
out imposing the three conditions stated above.

2. SOLVABILITY ANALYSIS

In this section, we discuss the solvability of blind deconvo-
lution for the following noise-free model corresponding to

), )
x(k) =Y " ajpsi(k—p). )

i=1 p=0

Definition 1 The model (2) is said to be well-posed, if and

only if there exists a set of delays p1,- -+ ,p, € {0,---, L},
n L

n L
such that V&, >° > a;, si(k —p) = > 3 a;,si(k —
i=1p=0 i=1p=0
p) implies that [s1(k — p1), -, sn(k — pn)]T = [s}(k —
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p1),--, sh(k — pn)]T, where s, s’ are two binary source
vectors.

Theorem 1 The model (2) is well-posed, if and only if there

exists p1,- -+ ,pn € {0,---, L}, such that
L
Cipy@1p; +° F Cop, Anp, + > cang
J1#p1,j1=0 (3)
L
+ot X nguang, #0,
Jn#PnJjn=0
where constants ¢;; € {—1,0,1},i=1,--- ,n,j=0,--- ,L,

specifically, {c1p,,--- ,cnp, } has at least a nonzero entry.

Remark 1: By Theorem 1, it is possible to separate
all sources, even if the number of sensors is less than the
number of sources (see Example 4).

3. BLIND DECONVOLUTION ALGORITHM FOR
SINGLE-INPUT DYNAMICAL SYSTEMS

In this section, we consider model (1) with single input (n =
1). Suppose that the solvability condition (3) in Theorem 1
is satisfied throughout this section. First, we consider the
noise free case when the length L of the mixing channel is
not large, say L < 10 (the low noise case can be dealt with
similarly). A deterministic grouping decision approach is
proposed for blind deconvolution of single input systems.
The algorithm is then extended for dealing effectively with
the high-noise case and long decaying channel case.

3.1. Noise free case

Since the source is binary, there are at most 2(“+1) different
output vectors of the noise free model (2) with only input,
denoted as a set X ={xy,--- ,xy}, where N < 2(L+1),

The following assumption is necessary for the grouping
decision algorithm to be presented shortly.

Assumption 1: For the model (??) (n = 1), there exists
a column vector a(q), which satisfies (3) and the following
inequalities:

L
1
a, # 5 > cay, (4)
p#q,p=0
where co, - -+, ¢4—1,Cq+1 - ,cr € {1,0,—1}.

In fact, (4) is satisfied with probability of one.

Now we present the grouping decision algorithm.

Step 1. (Estimating a column vector of the convolutively
mixing matrix) Choose a row of the matrix X with at least
two non-zero components assumed to be the first row, and
then determine the largest and the second largest compo-
nents assumed to be x1; and z;2. Set

1

T g
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It is not difficult to prove that a; is one of the columns of
A, upto asign.

Step 2. (Matching and Grouping) Match the columns
of X in a pairwise manner. That is, if ||x; — x; — (d2 —
di)a;|| < €, then (x;,x;) is defined as a pair. There exist
% pairs denoted as (xi,, X, ), -+ 5 (Xi(y_y)» Xiy)-

According to the pairs above, divide {x;} into two groups
denoted as,

11— . . . . .
X —{leaX’Lav : 7x7/(1v71)}7

X12 = {Xi27xi4a"' 7XiN}'

Step 3. (Deconvolution) For an output x(k) of (2), if it
belongs to X!, then set 5(k) = da, otherwise, set s(k) =
dy. Thus we obtain the source up to a delay and an exchange
of dy and ds;

For example, for the noise-free SISO model,

x(k) = [0.1,0.15,0.1][s(k), s(k — 1), s(k — 2)]T, (5)

the solvability condition (3) and Assumption 1 are satisfied,
the blind deconvolution can be carried using the algorithm
above.

