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ABSTRACT tions. We present the algorithms for both unquantized and quan-
tized codevectors, and compare their performances with the coding

In this paper, we propose two subspace algorithms for error lo- theoretic approach.

calization with quantized DFT codes. The algorithms are similar
to the MUSIC and the minimum-norm algorithms followed in the
array signal processing for direction of arrival (DOA) estimation. 2. ERRORLOCALIZATION WITHOUT QUANTIZATION

We present the algorithms in a generalized form with a variable ) )

dimension syndrome covariance matrix. Simulation results show Lgt r denote the received vector when the transmitted codevector
that their localization performances are similar, and they achieveY IS corrupted by the error vecter Then

the peak values when the rank of the covariance matrix reaches the r=y+te. 1)
maximum value. They also perform better than the coding theo-

retic approach over a broad range of channel error to quantizationThe syndrome of is given as

noise ratio. n n n
s=H'r=H"'(y+e)=H"e, 2)

1. INTRODUCTION whereH denotes the parity check matrix ases [s(1), ..., s(d)]'
is a column vector of lengtti. The superscriptdenotes the matrix

This paper addresses the subject of channel error correction withtransposition operation.
DFT codes [1-4]. DFT codes are being considered for joint source-  Letd be equal t®! or 2] + 1 for some positive integdrif it is
channel coding in order to provide robustness to data loss or cor-even or odd respectively. Let the received samples contaimors
ruption in communication channels [3, 4]. It is known that DFT wherev < I. Letiy, s, .., 1, denote the indices of the erroneous
codes are cyclic codes in the complex field [1]. However, the code samples. LefX;, = e 2™&/N =1,...,v. Let v.™ denote
properties do not hold once the codevectors are quantized. Th&he error locator matrix whosgh column is[1, Xi, ..., X"

error correction problem becomes analogous to the problem ofes; = 1, ... ». The superscriptim) will refer to the number of rows

timation of directions and amplitudes of planmaves (DOAS) in- of V™. The number of columns il,™ is equal to the number
cident on a uniform linear array [5, 6].

; (m)
An (N, K) DFT code is a linear block code whose generator of errors. We will refe.r to the columns &f Sas the error locator
. ) ) . vectors of ordern. Since the roots are distinct, the error locator
matrix consists of any<' columns from the inverse DFT matrix

of order NV [1]. A parity check matrix of the code consists of the vectors are Ilne_arly |r_1dependent when > v Whe_nm >V
remainingN' — K = d columns of the inverse DET matrix. Since they define a-dimensional subspace of the-dimensional vector

the DFT matrix is Hermitian, every codevector misses the parity space, which we will refer to as the channel error subspace. The

X . o Oorthogonal complement of this subspace has dimensien, and
frequencies. The presence of any error in a codevector is indicate ; . :
we will refer to it as the noise subspace.

by the parity frequencies being nonzero, which are also known as Let us assume that+ 1 < m < d — v + 1. Let S,, denote

the syndrome frequencies. the syndrome matrix defined as
DFT codes are cyclic codes in the complex field [1]. Within y

the class of DFT codes, there exist BCH codes in the real field s(1) 5(2) s s(d=m+1)

and the complex field. A BCH DFT code is an MDS code. An _ | s(2) 5(3) . s(d—m+2)

(N, K) DFT code which is an MDS code in the complex field or Sm=| 7 e

the real field has minimum hamming distante 1 [2]. Therefore s(m) s(m+1) ... s(d)

it can correct up tod/2| sample errors and recover updsample

erasures. LetR,, = #Sms,’;. We will refer toR,,, as the syndrome

In this paper, we present two subspace algorithms to localize covariance matrix. It can be shown that the ranigf is equal to
channel errors which are derived along the lines of the subspaceghe number of errors; (see Appendix). Therefore it hasonzero
based approaches to DOA estimation. The basic idea of a subeigenvalues. The eigen-decomposition/f is given as
space approach to error localization is to partition a vector space oy
into a channel error subspace and its orthogonal complement, theg, . — [U** U;nX(mfu)] A
noise subspace. In the first approach, which we call MUSIC-like 0
because of its similarity with the MUSIC algorithm, the common here A, contains the nonzero eigenvalues. Now we have the
roots of the polynomials associated with the noise subspace eigen : "

d . following proposition.
vectors determine the error locations. In the second approach, the
roots of the polynomial which is associated with the minimum- Proposition 1 The columns of U. span the channel error sub-
norm vector lying in the noise subspace determine the error loca-space.

