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ABSTRACT

This paper presents a bit-plane coding algorithm for
Laplacian distributed sources that are commonly
encountered in signal compression applications. By
exploiting the statistical characteristics of the sources,
the proposed algorithm achieves a rate-distortion
performance that is essentially comparable to an optimal
non-scalable scalar quantizer, while at the same time
operates at a complexity level suitable for most practical
implementations.

1. INTRODUCTION

Recently, compression algorithms that provide
rate/fidelity scalability have attracted more and more
attention. This is especially so for applications where a
range of coding rates are required, or where channel
bandwidth fluctuates. Among the coding strategies that
provide such a scalability, the embedding coding
algorithm has been shown to be very attractive, which
has been widely implemented in image [1], video [2],
speech [3] and audio [4] coding systems. The most
distinguished feature of an embedded coding system lies
in its ability to generate a compression bit stream that
can be randomly truncated to fit certain rate, fidelity, or
complexity constraints without loss of optimality. This
decoupling property of the rate/fidelity adjustment to the
encoding procedure actually bring much flexibility to a
scalable coding system, where the rate/fidelity
adjustment can be performed locally at the encoder, the
decoder or the transmission network by simply
truncating the compressed bit-stream.

Since data are commonly stored in a binary format in
most electronic computing devices, one natural approach
to implement an embedded coding system is through
sequential bit-plane coding (BPC) [1][2][4][12], where
the input data are sequentially scanned and coded by bit-
planes, usually from the most significant to the least, to
generate the compressed bit stream. In addition to its
structural simplicity, sequential bit-plane coding (by a
careful selection of the coding order) also conforms very
well to the condition for optimal embedded coding, or
the so-called embedded principle [12,13], in most
situations.

Despite the obvious advantages, designing an
embedded coding scheme that works at the rate-

layers embedded in the final bit streams. In many
embedded systems, compromises have to be made to
maintain the complexity to an acceptable level at the
price of reduced quality. However, as will be shown in
this paper, optimal BPC is actually achievable at a
complexity level that is suitable for most practical
systems if we constrain the source to be independent and
identically  distributed (i.i.d) with a Laplacian
distribution.  Although it seems to be rather over-
restrictive, such a condition is actually commonly
encountered in many signal compression applications.
For example, it was found that image, video, speech and
audio signals are approximately Laplacian distributed [5-
7].  Furthermore, the i.i.d constraint is also easily
satisfied for more general sources by incorporating de-
correlation and context modeling techniques.

We will also introduce in this paper a particular sub-
class of BPC, namely, bit-plane Golomb code (BPGC),
which is constructed by a discretization of the optimal
BPC for Laplacian sources. It is found that the BPGC
gives an identical compression performance to that of
the Golomb code [8] for non-negative integer sources
with geometrical distributions. The Golomb code has
been shown to be the optimal Huffman code for such
sources [9] and has been widely adopted in signal
compression applications such as the JPEG-LS [10] and
lossless audio coding schemes [11] due to its very simple
coding/decoding rules and good compression
performance. Further R-D analysis for BPGC shows
that it gives a compression performance that closely
approximates an optimal fixed-rate entropy-constrained
scalar quantizer (ECSQ) [5] over a wide range of rates
for source with Laplacian distribution.

2. BPC FOR LAPLACIAN SOURCES

Consider an input k-dimensional data
x:{xl,,,,,xk} where x, is extracted from an i.id.

random source of some alphabet 4 cR. In a BPC
scheme, bit-planes of x is formed by a binary
representation of x,

vector
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and bit-plane symbols b e {0,1}, i=1,..,k. The bit-

planes are then scanned and coded, in an order that can
be reproduced at the decoder, to produce the compressed
bit-stream. Note that in practice, the bit-plane scanning
procedure may start from the most significant bit-plane

M —1 given by 2" < max{x,|}<2",i=1,..k-

In an effort to pursue optimal truncation performance
of the resulted embedded bit-stream, we may require that
every prefix of the stream can be decoded to reconstruct
the original data with a fidelity approaching that of an
“optimal” compression algorithm at the same rate as that
prefix. While a global optimal solution to this problem
remains intractable at this moment, locally optimized,
“greedy” heuristic solutions have been previously
discussed in [12, 13], which lead to the so-called
embedded principle [13] that requires an embedded bit-
stream to carry information in the decreasing order of its
importance. From the results of [12], it can be seen that
for i.i.d data sources (except for those with very skew
probability distribution), the embedded principle is
satisfied well by a simple sequential bit-plane scanning
procedure that comprises the following steps:

1. Starting from the most significant bit-plane
j=M-1;

2. Code those bit-plane symbols bij with
biyya=by,==b ;=0 (Significance pass);

3. If b, =1 in the significance pass, code the sign
symbol S;s
4. Code those bit-plane symbols b, that are not

coded in the significance pass (Refinement pass);
5. Progress to bit-plane ;j—1.

