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ABSTRACT

In this paper, we propose two subspace algorithms for error lo-
calization with quantized DFT codes. The algorithms are similar
to the MUSIC and the minimum-norm algorithms followed in the
array signal processing for direction of arrival (DOA) estimation.
We present the algorithms in a generalized form with a variable
dimension syndrome covariance matrix. Simulation results show
that their localization performances are similar, and they achieve
the peak values when the rank of the covariance matrix reaches the
maximum value. They also perform better than the coding theo-
retic approach over a broad range of channel error to quantization
noise ratio.

1. INTRODUCTION

This paper addresses the subject of channel error correction with
DFT codes [1–4]. DFT codes are being considered for joint source-
channel coding in order to provide robustness to data loss or cor-
ruption in communication channels [3, 4]. It is known that DFT
codes are cyclic codes in the complex field [1]. However, the code
properties do not hold once the codevectors are quantized. The
error correction problem becomes analogous to the problem of es-
timation of directions and amplitudes of planewaves (DOAs) in-
cident on a uniform linear array [5, 6].

An ����� DFT code is a linear block code whose generator
matrix consists of any� columns from the inverse DFT matrix
of order� [1]. A parity check matrix of the code consists of the
remaining� �� � � columns of the inverse DFT matrix. Since
the DFT matrix is Hermitian, every codevector misses the parity
frequencies. The presence of any error in a codevector is indicated
by the parity frequencies being nonzero, which are also known as
the syndrome frequencies.

DFT codes are cyclic codes in the complex field [1]. Within
the class of DFT codes, there exist BCH codes in the real field
and the complex field. A BCH DFT code is an MDS code. An
����� DFT code which is an MDS code in the complex field or
the real field has minimum hamming distance��� [2]. Therefore
it can correct up to����� sample errors and recover up to� sample
erasures.

In this paper, we present two subspace algorithms to localize
channel errors which are derived along the lines of the subspace
based approaches to DOA estimation. The basic idea of a sub-
space approach to error localization is to partition a vector space
into a channel error subspace and its orthogonal complement, the
noise subspace. In the first approach, which we call MUSIC-like
because of its similarity with the MUSIC algorithm, the common
roots of the polynomials associated with the noise subspace eigen-
vectors determine the error locations. In the second approach, the
roots of the polynomial which is associated with the minimum-
norm vector lying in the noise subspace determine the error loca-

tions. We present the algorithms for both unquantized and quan-
tized codevectors, and compare their performances with the coding
theoretic approach.

2. ERROR LOCALIZATION WITHOUT QUANTIZATION

Let � denote the received vector when the transmitted codevector
� is corrupted by the error vector�. Then

� � �� �� (1)

The syndrome of� is given as

� � ��
� � ����� �� � ��

�� (2)

where� denotes the parity check matrix and� � ������ � � � � ������

is a column vector of length�. The superscript	 denotes the matrix
transposition operation.

Let � be equal to�
 or �
�� for some positive integer
 if it is
even or odd respectively. Let the received samples contain� errors
where� � 
. Let ��� ��� � � � � �� denote the indices of the erroneous
samples. Let
� � ��������	 , � � �� � � � � �. Let � �
�

� denote
the error locator matrix whose�th column is��� 
�� � � � � 



��
� ��,

� � �� � � � � �. The superscript���will refer to the number of rows
of � �
�

� . The number of columns in� �
�
� is equal to the number

of errors. We will refer to the columns of� �
�
� as the error locator

vectors of order�. Since the roots are distinct, the error locator
vectors are linearly independent when� � �. When� � �,
they define a�-dimensional subspace of the�-dimensional vector
space, which we will refer to as the channel error subspace. The
orthogonal complement of this subspace has dimension���, and
we will refer to it as the noise subspace.

