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ABSTRACT 
This paper presents a bit-plane coding algorithm for 
Laplacian distributed sources that are commonly 
encountered in signal compression applications.  By 
exploiting the statistical characteristics of the sources, 
the proposed algorithm achieves a rate-distortion 
performance that is essentially comparable to an optimal 
non-scalable scalar quantizer, while at the same time 
operates at a complexity level suitable for most practical 
implementations.  
 

1. INTRODUCTION 
Recently, compression algorithms that provide 
rate/fidelity scalability have attracted more and more 
attention.  This is especially so for applications where a 
range of coding rates are required, or where channel 
bandwidth fluctuates. Among the coding strategies that 
provide such a scalability, the embedding coding 
algorithm has been shown to be very attractive, which 
has been widely implemented in image [1], video [2], 
speech [3] and audio [4] coding systems.  The most 
distinguished feature of an embedded coding system lies 
in its ability to generate a compression bit stream that 
can be randomly truncated to fit certain rate, fidelity, or 
complexity constraints without loss of optimality.  This 
decoupling property of the rate/fidelity adjustment to the 
encoding procedure actually bring much flexibility to a 
scalable coding system, where the rate/fidelity 
adjustment can be performed locally at the encoder, the 
decoder or the transmission network by simply 
truncating the compressed bit-stream.   

Since data are commonly stored in a binary format in 
most electronic computing devices, one natural approach 
to implement an embedded coding system is through 
sequential bit-plane coding (BPC) [1][2][4][12], where 
the input data are sequentially scanned and coded by bit-
planes, usually from the most significant to the least, to 
generate the compressed bit stream.  In addition to its 
structural simplicity, sequential bit-plane coding (by a 
careful selection of the coding order) also conforms very 
well to the condition for optimal embedded coding, or 
the so-called embedded principle [12,13], in most 
situations.   

Despite the obvious advantages, designing an 
embedded coding scheme that works at the rate-
distortion (R-D) curve of a optimal non-scalable 
quantizer is generally a formidable task, as  there are 
often intricate interaction between the different quality 

layers embedded in the final bit streams. In many 
embedded systems, compromises have to be made to 
maintain the complexity to an acceptable level at the 
price of reduced quality.  However, as will be shown in 
this paper, optimal BPC is actually achievable at a 
complexity level that is suitable for most practical 
systems if we constrain the source to be independent and 
identically distributed (i.i.d) with a Laplacian 
distribution.  Although it seems to be rather over-
restrictive, such a condition  is actually commonly 
encountered in many signal compression applications.  
For example, it was found that image, video, speech and 
audio signals are approximately Laplacian distributed [5-
7].  Furthermore, the i.i.d constraint is also easily 
satisfied for more general sources by incorporating de-
correlation and context modeling techniques.   

We will also introduce in this paper a particular sub-
class of BPC, namely, bit-plane Golomb code (BPGC), 
which is constructed by a discretization of the optimal 
BPC for Laplacian sources.  It is found that the BPGC 
gives an identical compression performance to that of 
the Golomb code [8] for non-negative integer sources 
with geometrical distributions.  The Golomb code has 
been shown to be the optimal Huffman code for such 
sources [9] and has been widely adopted in signal 
compression applications such as the JPEG-LS [10] and 
lossless audio coding schemes [11] due to its very simple 
coding/decoding rules and good compression 
performance.  Further R-D analysis for BPGC shows 
that it gives a compression performance that closely 
approximates an optimal fixed-rate entropy-constrained 
scalar quantizer (ECSQ) [5] over a wide range of rates 
for source with Laplacian distribution.  

 

2. BPC FOR LAPLACIAN SOURCES 
Consider an input k-dimensional data vector 

{ }kxxx ,...,1=  where ix  is extracted from an i.i.d. 
random source of some alphabet ℜ⊂A .  In a BPC 
scheme, bit-planes of x  is formed by a binary 
representation of 
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and bit-plane symbols { }1,0, ∈jib , ki ,...,1= .  The bit-

planes are then scanned and coded, in an order that can 
be reproduced at the decoder, to produce the compressed 
bit-stream. Note that in practice, the bit-plane scanning 
procedure may start from the most significant bit-plane 

1−M  given by { } kix M
i

M ,...,1,2max2 1 =<≤− . 