0
O(m—u)x(m—u) [Ue U’ﬂ]h7
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Proof: See Appendix. error correction algorithms based on the coding theory principle
Because of this result, the error locator vectors are orthogonalcannot be applied directly. The problem of error correction now
to the eigenvectors df,,, which span the noise subspace. Thatis, becomes a problem of estimation. The decoding algorithm aims at

ALY J 0, x (m—v)- Letu; denote theth column ofU,,. Let localizing and finding the channel errors having large magnitudes

®;(x) denote the polynomial whose coefficients are equal to the compared to the quantization noise.

components ofy;. Then the above equation can be written as Let q denote the quantization noise of codevegtor With
channel erroe, the received vector is given &s= y + q + e.

win Fui o X7+ ui,ka*(m*U =0, We will denote the terms defined earlier with a hat to indicate the
k=1,...,0,i=1,...,m—u. 3) presence of quantization noise. Therefore the syndrome is given

as

This shows thatXy,...,, X, are common roots o®;(z),..., s= H'i = H'q+ H'e = s, +5., e

®,,—, (z). Further, sinces < m, they are the only common roots.
Whenm = v + 1, the noise subspace has dimension one, and thewheresq = H"qands. = H"e. Itis easy to see tha, denotes

roots ofU, = u, areXy, ..., X,. the contribution of the quantization noise to the syndrome. There-

Since the noise subspace is orthogonal to the error subspaceyre a nonzero syndrome does not imply the presence of channel
any linear combination of the columns &, is orthogonal to the errors.

error locator vectors. This can be equivalently said as any linear Let us assume that the quantization naigés white and is

combination ofb; (x)'s has roots ai, ..., X,. Letabe a n?ife uncorrelated with the channel errors. Each componenj &f
subspace vector whose first element is 1, thatisz [I w']°  a5sumed to have mean zero and variamte The channel er-
wherew denotes the vector of remaining elements. Let us partition ., magnitudes are assumed to be large compared .toSince
U, asU, = [5’;] wherep, denotes the first row df’.. Similarly § = s. + s4, the syndrome matri§.,, can be expressed &5, =
¢ Sme + Smq WhereS,,. denotes the part due to the channel er-
let us partitiont,, asU, = I;)n wherep,, denotes the first ~ fors ands,,, denotes the part_dug to the quantization noise. Now
n Ry = 72— 55}, ExpandingS,,, S}, we get

row of U,,. Sincea is orthogonal to the columns @f., we get

h h tt H :

< P!][1 w']" = 0. This gives N 1
bpe Felitw] ’ Bn = Rm+5———=(SmqSmq + SmeSmq + SmqSme)
h h h h d—m+1
p. + PPw=0 or, P'w=-—-p.. 4) = R+ Ron, @8)

This set of equations has more unknowns than the number of equayhere R
mn

. g ; . . denotes the noise term on the right hand side. The
tions except in the special case when= v + 1 (FP. is square in

) ’ e presence oRR,,,, will perturb the eigenvectors and the eigenvalues
that case.). There_fore thert_a IS no unique solu_tlomﬂ> v t 1 of R,,. The statistical behaviour of this perturbation depends on
However, we can find the minimum-norm solution fer(||w/|* is the statistical properties d?..,.. Sinceq is assumed to be white
minimum), which is given as and uncorrelated witk, E(Snc Sk,) = E(Sm,Skh.) = 0, and
Wi = —(P")pl. 5) E(Smq Sk, = 0_2(d — m +1)I,, whereE denotes the mathe-
matical expectation operator aifigg denotes the identity matrix of
Here(P")* denotes the pseudo-inversemf. Using the formula orderm. ThereforeE(R,,) = o*I,. This shows that the ex-
for the pseudo-inverse and the orthogonality between the columnspected eigenvalues dt.., associated with the error subspace are
of U. andU,,, this expression can be simplified as [6] the diagonal elements af. + o1, and the expected eigenvalues
N associated with the noise subspaceddreFurther, the expectation
— Popy ) (6) of the perturbation of’, is zero.

