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ABSTRACT

This paperstudiesquantizedframe expansionshasedon
tree-structuredversampledilter banksfor robusttransmis-
sion of multimediasignalsover erasurechannels.The de-
pendenciedbetweenthe expansioncoeficientsintroduced
by the oversampledree-structuredilter banksareanalysed
in the z-transformdomain. The capacityof correctionin
the presencef differenterasurepatternsthenfollows nat-
urally. This analysisleadsto the designof a reconstruc-
tion algorithmin the presencef erasuresandfirst without
guantizatiomoise. Theimpactof quantizatiorerroron the
reconstructiorerroris thenstudied.

Forthetree-structuredversampledilter bankswe prove
thatreconstructiorfrom alarger classof erasurepatternds
possibleas comparedo regular oversampledilter banks.
Thereconstructionmeansquareerroris significantlylower
in the caseof tree-structuredilter bankascomparedo reg-
ularoversampledilter bankg6] andblocktransformsgeven
if the erasuresreburstyin nature.

EDICS:Multiple Descriptve Coding,JointSourceChan-
nel Coding, ErasureResilientCoding, Oversampled-ilter
Banks.

1. INTRODUCTION

Datatransmissiorover delivery infrastructuresffering no
QoSguarantede.g.the currentbest-efort Internetor wire-
lesschannels}yuffer from impairementslueto transientsn
the physicallayer or from lossesdueto network failure or
congestionIn thisarticlewe focuson the problemof losses
or erasures. Traditional approachego fight againstera-
suresconsistin sendingredundaninformationalongwith
the original information so that the lost data (or at least
part of it) canbe recoseredfrom the redundantinforma-
tion. The designprinciplesthat have prevailed so far stem
from Shannorssourceandchannekeparatiortheorenstat-
ing that sourceand channeloptimum performancebounds
canbeapproachedscloseasdesiredby designingndepen-
dently sourceandchannelcodingstratgies. However, this
holds only underasymptoticconditionswhereboth codes
are allowed infinite length and complexity. If the design
of the systemis heavily constrainedn termsof comple-
ity or delay the separatdalsocalledtandem)approactcan
be largely suboptimal. This obsenation hasrecentlymoti-
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vatedextensie work on the designof joint source-channel
codes. In literatureso far, DFT codeshave beenstudied
asjoint source-channddlock codesto obtainrobustnesgo
erasureg4]. It is shawvn in [4] that DFT codesarea spe-
cial classof frames.Filter bankframeexpansionshave also
beenstudiedto achiese resilienceto erasureql1], [3]. In
[1], theauthorshave shavn correspondencdsetweerover
sampledilter banksandframesin i2(Z). They have shavn
thatif the framesare uniform andtight, the meansquare
reconstructiorerror is minimized. The filter bankscon-
sideredin [1], arehowever specialfilter bankswhich have
filters with lengthsrestrictedto the downsamplingratio in
orderto avoid overlaps,henceare similar to block trans-
forms. Quantizedframe expansionsasedon two-channel
oversampledilter bankshave beenstudiedin [6]. When
usedin atree-structureavaveletsignaldecompositioronly
to protectthe low frequeng bands,the two-channelover-
sampledfilter bank (OFB) allows to recover from a larger
rangeof erasurepatternghanblock transformcodes,such
asthe DFT codesandthe OFB [6]. However, in [6], the
reconstructioralgorithmexploits only the dependencieis-
troducedin the last stageof the iteratedwaveletdecompo-
sition. In this article, we extendtheresultsof [6] to general
tree-structuredversampledilter banks(TSOFB).The de-
pendencieintroducedby theseOFB have beenanalyzedn
the z-transformdomain. They are expressedn termsof a
polynomialin z, K (z), conditioningthe existenceof per
fectreconstructiorsolutions,whenthereis no quantization
noise. A practical reconstructiomalgorithm then follows
naturally We prove that a larger classof erasurepatterns
can be reconstructedvhen TSOFB are usedas compared
to OFB. Further thereconstructiormeansquarearror with
quantizatiorfor burstyerasureatternsf the TSOFBIs sig-
nificantly lower ascomparedo OFB andblock transforms
likethe DFT codes.

