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Abstract--In this paper, we propose a novel decoding 
technique for DFT-based error control codes, which is robust 
against quantization and additive noise. The proposed 
algorithm simultaneously determines the number and the 
positions of the corrupted samples. We show that in contrast 
to the conventional decoding techniques, the proposed 
decoding method is stable in the presence of the quantization 
and additive noise.   

 
I. INTRODUCTION 

 
In one of the most commonly used real field error 

control coding techniques, i.e., DFT-Based codes, the 
codeword is produced by padding enough zeros in the 
discrete Fourier transform (DFT) of the information vector 
[1]-[4]. It is shown that the decoding of this coding 
scheme reduces to solving a set of t Toeplitz equations, 
where t is the number of errors or missing samples [3]-[4].  

Theoretically, the number of corrupted samples by 
impulsive noise, t, can be estimated using the well-known 
recursive methods such as Levinson-Durbin, Berlekamp-
Massey, and Euclidian algorithms [5]. But in practice, 
because of the presence of additive quantization noise, 
which is inherent in the quantization process, these 
algorithms become unstable and fail to estimate the 
number of errors.   

This deficiency has encouraged us to consider a 
novel decoding technique for real field error control codes 
under the impulsive channel model. It will be shown that 
the proposed method can estimate the number and 
positions of corrupted samples in the presence of 
quantization additive noise.   

By impulsive noise we mean that a finite number of 
samples are either erased or drastically changed. While the 
remaining samples are almost similar to the original 
samples and are only different slightly due to quantization 
or Additive White Gaussian Noise.  

 
II. THE PROPOSED DECODING METHOD   

 
Using the DFT-based error control codes, in the encoder, 
the information vector, K-tuple u , is encoded into an N-
tuple v , called a codevector (codeword), where we have 

KN > . In these codes, the encoding procedure is as 
follows,  
1- We take DFT of the u  to get K-tuple U . 
2- We insert N-K consecutive zeros to get N-tuple V . 
3- We take its inverse DFT to get N-tuple codeword v . 

In the receiver, let r be the received vector and 
suppose that an unknown error vector e  is introduced as 
follows, 

evr +=                                                                       (1) 
where v  is the transmitted codeword. We assume that the 
error vector e  is due to lost samples in an impulsive 
channel. In this case, the ith component of the error vector, 

)(ie , is zero where i is not equal to the positions of 
corrupted samples due to loss samples in the impulsive 
channel.   

Let E  be the DFT of the error vector e  that 
coincides with the DFT of the received vector R  in the 
positions that zeros are added in the encoding procedure. 
In the proposed decoding method, we produce an error 
locator polynomial as follows,  
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positions of the lost samples in the impulsive channel and t 
denotes the number of lost samples. In this case, )(zS  
can be written as follows, 
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where )(zP is a polynomial of z such that  its order is 

t
KN
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and we have,  
1)0( =P                                                                        (6) 

It should be noted that in the conventional decoding 
method, the upper limit of summations (2) and (3) is t. 
Therefore the proposed method is a generalization of the 
conventional technique and if we fix 1)( =zP , the 
proposed method reduces to the conventional method, 
which is discussed in [1]-[4]. On the other hand, in 
contrast to the conventional method, in the proposed 
technique, to find the error locator polynomial, it is not 
necessary to know the number of lost samples, t, 
beforehand.  

Similar to the conventional technique, multiplying 

(3) by ( ) pi
N

j

m

m

eie
π2

−
 and summing over mi , we get the 

following recursive equation, 
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In the conventional decoding method, there is a 
recursive equation similar to (7) in which the upper limit 
of the summation is the number of lost samples that is t. 
Therefore, in contrast to the conventional method, in the 
proposed method, it is not necessary to know the number 
of lost samples.  Similar to the conventional decoding 
technique, in the proposed procedure, the idea is to use 

equations (7) to determine 






 −
2

KN unknown coefficients 

rh . To solve equations (7), We only need to know N-K 
samples of E in the positions where zeros are added in the 
encoding procedure. Furthermore, because e is real, the 
equations are Toeplitz and Hermitian and therefore we 
have, 

( ) 2/ , ... , 1 , 0 )2/(2/ * NrrNErNE =+=− (8) 
Thus the set of linear equations shown in (7) are Yule-
Walker equations and can be rewritten as, 

ERH −=                                                                     (9) 
where we have,  
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where 



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2
 1,2,...,  

N-K
ihi

 are unknown coefficients of 

the equations (2) and (7). 
As it is shown in [1]-[4], if there is no quantization 

process, where the exact values of 
iE  in the positions 

where zeros are added in the encoding procedure are 
accessible, E will be an Auto Regressive (AR) random 
process with order t. Therefore, the matrix R will be 
singular. In this case, there are infinite solutions for H that 
in the proposed decoding method, each of them can be 
used as an acceptable solution. One way to find a proper 
solution is to put an additional constraint on H. It has been 
shown that if the constraint is to require the vector H to 
have the smallest possible magnitude, the unique solution 
is given by the Moore-Penrose pseodu-inverse that can be 
found as follows [6], 

ERH *)(Pinv−=                                                    (13) 

where )(RPinv is a matrix of the same dimension as R 
so that we have,  
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    In the presence of the quantization noise case, when the 
components of e are not zero even if they do not 
correspond to the positions of lost samples in the 
impulsive channel, the simulation results show that R will 
be a full rank symmetric Toeplitz matrix and therefore, 
there will be several fast inversion algorithms for it with 
any rank profile [5],[7].  