In an effort to pursue optimal truncation performance 
of the resulted embedded bit-stream, we may require that 
every prefix of the stream can be decoded to reconstruct 
the original data with a fidelity approaching that of an 
“optimal” compression algorithm at the same rate as that 
prefix. While a global optimal solution to this problem 
remains intractable at this moment, locally optimized, 
“greedy” heuristic solutions have been previously 
discussed in [12, 13], which lead to the so-called 
embedded principle [13] that requires an embedded bit-
stream to carry information in the decreasing order of its 
importance.  From the results of [12], it can be seen that 
for i.i.d data sources (except for those with very skew 
probability distribution), the embedded principle is 
satisfied well by a simple sequential bit-plane scanning 
procedure that comprises the following steps: 

 
1. Starting from the most significant bit-plane 

1−= Mj ; 
2. Code those bit-plane symbols 

jib ,
 with 

0... 1,2,1, ==== +−− jiMiMi bbb  (Significance pass); 

3. If 1, =jib  in the significance pass, code the sign 

symbol is ; 
4. Code those bit-plane symbols 

jib ,
 that are not 

coded in the significance pass (Refinement pass); 
5. Progress to bit-plane 1−j . 

 
The above procedure is iterated until certain terminating 
criterion, which is usually a pre-defined rate/distortion 
constraint, is reached   

We now turn our attention to entropy coding of bit-
plane symbols, where the data compression is actually 
attained.  It can be seen that for general data sources, 
there exists both intra and inter bit-plane dependencies 
among the probability distributions of bit-plane symbols. 
As a result, native probability table based approach to 
catch these statistical dependencies will generally results 
in a table with a large number of entries, which not only 
increases the complexity of coding algorithm, but also 
leads to large model cost [14] that eventually degrades 
the compression performance.  For this reason, a 
simplified approach is generally adopted in practical 
applications [1][12][13] where only a limited set of bit-
plane symbols that are likely to have very skew 
distribution, e.g., those scanned in significance pass, are 
entropy coded.  

An alternative solution to this dilemma is by adopting 
a parametric approach that assumes a known function 
form for the pdf of the data source so that the number of 

the free parameters can be dramatically reduced.  
Specifically, if we have the constrain that the input data 
vectors be drawn from an i.i.d source that has a 
Laplacian pdf given by,  

( ) 22 2
2

σσx
X exf −= , (3) 

the above statistical dependencies will vanish and the 
probably distributions of the bit-plane symbols are 
simply given by 

( ) ( ) 12
, 111Pr

−∆
+−===

j

jij bP θ , ki ,...,1= , (4) 

( ) jji Pb −== 10Pr ,
, ki ,...,1= , (5) 

and  

( ) 5.0)0Pr(1Pr ==== ii ss , ki ,...,1= , (6) 

where 
22 σθ −

∆
=e . Clearly, 

jP  follows the following 

updating rule: 

( )111 1 +++ +−= jjjj PPPP  (7) 

This statistical independency among bit-planes 
significantly simplify the problem of optimal coding of 
the bit-plane symbols, which is easily achieved by 
entropy coding each bit-plane independently using, e.g., 
arithmetic code with probability assignment (4) – (6), 
provided the distribution parameter θ  is known a prior. 
In a universal coding system that deals with sources with 
unknown distribution parameter, θ  may be learnt from 
the current or previously coded data vector.  For 
example, the maximum likelihood (ML) estimation of θ  
is given by 

ANe−=θ , (8) 

where N and A are the length and the absolute sum of the 
data vector, respectively. 
 

3. BIT-PLANE GOLOMB CODE 
The BPC scheme described above can be further 
simplified by limiting its possible probabilities 
assignment.  Specifically, we consider the code family 

{ }Ζ∈= LGC L | , where LG  is a BPC code whose 
probability assignment L

jQ  is given by 
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for bit-plane j. Clearly, L
jQ  follows the probability 

updating rule of (7) for bit-planes Lj ≥  and enters a 
“lazy mode” (since entropy coding of a symbol with 
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probability 21  can be achieved by directly outputting 
that symbol to the compressed bit stream) for bit-planes 

Lj <  where the probability skew is very small. 
Clearly, C  actually gives a partitions rule that 

partitions the support of θ  into disjoint regions, so that 
each region has a correspondent optimal LG  from C .  
Here the optimality is measured, reasonably, in terms of 
the expected code length for LG  if it is truncated at 
some bit-plane LT ≤ . We may further denote code LG  
as L

TG  if it is truncated at bit-plane T to facilitate our 
sequent discussion. It can be shown that the expected 
code length Ln  (the cost of the sign symbols is ignored 
since it does not affect the result of the optimal region) 
of L

LG  is given by  

( ) ( ) ( )∑∑
∞

=

∞

=

−−−−=
Lj

L
jj

L
j

Lj
jL QPQPn 1log1log 22θ

( ) 121
−

−=
L

θ . (10) 

Thus the decision boundary for code LG  and 1+LG  is 
given by: 

( ) ( ) 11 += + θθ LL nn , (11) 

which simplifies to L−

= 2φθ  by substituting (10) into 

(11).  Here, ( ) 215 −=
∆

φ  is the inverse of the golden 
ratio.  The decision rule for the optimal LG  is then 
given by: 

LL −+−

<≤ 22 1

φθφ  , (12) 

It is interesting to observe that LG0
 with 0≥L  

actually gives an identical expected code length to that 
of Golomb code with parameter L2  for non-negative 
geometrically distributed integer [9]. For this reason, the 
code family of C  can be referred to as bit-plan Golomb 
code (BPGC).  In addition, note that since the Golomb 
code does not have counterparts for BPGC with 0<L , 
it does not perform equally well for sources with very 
low entropy contents. 