Let us assume that� � � � � � �� � � �. Let�
 denote
the syndrome matrix defined as

�
 �

�
��
���� ���� � � � ������ ��
���� ��	� � � � ������ ��
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
���� ���� �� � � � ����

�
�� �

Let �
 � �
��
��

�
�
�

. We will refer to�
 as the syndrome

covariance matrix. It can be shown that the rank of�
 is equal to
the number of errors,� (see Appendix). Therefore it has� nonzero
eigenvalues. The eigen-decomposition of�
 is given as

�
 � ��
��
� �
��
���


 �

�

���
� �

� ��
�����
���

�
��� �
�

��

where
� contains the nonzero eigenvalues. Now we have the
following proposition.

Proposition 1 The columns of �� span the channel error sub-
space.
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Proof: See Appendix.
Because of this result, the error locator vectors are orthogonal

to the eigenvectors of�
, which span the noise subspace. That is,
�
�
��
� �
 � ����
���. Let�� denote the�th column of�
. Let

����� denote the polynomial whose coefficients are equal to the
components of��. Then the above equation can be written as

���� � ����

��
� � � � �� ���



��
���
� � ��

� � �� � � � � �
 � � �� � � � ��� �� (3)

This shows that
�� � � � �, 
� are common roots of������ � � �,
�
�����. Further, since� � �, they are the only common roots.
When� � � � �, the noise subspace has dimension one, and the
roots of�
 � �� are
�� � � � � 
� .

Since the noise subspace is orthogonal to the error subspace,
any linear combination of the columns of�
 is orthogonal to the
error locator vectors. This can be equivalently said as any linear
combination of�����’s has roots at
�� � � � � 
� . Let� be a noise
subspace vector whose first element is 1, that is,� � �� ����

where� denotes the vector of remaining elements. Let us partition

�� as�� �

�
	�
��

�
where	� denotes the first row of��. Similarly

let us partition�
 as�
 �

�
	

�


�
where	
 denotes the first

row of �
. Since� is orthogonal to the columns of��, we get
�	�� �

�
� ��� �

��� � �. This gives

	
�
� � � �

� � � � or� ��
� � � �	�� � (4)

This set of equations has more unknowns than the number of equa-
tions except in the special case when� � � � � (�� is square in
that case.). Therefore there is no unique solution if� � � � �.
However, we can find the minimum-norm solution for� (���� is
minimum), which is given as

�
 � ��� �
� �

�
	
�
� � (5)

Here�� �
� �

� denotes the pseudo-inverse of��
� . Using the formula

for the pseudo-inverse and the orthogonality between the columns
of �� and�
, this expression can be simplified as [6]

�
 �
�
	

�



	
	�

� (6)

Since���� � � � ����, �
 � �� ��

�� is the minimum-

norm solution of�. Because of the minimum norm property,�

is unique. Let�
��� � �
��� � �
����

�� � � � � � �
�� �

�����
���. Because�
 lies in the noise subspace,
�� � � � � 
�

are the roots of�
���. However, since the degree of�
��� is
� � �, it also has� � � � � other roots. It has been shown
that
�� � � � � 
� are the only roots which lie on the unit circle in
the complex plane [7]. Note that
�’s are nothing but� -th roots
of unity. Therefore the locations of the errors can be known by
finding the roots of�
��� over the� -th roots of unity.

Once the error locations are known, the error values can be
determined by solving the first� syndrome equations in Eqn. 2.

3. ERROR LOCALIZATION WITH QUANTIZATION

The transmission of the codevectors in digital form requires all
codevectors to be quantized. As a result, every codevector contains
� sample errors irrespective of any channel error. Therefore the

error correction algorithms based on the coding theory principle
cannot be applied directly. The problem of error correction now
becomes a problem of estimation. The decoding algorithm aims at
localizing and finding the channel errors having large magnitudes
compared to the quantization noise.

Let 
 denote the quantization noise of codevector�. With
channel error�, the received vector is given as�� � � � 
 � �.
We will denote the terms defined earlier with a hat to indicate the
presence of quantization noise. Therefore the syndrome is given
as

�� � ���� � ��

���

� � �� � ��� (7)

where�� � ��
 and�� � ���. It is easy to see that�� denotes
the contribution of the quantization noise to the syndrome. There-
fore a nonzero syndrome does not imply the presence of channel
errors.