From (3), it can be seen that mi  denotes the location 

of an error if 
miN

j
e

π2

 is a zero of the polynomial ( )zS .  
Furthermore, if an N-tuple vector HR is constructed as 
follows,  

[ ]T
Phhh 0...0...1 21=HR            (15) 

where  ih are the components of the solution of the vector 

equation (9), it can be easily seen that the zeros of the 
DFT of HR are in the location of errors.  
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Figure 1: The determinant of submatrices versus the dimensions of 

submatrices in no quantization noise case. 
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Figure 2: The determinant of submatrices versus the dimensions of 

submatrices in 8-bit quantization case  
 

After computing H, using the identity of 
( ) ( )iRiE =  for i denoting the positions of N-K 

consecutive zeros in the DFT, the remaining values of E 
can be found by the recursive equation (7). 

 
III. NUMERICAL RESULTS 

 
As it was stated in the previous sections, if there is no 

quantization process, the vector E will be an AR random 
process with order t, which denotes the number of lost 
samples. In the conventional decoding method, the 
Levinson-Durbin, Berlekamp, and Euclian algorithms can 
be used to find the number of errors. The idea of these 
algorithms is to recursively compute the solutions of the 
Yule-walker equations for the top principal submatrixes in 
the equations (7). In the conventional technique, to 
properly estimate the number of errors t, these algorithms 
requires that the top tt ×  principal matrix to be 
nonsingular and the top ( ) ( )11 +×+ tt  principal matrix 
to be singular. In other words, the curve of determinants of 
the top principal submatrices versus their dimensions 
should rapidly decrease at the point of t. 
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Figure 3: The transmitted, received, and estimated signals in no 

quantization case. 
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Figure 4: The positions of zeros of the polynomial ( )zS  in no 

quantization  noise case. The positions of zeros which are on the unit 
circle, show the location of errors 

 
    In order to show the sensitivity of the conventional 
decoding technique to the additive noise, which is 
generated by quantization process of the known samples of 
E, for a system with N=64, N-K=31, and t=12, in Figures 
1-2, the curves of determinants versus dimensions of top 
principle submatrices are plotted in no quantization, and 8-
bit quantization cases, respectively. It can be seen that in 
the case of no quantization noise, because of rapid fall off 
the values of determinants at dimensions greater than 12, 
the conventional algorithm can estimate the number of 
errors that is 12. But in the presence of the quantization 
noise, the conventional algorithm cannot exactly predict 
the number of errors.  To evaluate the performance of the 
proposed method, the transmitted, the received, and the 
reconstructed signals using the proposed method in the 
case of no quantization are plotted in Figure 3. It can be 
seen that the proposed method can exactly estimate the 
transmitted signal. In Figure 4, the positions of zeros of 
the polynomial ( )zS  are shown. It can be seen that the 

positions of zeros with the form of 
m

N
j

e
π2

exactly show 
the location of errors. In Figure 5, the amplitude of  
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Figure 5:  The amplitude of the DFT of HR in quantization noise case. 
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Figure 6: The transmitted, received, and estimated signals in 8-bit 

quantization case. 
 

DFT of the HR is shown. We see that the minima of this 
curve are at the location of errors.  
    In Figure 6, the reconstructed signal is compared with 
the received and transmitted signals in 8-bit quantization 
case. It can be seen that the proposed method works well 
and can reconstruct the transmitted signal. In Figure 7, the 
positions of zeros of ( )zS  are shown. It can be seen that 
the positions of those zeros whose locations denote the 
positions of errors are insensitive to the quantization noise. 
Figure 8 shows the amplitude of the DFT of HR in 8-bit 
quantization case. It can be seen that the presence of 
quantization noise does not change the locations of the 
minima of the curve.    
 

CONCLUSIONS 
 
In this paper, a novel decoding technique for real field 
error control codes has been proposed. The proposed 
algorithm determines the number and the positions of the 
error samples simultaneously. It has been shown that in 
contrast to the conventional decoding techniques, the 
proposed method can work in the presence of the additive 
or quantization noise.   
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Figure 7: The positions of zeros of the polynomial ( )zS  in 8-bit 

quantization case. The positions of zeros with the form of 
m

N
j

e
π2

, which 
are on the unit circle, exactly show the location of errors 
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Figure 8: The amplitude of the DFT of HR in 8-bit quantization  case. 

 
REFERENCES 

 
[1] F. Marvasti, Nonuniform Sampling Theory and Practice, 
Kluwer Academic/Plenum Publishers, New-York, 2001. 
[2] F. Marvasti, M. Hassan, M. Echhart, and S. Talebi, “Efficient 
Algorithms for Burst Error Recovery Using FFT and Other 
Transform Kernels”, IEEE trans. on Signal Processing, vol. 47, 
no. 4, pp. 1065-1075, April 1999. 
[3] J. K. Wolf, “ Redundancy, the discrete Fourier Transform, 
and Impulse Noise Cancellation,” IEEEtrans. On Com., vol. 
Com-31, no. 3, pp. 458-4461, March 1983. 
[4] P. j. S. G. Ferreira, and J. M. N. Vieira, “Locating and 
Correcting Errors in Images”, in proc. IEEE Conf on Image 
Processing, ICIP-97, pp. 691-694,Oct. 1997. 
[5] H. Zhang, and P. Duhamel, “on the Methods for Solving 
Yule-Walker Equations”, IEEE Trans on Signal Processing, 
vol. 40, no. 12, Dec. 1992. 
[6] C. R. Rao, and S.K. Mitra, Generalized Inverse of Matrices 
and its Applications, John Wiley and Sons, New York 1971. 
[7]. G. Heining, and K. Rost, “Split Algorithms for Symmetric 
Toeplitz Matrices with any Rank Profile,” Numerical Linear 
Algebra with Applications, vol. 6, pp. 1-7, April 2000.  
 

IV - 268

➡ ➠


