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ABSTRACT 2. MODEL AND NOTATIONS

This paper introduces a new Blind Source Separation al- Throughout the paper;) stands for transposition!') for
gorithm for convolutive mixtures. In addition to separate conjugate transposition, and)(for complex conjugation,
sources, this algorithm respects the paraunitary property ofand; = /—1. Vectors and matrices are denoted with bold
the model considered, obtained after whitening observa-lowercase and bold uppercase letters respectively. Next,
tions. In order to do this, the equalizer is factorized in a let {G(k),k € Z} denote the matrix impulse response of
novel manner. After a presentation of theoretical results, the global system. Then, we denote its transfer function as
a numerical algorithm is then derived. This algorithm is @[] %' 3, G(k)=~*. Furthermore, the entries of the ma-
based on the solution of a polynomial system, which sometrix G are denoted?; ;, where subscripij denotes thé-th
values of output cumulant multi-correlations enter. Simula- row and thej-th column of G.
tions and performances of the numerical algorithm are pre-  Now, consider the linear time-invariant (LTI) invertible
sented in the last section. system of lengtt, mixing N white random processes. This

system (depicted in figure 1) is described by:

1. INTRODUCTION L
w(n) =Y C(n—k)s(k) (1)
The method presented in this paper is intended to Multiple =0
Input Multiple Output (MIMO) paraunitary channels. The | here (C(n),
fact that the channel is considered as paraunitary is not re
strictive since prewhitening can always be performed in a
first stage (in a non unique manner).

n € Z} is a sequence olN x N matri-
‘ces denoting the complex Finite Impulse Response (FIR)
of channelClz], s = (s1,...,sn)" denotes theN —

Most blind MIMO equalization techniques use High Or- S1 Wq !
der Statistics (HOS) for separating signals [1] [2] [3] [4] ; D] ‘
this can be implicit through constant modulus [5] [6] or con- : Cl2 : HI[Z]
stant power [7] criteria. Indeed, this paper presents an algo- SN N an

rithm based on HOS. Moreover, our algorithm is very attrac-

tive since it can be implemented "off-line”. Contrary to "on- Figure 1: Source is filtered by channeC[z] and observa-
line” algorithms which need long data block to converge tion w is equalized byH [2]

(typically from 10,000 to 100,000 symbols), "off-line” al-
gorithms exhibit much shorter convergence times.

Algorithms like PAJOD [8] have already been proposed dimensional source vector of baseband complex signals,

for MIMO channels. Unfortunately, the paraunitary con- w = (wy,...,wy)" the N — dimensional observation vec-
straint was not accurately verified for equalizers when itwas tor, anda = (a4, . ..,ax)" the N — dimensional estimated
considered for channels, especially for low SNR. source vector. All these vectors agatiallyandtemporally

Our main contribution consists of a block algorithm dedi- white at second order. Note that= 0 corresponds to an
cated to blind MIMO equalization. The goal of this algo- instantaneous mixture.
rithm is to build a paraunitary equalizer in order to correct  The multichannel blind deconvolution problem consists
channel mixing effects. It has been shown to maximize a of finding a LTI filter H|[z], the equalizer in order to re-

well-definedcontrast as pointed out in section 3. Simu- trieve the N input signalss;(n),i € {1,...,N}, solely
lations and performances obtained are reported in the lasfrom the observations(n) of the output of the unknown
section of the paper. LTI channelC|z]. The signals recovered may be reordered
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by a permutation matri¥?, and delayed by a diagonal fil- H[Z]

ter A[z], so thatC[z] H[z] = A[z]P. The estimated source wy ! X1 yi Y
vectorisa(n) = >, H(n—k)w(k)and the global LTI sys- ' BIZ W, Al |
temG|2] is defined according ta(n) = 3", G(n—k)s(k). M X2 o Y2 o LA

Definition 1: Paraunitarity. A N x N polynomial matrix =~ =--------------—-"-———— -~

H]|] is said to be paraunitary [9] if : ) o ) - ]
Figure 2: Factorization of the paraunitary equalizer in 3 fil-

H"[1/2H[z] = Iy 2  ters.

wherel y isthe N x N identity matrix.

