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Abstract--In this paper, we propose a novel decoding
technique for DFT-based error control codes, which isrobust
against quantization and additive noise. The proposed
algorithm simultaneously determines the number and the
positions of the corrupted samples. We show that in contrast
to the conventional decoding techniques, the proposed
decoding method is stable in the presence of the quantization
and additive noise.

|I. INTRODUCTION

In one of the most commonly used real field error
control coding techniques, i.e,, DFT-Based codes, the
codeword is produced by padding enough zeros in the
discrete Fourier transform (DFT) of the information vector
[1]-[4]. It is shown that the decoding of this coding
scheme reduces to solving a set of t Toeplitz equations,
wheret is the number of errors or missing samples[3]-[4].

Theoreticaly, the number of corrupted samples by
impulsive noise, t, can be estimated using the well-known
recursive methods such as Levinson-Durbin, Berlekamp-
Massey, and Euclidian algorithms [5]. But in practice,
because of the presence of additive quantization noise,
which is inherent in the quantization process, these
agorithms become unstable and fail to estimate the
number of errors.

This deficiency has encouraged us to consider a
novel decoding technique for real field error control codes
under the impulsive channel model. It will be shown that
the proposed method can estimate the number and
positions of corrupted samples in the presence of
quantization additive noise.

By impulsive noise we mean that a finite number of
samples are either erased or drastically changed. While the
remaining samples are amost similar to the original
samples and are only different slightly due to quantization
or Additive White Gaussian Noise.

Il. THE PROPOSED DECODING METHOD

Using the DFT-based error control codes, in the encoder,
the information vector, K-tuple U, is encoded into an N-
tupleV, caled a codevector (codeword), where we have

0-7803-7663-3/03/$17.00 ©2003 IEEE

IV - 265

2 Signal Processing and Multimedia Research Lab,
Iran Telecom Research Center
Tehran-Iran

N > K . In these codes, the encoding procedure is as
follows,

1- Wetake DFT of the U to get K-tuple U .

2-  Weinsert N-K consecutive zeros to get N-tuple V .

3- Wetakeitsinverse DFT to get N-tuple codeword V .

In the receiver, let r be the received vector and
suppose that an unknown error vector € is introduced as
follows,
r=v+e L
where V isthe transmitted codeword. We assume that the
error vector € is due to lost samples in an impulsive
channel. In this case, the ith component of the error vector,
€(i), is zero where i is not equal to the positions of
corrupted samples due to loss samples in the impulsive
channel.

Let E be the DFT of the error vector € that
coincides with the DFT of the received vector R in the
positions that zeros are added in the encoding procedure.
In the proposed decoding method, we produce an error
locator polynomial as follows,

eN-Ku eN-Ku
€2t €2t
S(2= ahz =1+ ghZ %)
r=0 r=1
where h i=12,.., EN-KU  gisfies the following
g2 H
equations,
eN-Ku
i%pirn _83 d jZWpimr 3
Se™)=a he"" =0, 3
r=0

where }im:m={12.---,t} tggN'zK@U denotes the
1

positions of the lost samplesin the impulsive channel and t
denotes the number of lost samples. In this case, S(z)
can be written as follows,
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where P(2)is a polynomlal of Z such that its order is
éN- Ku

§ 5 H ®)

and we have,

P(0) =1 6)
It should be noted that in the conventional decoding

method, the upper limit of summations (2) and (3) is t.

Therefore the proposed method is a generalization of the

conventional technique and if we fix P(z) =1, the

proposed method reduces to the conventional method,
which is discussed in [1]-[4]. On the other hand, in
contrast to the conventional method, in the proposed
technique, to find the error locator polynomial, it is not
necessary to know the number of lost samples, t,
beforehand.

Similar to the conventional technique, multiplying

.2p
o\ P .
(3) by e(lm)e N and summing over i

following recursive equation,
&N- Kg

g2
hE(p-r)=0
0

In the conventional decoding method, there is a
recursive equation similar to (7) in which the upper limit
of the summation is the number of lost samples that is t.
Therefore, in contrast to the conventional method, in the
proposed method, it is not necessary to know the number
of lost samples. Similar to the conventional decoding
technique, in the proposed procedure, the idea is to use
eN- Ku

(4)

, we get the

p=0,1,...,N @)

Qo

_‘
1l

eguations (7) to determine unknown coefficients

hr . To solve equations (7), We onIy need to know N-K
samples of E in the positions where zeros are added in the
encoding procedure. Furthermore, because € is redl, the

eguations are Toeplitz and Hermitian and therefore we
have,

E(N/2-r)=E"(N/2+r) r=0,1,..,N/2 (8)

Thus the set of linear equations shown in (7) are Yule-
Walker equations and can be rewritten as,