PnPl The number of errors can be estimated from the distribution
of the eigenvalues. Gabay and Duhamel [4] estimate the number
of errors as the number of eigenvalues greater thah where
5 is set empirically. We have observed that at high channel er-
ror to quantization noise ratio, this approach performs much better
) ; than the Akaike information criterion (AIC) and the minimum de-
are the roots ofd, (z). However, since the degree df, (z) is scription length criterion (MDL), the two well known information

m — 1, it also hasm — 1 — v other roots. It has been shown  yheqretic criteria in array processing for estimating the number of
that Xy, ..., X, are the only roots which lie on the unit circle in - poaq.

the complex plane [7]. Note th&;’s are nothing butV-th roots
of unity. Therefore the locations of the errors can be known by
finding the roots of4,,, (z) over theN-th roots of unity. R N N B Avxv 0 FN
. R = [Umxu UmX(m u)] e [U U ]h
Once the error locations are known, the error values can beftm e n 0 Alm=v)x(m—v) e Ynl
determined by solving the firstsyndrome equations in Eqgn. 2. "

m

Sincellal|* = 1 + ||w|?, an = [1 W] is the minimum-
norm solution ofa. Because of the minimum norm propersy,
is unique. Letd,,(z) = am(0) + am(D)z™ + - + am(m —
1)z~ ("~1, Because,, lies in the noise subspac, ..., X,

The eigen-decomposition @, gives

whereA. contains thes largest eigenvalues. The columnslof
3. ERROR LOCALIZATION WITH QUANTIZATION span the estimated error subspace, and the colunﬁﬂsqﬁan the
estimated noise subspace. The errors can be localized by minimiz-
The transmission of the codevectors in digital form requires all ing the following function over théVth roots of unity:
codevectors to be quantized. As a result, every codevector contains
N sample errors irrespective of any channel error. Therefore the Ep(z) = vi™"h 0, U v™), 9)
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wherev{™ = [1,2,2%,..., 2™ '], Alternatively, sincd’, "+
U U = L, vi™"0.0"v{™ can be maximized over the roots
of unity. The above algorithm is similar to the MUSIC algorithm
followed in array signal processing for DOA estimation [6].

The minimum-norm estimate can be obtained froin  If

ﬁnz[fl:
am:[ ]

P,
The errors are localized by minimizingi,. (z)|> over the Nth
roots of unity.
Once the error locations are known, the error values can be
estimated by solvingi”é = § in the least square sense.

] , then

1
Pnph
Pnbl

(10

4. PERFORMANCE ANALYSIS

The aim of this section is to compare the localization performances
of the coding theoretic approach and the minimum-norm approach.

Using the asymptotic formula fd&(6U, 6U") from [8], and sim-
plifying, we get

93

, . o? - Ai
E(6Ame 1) = 1Anll* 7= =5 3~ 5oy
i=1 7"

v+1<m<Ii+1, (16)
where);’s are thev largest eigenvalues dt,,,.