Remarks 1: 1. Note that two zeros of the system (5)
are on the unit circle. standard Blind deconvolution can not
be carried out in this case using a general inverse filtering
approach. 2. Obviously, if the noise level is sufficiently
low, there are N different clusters formed by the outputs of
(1). The centers of these clusters are {xj,--- ,xx}. Thus
the above algorithm can be used in low noise case.

There exist two limitations of the deterministic algo-
rithm: the first is that the noise level should be low such that
all cluster centers representing different outputs of noise-
free model (2) are discriminated easily; the second is that
the computational burden increases exponentially with re-
spect to the tap number of channel. The tasks in the next
subsection are to extend the algorithm to the high-noise and
long-channel cases.

3.2. High noise and long decaying channel cases

When the noise is high and gaussian, the outputs will form
clusters. It is not difficult to find that if the cluster centers
can be estimated correctly in advance, then the proposed
deterministic algorithm still works effectively.

The deconvolution strategy for the high-noise case is di-
vided into two steps. The first step is to estimate the cluster
centers; the second is to carry out the deconvolution, as in
Subsection 3.1. Under assumption of Gaussian noise, the
pdf of the output of (1) (n=1) has a local maximum in the
cluster centers, as illustrated in the first subplot of Fig. 2 for
a one-dimensional mixture.

Thus the cluster centers can be obtained as the follow-
ing processing briefly: 1. Estimate the pdf p(z1, -, 2zm)
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of the output x; 2. Use ML iterative approach to find the
cluster centers which are corresponding to the peaks of the
pdf. After the cluster centers are estimated, we can use the
deterministic algorithm in subsection 3.1 for blind deconvo-
lution of the binary source.

For long-channel case, we only consider decaying chan-
nel which satisfies the following assumption.

Assumption 2: For the FIR channel [ag, - -, ayr], sup-
L

pose thereexistsa ko, 0 < ko << L,suchthat: 1. >~ |a,|
p=ko+1

L
< min{lagl,- -, |ar,[}; 2. >

p=ko+1
i,5=0,--- ko,i #j}.

For instance, the exponentially decaying channel {a; =
a 37}, satisfies the assumption above if | 3| < % where «, 3
are constants.

Under the Assumption 2, the pdf and clusters of out-
puts are similar to those in the high noise case (Example 3).
The blind deconvolution can be carried out using the same
method as in high noise case. That is, find the cluster cen-
ters by estimating the pdf and using ML iterative approach,
and then recover the source.

lap| < min{la; — a1,

4. SEQUENTIAL BLIND EXTRACTION FOR
MULTI-INPUT DYNAMIC SYSTEMS

For multi-input systems, when the solvability conditions (3)
is satisfied, all sources can be recovered by sequential blind
extraction approach. The algorithm above can be used in
each single extraction. The sequential extraction steps are
omitted here which can be seen in Example 4. It should
be pointed out that all extractions are based on the original
mixture, and there is no deflation process. Thus, it is un-
necessary for all sources to be temporarily independent (or
temporally uncorrelated).

5. SIMULATION RESULTS

Simulation results presented in this section are divided into
four categories. Example 1 is concerned with blind decon-
volution of a text source that has only one convolutive mix-
ture. In Examples 2 and 3, the high-noise and long-channel
cases are considered for SISO systems with a 4 — QAM
source, respectively. Example 4 concerns the sequential
blind extraction for a two-input, single-output system with
image sources.
Example 1: Consider the following model,

x(k) = [3.5,3,4.2,3.5,4.2,7.3][s(k), s(k — 4), ©)
s(k —8),s(k —12),s(k — 16), s(k — 22)]7,
where s is a binary (black and white) text image with 250 x

250 pixels. Of course, only the convolutive mixture z is
available. Fig. 1 shows the blind deconvolution results.
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Fig. 1. Blind deconvolution for SISO systems considered in
Example 1. Left, black and white text image source; Mid-
dle, available convolutive mixture corrupted by low additive
noise; Right, the recovered source.