The following hypotheses are assumed: whereW,,, p € {0,..., L}, are2 x 2 unitary, andZ[z] is

H1. Inputss;(n),i € {1,...,N}, are mutually indepen- 2 x 2 diagonal:
dent and identically distributed (i.i.d.) zero-mean ran-

dom processes, with unit variance. Z|z] = < é 291 ) )
H2. The vectors(n) is stationary up to the considered order
r,r > 3,i.e Vi € {1,...,N}, the order- marginal ~ When{, = 0 (respectively/, = 0), we can replace|z]
cumulants, (respectivelyB|[z]) by I,. When¢, > 0, filter A[z] is de-
fined as the product:
CZ [82] = Cum[si<n)a cey Si(n)v Sj(n)a cey Sj(n)]
N o ToTmS AlZ| =W Z[z]... Wy, 11 Z[7] (5)
do not depend on. For definitions of cumulants, refer ~and wherv, > 0, we have:
to [10] and references therein.
Blz] = Z[z)W,—1 ... Z[z]W. (6)
H3. At most one source has a zero marginal cumulant of
orderr. Thus, betweem [z] and B|z], it remainsW,,. Hence, we
can factorizeH 2] like in (3). O
H4. C[z], H[z], and hencex|z] = H[z]C[z] are all pa- For the sake of clarity, it will be now assumed thét=
raunitary, as defined in definition 1. 2. In the remaining, we assume the following notation for

. . . cumulantsg.g.cumulants of vectotw:
Remark 1. The constraint of hypothestd4 is not restric- kg

tive. Indeed, one can always whiten the observations by us- W (1) = Cum[w.(n — 1), w’(n — 1)
. . . eg,fh e 1), Wy 2)s
ing a filter that factorizes the second-order power spectrum,
i.e. a classical prewhitening of the observations [11]. Thus,

paraunitary filters can be easily obtained by standardizationyhere {¢, f, g, h} take their values in{1,2}, andv; €

wy(n — vs), wy(n — va)]. ()

of observations (second order white with unit covariance). N v; ¢ {1,...,4}.
Considering the previous hypotheses and models, and as- Now, consider the following input-output relations for the
suming thatV = 2, we can make a first proposition: convolutive model:
Proposition 1. A N x N FIR paraunitary filter of length
L >0, H[z], can be factorized in 3 filters: ai(n) = D Aig(m)Wory(n —m), )
q,r,m
Hz] = A[z]W,, B[] ®)

and z,.(n —m) = Z B.s(Dws(n—m—=1). (9)
where A[z] and B]z] are FIR paraunitary filters of length ol

{a andt, respectively, with: From (8), thanks to the multilinearity property of cumulants,

0</¢,<Land0< ¢, <L we can express the input-output relations between cumu-
ly+0,=L. lants of inputx and outputa:
andW,, isaN x N unitary matrix. P850 = D ) Aig(r) A5, (72) Aps(73)
Proof. For convenience, we prove the proposition for abed — qrst
N = 2. Extending the factorization of [9] to the non real A (T) W W W Wi TR 4a(T) (10)

case, one gets the following factorization: ) )
with 7 = (71, 72, 73, 74). The range of each is [0, ..., {,]

H[z2| =W Z[2)]W[_...Z[z]Wy (4) and indices(a, b, ¢, d, i, j, k, 1, q,r, s, t} take their values in
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{1,2}. Itis the same for input-output relations between ob- where eachC2°+>~* denotes the product of 4 entries of
served cumulants ab» and computed cumulants at the out- A|[z], depending on indices, b, ¢, d andq, r, s, ¢, and in ac-

put of B[z] (i.e. cumulants ofr): cordance withw and .
< Next, make the change of variablesbs¢ = ﬁ—fz
Chaaln) =5 Sepon Boelo)BigloDBeomn) gL at itn y = tan, andeoss =
* . ! 1+u2’
B (pa)TY (T + p) (11) sinf = —r%— with u = tan .