Let us assume that the quantization noise
 is white and is
uncorrelated with the channel errors. Each component of
 is
assumed to have mean zero and variance��. The channel er-
ror magnitudes are assumed to be large compared to��. Since
�� � �� � �� , the syndrome matrix��
 can be expressed as��
 �
�
� � �
� where�
� denotes the part due to the channel er-
rors and�
� denotes the part due to the quantization noise. Now
��
 � �

��
��
��
 ���
. Expanding��
 ���
, we get

��
 � �
 �
�

���� �
��
��

�

� � �
��

�

� � �
��

�

��

� �
 ��

� (8)

where�

 denotes the noise term on the right hand side. The
presence of�

 will perturb the eigenvectors and the eigenvalues
of �
. The statistical behaviour of this perturbation depends on
the statistical properties of�

. Since
 is assumed to be white
and uncorrelated with�, ���
��

�

�� � ���
��

�

�� � �, and

���
��
�

�� � ���� �� � ���
, where� denotes the mathe-

matical expectation operator and�
 denotes the identity matrix of
order�. Therefore���

 � � ���
. This shows that the ex-
pected eigenvalues of��
 associated with the error subspace are
the diagonal elements of
������ , and the expected eigenvalues
associated with the noise subspace are��. Further, the expectation
of the perturbation of��� is zero.

The number of errors can be estimated from the distribution
of the eigenvalues. Gabay and Duhamel [4] estimate the number
of errors as the number of eigenvalues greater than���, where
� is set empirically. We have observed that at high channel er-
ror to quantization noise ratio, this approach performs much better
than the Akaike information criterion (AIC) and the minimum de-
scription length criterion (MDL), the two well known information
theoretic criteria in array processing for estimating the number of
DOAs.

The eigen-decomposition of��
 gives

��
 � � ��
��
�

��
��
���

 �

�
�
���
� �

� �

�
�����
���



�
� ��� ��
�

��

where �
� contains the� largest eigenvalues. The columns of���
span the estimated error subspace, and the columns of��
 span the
estimated noise subspace. The errors can be localized by minimiz-
ing the following function over the� th roots of unity:

�
��� � �
�
��
�

��
 ��
�

�

�
�
� � (9)
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where��
�
� � ��� �� ��� � � � � �
����. Alternatively, since��� ���

� �
��
 ��

�

 � �
, ��
��

�
��� ��

�
� �

�
�
� can be maximized over the roots

of unity. The above algorithm is similar to the MUSIC algorithm
followed in array signal processing for DOA estimation [6].

The minimum-norm estimate can be obtained from��
. If

��
 �

�
�	

��


�
, then

��
 �

	
�

�����
�

�

�������



� (10)

The errors are localized by minimizing	 ��
���	� over the� th
roots of unity.

Once the error locations are known, the error values can be
estimated by solving���� � �� in the least square sense.

4. PERFORMANCE ANALYSIS

The aim of this section is to compare the localization performances
of the coding theoretic approach and the minimum-norm approach.
The comparison is made in terms of the perturbation of the channel
error subspace.

In the coding theoretic approach, the errors are localized using
the concept of an error locator polynomial [2] which is defined as

���� �
��
���

���
��
��� � �� � ���

�� � � � �����
�� � (11)

where�� � �. The coefficients��� � � � ��� are found by solving
the following set of convolution equations [2]:

������ � ���� ������ � � � �� ���� ���� � ��

� � �� � � � � �� �� (12)

Let �
 � ������ � � � ��� �


����� 
� �
�� � � � � ���� Clearly,���� is the poly-

nomial associated with�
. Since
�� � � � � 
� are the roots of
����, � �
��

� �
 � �� This implies that�
 lies in the noise
subspace. Therefore��

� �
 � �. �
 can be partitioned as
�� �� ����
������

�, where� � ��� �� � � � ��� �
�. Let us

partition�� as�� �

�
� 	����
���

�
� where	� denotes the first row as

defined before,��� denotes the next� rows and��� denotes the
remaining rows. Using the partitioned forms of�� and�
, we
get