The above procedure is iterated until certain terminating
criterion, which is usually a pre-defined rate/distortion
constraint, is reached

We now turn our attention to entropy coding of bit-
plane symbols, where the data compression is actually
attained. It can be seen that for general data sources,
there exists both intra and inter bit-plane dependencies
among the probability distributions of bit-plane symbols.
As a result, native probability table based approach to
catch these statistical dependencies will generally results
in a table with a large number of entries, which not only
increases the complexity of coding algorithm, but also
leads to large model cost [14] that eventually degrades
the compression performance. For this reason, a
simplified approach is generally adopted in practical
applications [1][12][13] where only a limited set of bit-
plane symbols that are likely to have very skew
distribution, e.g., those scanned in significance pass, are
entropy coded.

An alternative solution to this dilemma is by adopting
a parametric approach that assumes a known function
form for the pdf of the data source so that the number of

the free parameters can be dramatically reduced.
Specifically, if we have the constrain that the input data
vectors be drawn from an i.i.d source that has a
Laplacian pdf given by,

fox)= e g7 3)

the above statistical dependencies will vanish and the
probably distributions of the bit-plane symbols are
simply given by

PjiPr(b =146 ik @

i,j

Pr(p,, =0)=1-P . i=1..k, (5)
and
Pr(s, =1)=Pr(s, =0)=0.5, i = 1,....,k» (6)

A 2
where ¢9=e'v2/“ . Clearly, P, follows the following

updating rule:

I)/z\/a/(\ll_PjH-'-\/a) ™

This statistical independency among bit-planes
significantly simplify the problem of optimal coding of
the bit-plane symbols, which is easily achieved by
entropy coding each bit-plane independently using, e.g.,
arithmetic code with probability assignment (4) — (6),
provided the distribution parameter @ is known a prior.
In a universal coding system that deals with sources with
unknown distribution parameter, @ may be learnt from
the current or previously coded data vector. For
example, the maximum likelihood (ML) estimation of @
is given by

6=, ®)

where N and 4 are the length and the absolute sum of the
data vector, respectively.

3. BIT-PLANE GOLOMB CODE

The BPC scheme described above can be further
simplified by limiting its possible probabilities
assignment. Specifically, we consider the code family
C:{GL |Le Z}, where G is a BPC code whose

probability assignment QJL is given by

J

o = fe2) =, ©)
1/2 j<L

for bit-plane j. Clearly, Q/L follows the probability

updating rule of (7) for bit-planes ;> [ and enters a
“lazy mode” (since entropy coding of a symbol with
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probability 1/2 can be achieved by directly outputting
that symbol to the compressed bit stream) for bit-planes
j < L where the probability skew is very small.

Clearly, C actually gives a partitions rule that
partitions the support of @ into disjoint regions, so that
each region has a correspondent optimal G* from C.
Here the optimality is measured, reasonably, in terms of
the expected code length for G* if it is truncated at
some bit-plane 7 < L. We may further denote code G*
as Gﬁ if it is truncated at bit-plane T to facilitate our
sequent discussion. It can be shown that the expected
code length 7, (the cost of the sign symbols is ignored
since it does not affect the result of the optimal region)
of G} is given by

m,(0)=-3. P log, 0f - Y1 P o, 1 - 0})
=(1—02L )—1. (10)

Thus the decision boundary for code G* and G**' is
given by:

ﬁL(Q):ELH(Q)"'l’ (11)
which simplifies to @ =¢> " by substituting (10) into

A
(11). Here, ¢:(\/§—1)/2 is the inverse of the golden

ratio. The decision rule for the optimal G* is then
given by:

¢2—L+1 <0< ¢2—L ’ (12)

It is interesting to observe that G with L>0

actually gives an identical expected code length to that
of Golomb code with parameter 2° for non-negative
geometrically distributed integer [9]. For this reason, the
code family of C can be referred to as bit-plan Golomb
code (BPGC). In addition, note that since the Golomb
code does not have counterparts for BPGC with L <0,
it does not perform equally well for sources with very
low entropy contents.