Now, in order to maximize contrast (13) , we find all the

with p = (p1,p2,p3,pa). The range of eaclp; is polynomial system (16),e. stationary points of
[0,...,¢,]. The global input-output relation of equalizer Y. . thanks to derivatives:
H]|z] is not given in this paper since it is not necessary L '
for the algorithm. Nevertheless it can be easily deduced by T 4 4 .
combining (10) and (11) as shown in [12]. Py (u,t) = == = Do M—k(t) v
Remark 2. For N = 2, unitary matriced¥ ,, can be gene- o (16)
ratedvp as: Oy (u,t) = —5pt = S o Ean(t)
W, — < cos O sin 0,77 ) ) (12) Polynomial system (16) can be solved by using the resul-
b —sinfpe 7% cos 0, tant of a Sylvester matrix. Thus, considering only variable

) ) u for ®4(u,t) and Py (u,t), and collecting terms of same
Thus, only one pair of angled,, ¢,) is needed for each  gegree ins, we obtain a Sylvester matrix of siZex 7. See
W, [12] for more details about resolution of (16). When all
roots are found, we plug them back in (15) in order to select

3. CONTRAST PROPOSED the best solution for (14).

The reader is invited to consult [13] for definitions and pro- 4. ALGORITHM
perties aboutontrasts

Proposition 2. The separation of sources, solely from out- [N this section we present the algorithm derived from pre-

puts of the channel, can be performed by maximizing theVious statements. .It has .been implementedNoe 2 and
following contrast: results are shown in section 5.

The algorithm is the following:

N
Ty4= Z T2 .- (13) 1. Compute the tensor of cumularit§y ,, (T + p) de-
i=1 fined in (7) and of lengtlil, = max {7} + max {p}.
Here,T'g ;; includes entries o#¥, matrices. So, in order 2. Initialize equalizerH [z] with (0, = 0, ¢, = 0), Vp €
to estimateH [z], the criterion can be written: {0,...,L}
H = Arg max T4 (14) 3. Looponk =0,...,L.
whereW stands for the set V' ,,, p € {0,...,L}. (@) Compute the cumulant tenSch,bd(T)’

It has been proved in [13] that, 4 is a contrast. We max- (b) Search for paird,¢;) maximizing Y 4,
imize Y 4 with respect to each paié,, ¢,) in turn. The se- (c) Plug back anglest(, ¢x) in W, (update filters
guence of values df'; 4 obtained this way is monotonically A[z] andB|z] as in (5) and (6)).
increasing. Since it is also bounded above, it converges.

For sake of clarity, we drop index Thus we have to find 4. Goto3 until number of sweeps. T

all pairs (6, ¢) which maximize (13) independently from _ _ _

other pairs. To reach this goal, we have to simplify (10)  Of course, this algorithm considers that angles are all
firstly by expanding it, and secondly by collecting terms in- independent. The resulting tensor &g is composed of
volving 6 or ¢. In this manner, we obtain the following V(L — £ + 1)* matrices each of siz&/(L — £, + 1) x

equation for the output cumulants ef N(L — ¢, + 1). In order to increase the precision of the
angles, we suggest to exectte= [VL | + 1 sweeps. Ac-
P ( =0 26104000 ) (sin 94— tually, the first angles computed are not well defined since
i = 2a=0 \2p=0 Ka (cos 9)* (sin6) all other angles are null (set at stagje Hence, when loop
e)(20ta=4)) (15) 3is repeated” times, angles are better estimated.
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5. COMPUTER RESULTS of the channel after prewhitening. Then, from theoretical
_ _ results of section 2, a numerical algorithm has been imple-
One considers a FIR complex mixture of length= 3 of mented and performances evaluated. Results obtained are

N = 2 unit variance QPSK white processes. The channelsvery attractive since the algorithm works very well on data
are paraunitary in order to preserve second-order whitenesglocks as short as 400 symbols.

and are constructed as explained in section 2. Jlam-
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