In practical applications, we may wish to have a low-
complexity adaptation rule for the optimal BPGC given 
the sufficient statistics N and A for θ . By taking the 
above equivalency of BPGC to the Golomb code, the 
approximation procedure described in [10] for optimal 
Golomb code is repeated here, which finally leads to the 
following simple adaptation rule: 

{ }ANLL L ≥Ζ∈′= +′ 12|min . (13) 

A practical implementation of the above selection rule is 
given in the following C program, which is extended 
from the “one-liner” C program in [10] to support a 
wider range of the value of L: 

 
if (N<=A) for (L=0;(N<<(L+1))<=A;L++); 
else for (L=-1;(N>>(-L))>A;L--); 

 
In the decoder, the bit-planes of x  are reconstructed 
sequentially following the same order as in the encoder, 
resulting in a partial reconstruction up to, say, bit-plane 
T of the original bit-planes.  This partial reconstruction 
actually specifies an interval for the value of x  and the 
optimal (in terms of mean square error) reproduction 

{ }kxxx ˆ,...,ˆˆ 1=  of x  is then given by the centroid of that 
interval, which may be calculated iteratively given the 
bit-plane wise probability assignment (9). 
 

4. PERFORMANCE ANALYSIS 
From the above coding/decoding procedures of BPGC, it 
can be seen that L

TG  is essentially equivalent to a 
uniform threshold quantizer (UTQ) [5] that has a step 
size T2=∆  and a central dead-zone ∆2 , which (with a 
slightly different size of the dead-zone) is known to be a 
nearly optimal ECSQ for Laplacian sources [14].  
Specifically, if we consider the following signal-to-
noise-ratio SNR performance: 

( )DSNR 2
10log10 σ

∆
=  dB,  (14) 

where 2σ  is the variance of the source and D is the 
normalized mean-square error distortion: 
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it can be shown that the SNR performance of the code 
L
TG  for an i.i.d Laplacian source with distribution 

parameter θ  is given by  

( ) ( ) ( )[ ] 1
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Furthermore, the normalized expected code length, or 
the rate of L

TG  for that source is given by 

( ) ( ) ∆
∞

=

∞

=

+−−−−= ∑∑ θ
Tj

L
jj

L
j

Tj
j

L
T QPQPR 1log1log 22

, (17) 

where 
jP  and L

jQ  are defined as in (4) and (9), 

respectively.  Note that the above equation can be further 
simplified as 

( ) ∆−∆ +−+−= θθ TLRL
T

11 , (18) 

if TL ≥ .  
Fig. 1 gives an example of the performance of L

TG  
with respect to an optimal ECSQ for a Laplacian source.  
The theoretical R-D bound for the Laplacian source 
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computed by using the Blahut-Arimoto algorithm [16, 
17] is also plotted in this figure for reference.  It can be 
seen from Fig. 1 that the performance of L

TG  lags only 
slightly when compared with that of the optimal ECSQ, 
which is due to its sub-optimal dead-zone and cost 
resulting from the informational divergence between L

TG  
and the underlying data source. At high rates, the penalty 
of the sub-optimal dead-zone dies out and the 
performance gap between these two schemes is mainly 
from the information divergence, which is found to be 
smaller than 0.1 bits in most cases by a redundancy 
analysis similar to that in [9].   

In order to further verify our results, numerical 
experiments were also conducted where the R-D 
performance of an experimental BPGC coder is 
measured with source data vectors generated by a 
pseudo Laplacian random variable generator.  The 
results are given in Fig. 1, which are obtained by 
averaging an ensemble of 1000 data vectors, each with a 
length of 512 samples. Clearly, these results strongly 
validate our previous analysis since the experimental 
BPGC coder achieves an R-D performance that is very 
close to its theoretical R-D curve.   

 

5. CONCLUSION 
We have shown that optimal BPC for Laplacian source 
is actually achievable at a complexity level that is 
suitable for a practical implementation.  In addition, an 
important sub-class of BPC, namely, BPGC is also 
introduced in this paper.  This gives the same lossless 
compression performance as the Golomb code for 
geometrically distributed integer sources. Furthermore, 
its excellent R-D performance for Laplacian sources is 
confirmed by an R-D analysis.   
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