In practical applications, we may wish to have a low-
complexity adaptation rule for the optimal BPGC given
the sufficient statistics N and 4 for & . By taking the
above equivalency of BPGC to the Golomb code, the
approximation procedure described in [10] for optimal
Golomb code is repeated here, which finally leads to the
following simple adaptation rule:

L=min{l’e Z|2"*'N > 4}. (13)

A practical implementation of the above selection rule is
given in the following C program, which is extended
from the “one-liner” C program in [10] to support a
wider range of the value of L:

if (N<=A) for (L=0;(N<<(L+1))<=A;L++);
else for (L=-1;(N>>(-L))>A;L--);

In the decoder, the bit-planes of x are reconstructed
sequentially following the same order as in the encoder,
resulting in a partial reconstruction up to, say, bit-plane
T of the original bit-planes. This partial reconstruction
actually specifies an interval for the value of x and the
optimal (in terms of mean square error) reproduction
%={%,,...,x, } of x is then given by the centroid of that

interval, which may be calculated iteratively given the
bit-plane wise probability assignment (9).

4. PERFORMANCE ANALYSIS

From the above coding/decoding procedures of BPGC, it
can be seen that GTL is essentially equivalent to a

uniform threshold quantizer (UTQ) [5] that has a step
size A=2" and a central dead-zone 2A , which (with a
slightly different size of the dead-zone) is known to be a
nearly optimal ECSQ for Laplacian sources [14].
Specifically, if we consider the following signal-to-
noise-ratio SNR performance:

SNR=101og,,(0/D) dB, (14)

where ¢? is the variance of the source and D is the

normalized mean-square error distortion:

2}=;E{2xi_£i2}’ (135)

i=1

Di%E{‘x—fc

it can be shown that the SNR performance of the code
GTL for an i.i.d Laplacian source with distribution

parameter @ is given by

-1
SNRE = 1010g,0{1+%[(A1n9)29A/(1—BA ) -(AlngY +2Aln9—1]}

(16)

Furthermore, the normalized expected code length, or
the rate of GTL for that source is given by

RE=-3 P log, 0/ =3 (1-Plog, (1- 0 )+ 6> (17
j=T j=T
where P, and Q/L are defined as in (4) and (9),

respectively. Note that the above equation can be further
simplified as

RE=(1-6"]"+L-T+6", (18)

if L>T.
Fig. 1 gives an example of the performance of GTL

with respect to an optimal ECSQ for a Laplacian source.
The theoretical R-D bound for the Laplacian source
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computed by using the Blahut-Arimoto algorithm [16,
17] is also plotted in this figure for reference. It can be
seen from Fig. 1 that the performance of GTL lags only

slightly when compared with that of the optimal ECSQ,
which is due to its sub-optimal dead-zone and cost
resulting from the informational divergence between GTL

and the underlying data source. At high rates, the penalty
of the sub-optimal dead-zone dies out and the
performance gap between these two schemes is mainly
from the information divergence, which is found to be
smaller than 0.1 bits in most cases by a redundancy
analysis similar to that in [9].

In order to further verify our results, numerical
experiments were also conducted where the R-D
performance of an experimental BPGC coder is
measured with source data vectors generated by a
pseudo Laplacian random variable generator. The
results are given in Fig. 1, which are obtained by
averaging an ensemble of 1000 data vectors, each with a
length of 512 samples. Clearly, these results strongly
validate our previous analysis since the experimental
BPGC coder achieves an R-D performance that is very
close to its theoretical R-D curve.

5. CONCLUSION

We have shown that optimal BPC for Laplacian source
is actually achievable at a complexity level that is
suitable for a practical implementation. In addition, an
important sub-class of BPC, namely, BPGC is also
introduced in this paper. This gives the same lossless
compression performance as the Golomb code for
geometrically distributed integer sources. Furthermore,
its excellent R-D performance for Laplacian sources is
confirmed by an R-D analysis.
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