	
�
� � � �

��� � �� or ��
��� � �	�� � (13)

Taking the differential of both sides, and simplifying, we get

Æ� 
 ��� �
���

��Æ��
� �
� �� ��� is invertible� (14)

The perturbation of the error subspace is directly proportional to
the projection ofÆ�
 � �� Æ�� ����
������

� onto the error
subspace. LetÆ�
� denote the projection. Then�Æ�
��

� �
��

Æ��Æ�

�
� �
. Therefore

���Æ�
��
�� � �

�

��Æ��Æ�

�
� ��
� (15)

Using the asymptotic formula for��Æ��Æ��
� � from [8], and sim-

plifying, we get

���Æ�
��
�� � ��
�

� ��

���� �

��
���

 �
� � � ����

�

� � � � � � 
� �� (16)

where �’s are the� largest eigenvalues of��
.
Consider the minimum-norm algorithm. LetÆ�
 denote the

perturbation of�
 due to the quantization. Following exactly sim-
ilar steps as above, we can obtain [8]

���Æ�
��
�� � ��
�

� ��

���� �

��
���

 �
� � � ����

�

� � � � � � 
� �� (17)

where Æ�
� is the projection ofÆ�
 onto the error subspace.
Since�
 is the minimum-norm solution,��
�� � ��
�

�. This
implies that���Æ�
��

�� � ���Æ�
��
��. It can be shown that

the norm of�
 is a decreasing function of�. This means that
the expected perturbation with the minimum-norm algorithm is a
decreasing function of�.

5. SIMULATION RESULTS AND CONCLUSION

In order to test and validate the algorithms, we performed simu-
lations over a Gauss-Markov source with mean 0, variance 1, and
correlation coefficient 0.9. The source was encoded with a���� ��
DFT code and quantized with a 4-bit uniform scalar quantizer.
First we simulated the subspace algorithms for different values of
� for a given number of channel errors. Fig. 1 and Fig. 2 show the
relative frequencies of correct localization for one and two chan-
nel errors respectively. We observe that both the MUSIC-like and
the minimum-norm methods perform similarly. The performance
is the best when� is equal to 5, i.e., the syndrome matrix has
dimension�� �. We have observed that increasing� further de-
grades the performances for multiple errors. Note that increasing
� increases the dimensionality of the noise subspace, however,
since the number of columns of�
 decreases with the increase in
�, the syndrome covariance matrix has increasing number of zero
eigenvalues. This means that the performance is the best when the
rank of the covariance matrix reaches the highest possible value.
Fig. 3 and Fig. 4 compare the localization performances of the
coding theoretic approach and the subspace approaches with the
syndrome matrix dimension���. The performance improvement
over the coding theoretic approach is evident.

From the above results we conclude that the MUSIC-like and
the minimum-norm subspace approaches have similar localization
performances. They also outperform the coding theoretic approach
when the dimension of the syndrome matrix is chosen such that the
resulting covariance matrix has the maximum rank.

APPENDIX

�
 can be expressed as�
 � �
�
�
� !��

���
����
� � where

!� is a��� diagonal matrix. Therefore,�
 � �
��
��

�
�
�
� !��

�
���
����
� �

���
����
� !�

� �
�
��
� � Since
�� � � � � 
� are distinct

and nonzero, and� � �, the columns of� �
�
� are l.i. and the

rows of� ���
����
� are l.i. Therefore the rank of�
 is equal to

�. Now �
 can be expressed as�
 � ��
��
�
� � Therefore,
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Fig. 1. Relative frequency of correct localization of one error
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Fig. 2. Relative frequency of correct localization of two errors
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From this relation, we can express the columns of�� as linear
sums of the columns of� �
�

� and vice versa. Thus the eigenvec-
tors in�� span the error subspace.
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