RH=-E 9
where we have,

, T

e u
E=6Ey., Eu: NNk Y (10)

e g248d

R:lRi]

eN - K 1
R =Ey,im 1ELJEz—
i N/2-Ji- jl+ & 2 H
and
; T
e u
H=éy h, .. hy 0 (12
g €2 M
where h i =12,.., gN Q are unknown coefficients of

the equations (2) and (7).
As it is shown in [1]-[4], if there is no quantization
process, where the exact values of E, in the positions

where zeros are added in the encoding procedure are
accessible, E will be an Auto Regressive (AR) random
process with order t. Therefore, the matrix R will be
singular. In this case, there are infinite solutions for H that
in the proposed decoding method, each of them can be
used as an acceptable solution. One way to find a proper
solution is to put an additional constraint on H. It has been
shown that if the constraint is to require the vector H to
have the smallest possible magnitude, the unique solution
is given by the Moore-Penrose pseodu-inverse that can be
found asfollows [6],

H=-Pinv(R)*E (13)
where Pinv(R)is a matrix of the same dimension as R
so that we have,

R*Pinv(R)*R =R

Pinv(R)* R* Pinv(R) = Pinv(R)

In the presence of the quantization noise case, when the
components of € are not zero even if they do not
correspond to the positions of lost samples in the
impulsive channel, the simulation results show that R will
be a full rank symmetric Toeplitz matrix and therefore,
there will be severa fast inversion algorithms for it with
any rank profile [5],[7].

From (3), it can be seen that i

(14)

denotes the location
2P
of an error if e N is a zero of the polynomial S(Z).

Furthermore, if an N-tuple vector HR is constructed as
follows,

HR=[1 h h, .. h, 0 .. 0O (15)
where h, are the components of the solution of the vector

equation (9), it can be easily seen that the zeros of the
DFT of HR arein the location of errors.
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Figure 1: The determinant of submatrices versus the dimensions of
submatrices in no quantization noise case.
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Figure 2: The determinant of submatrices versus the dimensions of
submatrices in 8-bit quantization case

After computing H, using the identity of
E(i)=R() for i denoting the positions of N-K
consecutive zeros in the DFT, the remaining values of E
can be found by the recursive equation (7).

I1l. NUMERICAL RESULTS

Asit was stated in the previous sections, if thereis no
quantization process, the vector E will be an AR random
process with order t, which denotes the number of lost
samples. In the conventional decoding method, the
Levinson-Durbin, Berlekamp, and Euclian agorithms can
be used to find the number of errors. The idea of these
algorithms is to recursively compute the solutions of the
Y ule-walker equations for the top principal submatrixesin
the eguations (7). In the conventional technique, to
properly estimate the number of errors t, these algorithms
requires that the top t” t principd matrix to be

nonsingular and the top (t +1)' (t +1) principal matrix

to be singular. In other words, the curve of determinants of
the top principal submatrices versus their dimensions
should rapidly decrease at the point of t.
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gure 3: The transmitted, received, and estimated signalsin no
guantization case.
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Figure 4: The positions of zeros of the polynomial S(Z) inno

guantization noise case. The positions of zeros which are on the unit
circle, show the location of errors

In order to show the sensitivity of the conventiona
decoding technique to the additive noise, which is
generated by quantization process of the known samples of
E, for a system with N=64, N-K=31, and t=12, in Figures
1-2, the curves of determinants versus dimensions of top
principle submatrices are plotted in no quantization, and 8-
bit quantization cases, respectively. It can be seen that in
the case of no quantization noise, because of rapid fall off
the values of determinants at dimensions greater than 12,
the conventional algorithm can estimate the number of
errors that is 12. But in the presence of the quantization
noise, the conventional algorithm cannot exactly predict
the number of errors. To evaluate the performance of the
proposed method, the transmitted, the received, and the
reconstructed signals using the proposed method in the
case of no quantization are plotted in Figure 3. It can be
seen that the proposed method can exactly estimate the
transmitted signal. In Figure 4, the positions of zeros of

the polynomial S(Z) are shown. It can be seen that the
i2m

positions of zeros with the form of € N exactly show

the location of errors. In Figure 5, the amplitude of
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Figure 5: The amplitude of the DFT of HR in quantization noise case.
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Figure 6: The transmitted, received, and estimated signalsin 8-bit
quantization case.

DFT of the HR is shown. We see that the minima of this
curve are at the location of errors.

In Figure 6, the reconstructed signal is compared with
the received and transmitted signals in 8-bit quantization
case. It can be seen that the proposed method works well
and can reconstruct the transmitted signal. In Figure 7, the

positions of zeros of S(Z) are shown. It can be seen that

the positions of those zeros whose locations denote the
positions of errors are insensitive to the quantization noise.
Figure 8 shows the amplitude of the DFT of HR in 8-bit
guantization case. It can be seen that the presence of
quantization noise does not change the locations of the
minima of the curve.

CONCLUSIONS

In this paper, a novel decoding technique for rea field
error control codes has been proposed. The proposed
algorithm determines the number and the positions of the
error samples simultaneously. It has been shown that in
contrast to the conventional decoding techniques, the
proposed method can work in the presence of the additive
or quantization noise.
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Figure 7: The positions of zeros of the polynomial S(Z) in 8-hit
2p
quantization case. The positions of zeros with the form of eJ N m, which
are on the unit circle, exactly show the location of errors
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Figure 8: The amplitude of the DFT of HR in 8-bit quantization case.
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