Consider the minimum-norm algorithm. L&, denote the
perturbation oh,,, due to the quantization. Following exactly sim-
ilar steps as above, we can obtain [8]
i=1 (i =a?)*’

v+1<m<Il+1,

0,2
—-—m+1

B([[0ame[I*) = llam|I* -
a7

where da,,.. is the projection offa,, onto the error subspace.
Sincea,, is the minimum-norm solutiorj|a,, ||*> < ||Ax||*. This
implies thatE(||dam. ||?) < E(||6Am.||*). It can be shown that
the norm ofa,, is a decreasing function ofi. This means that
the expected perturbation with the minimum-norm algorithm is a

The comparison is made in terms of the perturbation of the channeldecreasing function af.

error subspace.
In the coding theoretic approach, the errors are localized using
the concept of an error locator polynomial [2] which is defined as

Az)=JJa - Xz ) =Ao+ Az ' 4.

i=1

+ Az, (11)

whereAy = 1. The coefficients\y, ..., A, are found by solving
the following set of convolution equations [2]:

s()A, +s(E+ 1At + -+ st +v)Ao =0,

i=1,...,d—v. (12)
m—v—1
—— .
Let A, = [1,A1,...,A,,0,...,0]". Clearly, A(z) is the poly-
nomial associated withk,,,. SinceXy,..., X, are the roots of

Az), VA™"A,, = 0. This implies thatA,, lies in the noise
subspace. Therefol®”A,, = 0. A,, can be partitioned as

1 A" Oix(m_r-1)]', whereA = [A1 Ay ..., A]". Letus
Pe

partitionU. asU. = | P., | wherep. denotes the first row as
P,

defined beforeP., denotes the next rows andP., denotes the
remaining rows. Using the partitioned forms @f and A,,,, we
get

p'+P:A =0,

or P!'A=—p (13)

Taking the differential of both sides, and simplifying, we get

SA = —(P!)"'oU Ay (- Pe, isinvertible) (14)

The perturbation of the error subspace is directly proportional to
the projection of§A,, = [0 A" 015 (m—.—1)]" ONto the error
subspace. LefA,,. denote the projection. Thef§A...|*> =

AL SU.SU"A,,,. Therefore

E(||6A pe|”) = AL E(SUL UM A (15)

5. SSIMULATION RESULTSAND CONCLUSION

In order to test and validate the algorithms, we performed simu-
lations over a Gauss-Markov source with mean 0, variance 1, and
correlation coefficient 0.9. The source was encoded w({tt8a9)

DFT code and quantized with a 4-bit uniform scalar quantizer.
First we simulated the subspace algorithms for different values of
m for a given number of channel errors. Fig. 1 and Fig. 2 show the
relative frequencies of correct localization for one and two chan-
nel errors respectively. We observe that both the MUSIC-like and
the minimum-norm methods perform similarly. The performance
is the best whenn is equal to 5, i.e., the syndrome matrix has
dimension5 x 5. We have observed that increasimgfurther de-
grades the performances for multiple errors. Note that increasing
m increases the dimensionality of the noise subspace, however,
since the number of columns 68, decreases with the increase in
m, the syndrome covariance matrix has increasing number of zero
eigenvalues. This means that the performance is the best when the
rank of the covariance matrix reaches the highest possible value.
Fig. 3 and Fig. 4 compare the localization performances of the
coding theoretic approach and the subspace approaches with the
syndrome matrix dimensiohx 5. The performance improvement
over the coding theoretic approach is evident.

From the above results we conclude that the MUSIC-like and
the minimum-norm subspace approaches have similar localization
performances. They also outperform the coding theoretic approach
when the dimension of the syndrome matrix is chosen such that the
resulting covariance matrix has the maximum rank.

APPENDIX

S, can be expressed &, = Vi™ D V™t where

D. is av xv diagonal matrix. Therefore®,, = dﬂiﬂ Ve(m)De X

yld-mDtydemt phy (mh gince X, ..., X, are distinct
and nonzero, ang < m, the columns o™ are Li. and the
rows of V.~ ™+ are Li. Therefore the rank d&,, is equal to
v. Now R,, can be expressed d8, = U.A.U". Therefore,
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— 1 V(m)

= LV De‘/;(d—m+1)t%(d—m+l)*Dg‘/e(m)h.

Uh

From this relation, we can express the columndJpfas linear
sums of the columns df’e(m) and vice versa. Thus the eigenvec-

torsi

(1]

(2]

(3]

nU. span the error subspace.
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