Example 2: Consider the model (1) with an output, a
4 — QAM source and additive Gaussian, complex-valued
noise. The channel parameter vector a = [3.5,2,4, 3.5].
Using the deconvolution algorithm for the high-noise case
considered in Subsection 3.2, 6 simulation experiments were
carried out in different noise situations.

Although the source is not binary, its real part and imag-
inary part are binary. And the real part and imaginary part of
mixture are from the real and imaginary parts of the source,
respectively. Thus we can deal with real and imaginary
parts of mixture respectively, and then integrate the results
to carry out blind deconvolution. Fig. 2 shows the simu-
lation results. The left and middle subplots show the es-
timated pdf and iterative result of cluster centers (SNR=
18.328dB), respectively. The right subplot shows the curve
for the bit error rate with respect to SN R, calculated from
the six simulations.
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Fig. 2. Blind deconvolution results in different noise situa-
tions considered in Example 2.

Example 3: Consider the noise free model (1) with sin-
gle input and single output. The channel parameter vector a
= [16,13, 7,0,0,0.3125 0.9,0,0.0391, 0.8779, 0, 0.0049,
0.3902, 0,0.0006, 0.1734, 0, - - - ,0.0001] with length of 45,
the source is a4 — QAM signal valued randomly in {—1 —
i,—1 41,1 —14,14 4}, noise v is complex valued with its
real and imaginary components equal to 0.01n(k), n(k) is
Gaussian white noise with mean of zero and variance of 1.
The blind deconvolution can be carried out as in Example
2, Fig. 3 shows the result.

Example 4: Consider the model (2) with two inputs of
250 x 250 binary text images and a single output. Channel
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parameters a; and ap are set randomly as [3.1536, 5.4027,
0.1571, 5.1255] and [5.7722,4.0325, 2.3827,4.0842], re-
spectively. Using the deterministic algorithm presented in
Subsection 3.1, a channel parameter a is estimated as 0.1571,
and a source 5y is recovered first with a bit error rate of
0.0099.

For estimating the second channel parameter, set

j(ivj):x(ivj)_algl(iaj)a )

where z(4, j) is the mixture.

Based on the new mixture z, another channel parame-
ter a- is obtained as 2.3827. Based on a, and the original
mixture z, another source 5, is obtained from the second
extraction (Fig. 4).
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Fig. 3. Blind deconvolution for one convolutive mixture of
one 4 — QAM source considered in Example 3. Top left,
estimated pdf of real component of the mixture; Top right,
estimated cluster centers of the real component of the mix-
ture; Bottom left, the mixture; Bottom right, the recovered
4 — QAM source.
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Fig. 4. Sequential blind extraction for one convolutive mix-
ture of two text image sources considered in Example 4.
Left, the mixture; Middle, source extracted after the first
extraction; Right, another source obtained after the second
extraction.

6. CONCLUDING REMARKS

A novel approach for blind deconvolution of mixed, con-
volutive, binary sources was proposed. Necessary and suf-
ficient conditions for recoverability were established. For
the low-noise and noise-free cases, a deterministic grouping
decision algorithm was presented for blind deconvolution
of single-input dynamical systems having a binary source;

For multi-outputs systems, all sources can be recovered se-
quentially using this approach even if the sources are tem-
porarily correlated. Compared with existing blind decon-
volution algorithms generally based on inverse filtering, the
grouping decision algorithm has three advantages. First, us-
ing the proposed algorithm, there is no condition imposed
on the distribution of zeros of convolutive systems. Even
though the system has zeros on the unit circle or outside
the unit circle, the source can be recovered online. Sec-
ond, the number of sensors can be less than the number of
sources. Third, the algorithm can realize blind deconvolu-
tion of temporarily dependent sources (e.g., image sources),
even non-stationary sources. By by estimating the pdf of the
outputs and cluster centers, the approach is extended to deal
with high-noise case and long decaying channel case, re-
spectively. The validity and performance of the proposed
algorithms were illustrated by four simulation examples fi-
nally.
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