2. TREE-STRUCTURED OFB

OFB canbe constructedrom from critically sampleduni-
form filter banksby replacingthe downsamplingfactorto
anumberlesserthanthe numberof channels Considerthe
tree-structuredilter bank shovn in Fig. 1, which is crit-
ically sampled. Using Noble Identity, this filter bank can
be expressedn z-domainasshavn in Fig. 2. If thethree
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downsampler®on the last stagehave not beenused,we ar
rive at an oversampledree-structuredilter bankshawn in
Fig. 3. This structureof decompositiorallows to support
unequalossprotection,the low frequeny informationbe-
ing morevital to protectthanthe high frequeng informa-
tion. The rationalebehindthe different oversamplingra-
tios associatedvith the differentcomponentss asfollows.
The coeficientscorrespondindo the lowpasscomponents,
i.e. Xo(z), X1(z), X2(2) have to be betterprotectedthan
the componentX3(z). Amongst Xo(2), X1(z), Xa(2),
moreprotectionis to begivento Xy (z), Xi(z) thanX»(z).
If thefilters ho(n) and h;(n) have length L, thenthe fil-
tersHy(22) Ho (z) andH (%) Hy (z), denotedasH, (z) and
H, (2) respectiely have length3L — 2. If thefilter bankis
seenasanencoderthentherateof thecodeis R = % Let
theinput sequence: (n) to the oversamplegortion of the
filter bankshown in Fig. 3 be written asa vectordenoted
asz ,ie.x =[- 2 (0)z (1)z (2)---]'. Letthethree
outputsequencesf thefilter bankzq(n), 1 (n) andzs(n)
be combinedn onevectory, i.e.

Yy =[- 20(0) 21(0) 22(0) zo(1) z1(1)
22(1) 20(2) ---1%. @)

We canexpressy asthe outputof alineartransformT” act-
ing onx , wherethematrix T is givenby

ho(3L —3)  ho(3L —2) hg(0)

hi(3L—3) k(3L —2) hy (0)

T 0 0 h1(0)
0 ho(3L — 3) ho(1)

0 hy(3L — 3) hy(1)

0 0 hy (1)

Fig. 1. Tree-structuredritically decimatedilter bank.

bandcomponents (n) andz; (n). If acomponentn these
subbandss lost, we looseavalue(x ,r;), wherer; is one
of therows of T' corresponingdo h or h;. It is possibleto

reconstructhat componentrom the receved components

if andonly if r; canbe expressedasa linear combination
of otherrows of T, sayr; = Enk# arTn,, suchthat,
(z ,7p,)isnotlostfor all k in thesummatiorunderconsid-
eration.In thefollowing sequeljnsteadof writing ‘symbol

z1(n)

z2(n)

z3(n)

Hi(z)— 12 >

Fig. 2. z-domainrepresentationf thetree-structuredilter
bank

Hi(z) 12

Fig. 3. z-domainrepresentationf the TSOFB

correspondingo inner productof = with a particularrow
of T, we will write ‘valuecorrespondingdo thatparticular
row’.

3. ANALYSIS OF CONDITIONSFOR PERFECT
RECONSTRUCTION

In this sectionwe analyseconditionsunderwhichit is pos-
sibleto reconstrucerasuresn subbanccomponentsy (n)
andz;(n). Obsere thatthe rows of T' areright shifts or
left shifts of basicallythreerows of T' correspondingo the
time-reversedilters hy (n), h; (n) andh; (n). Wefirstfocus
on expressinghy (—n + k) (or hy (—n + k), for someinte-
ger k) asalinearcombinationof integer shifts of hg(—n),
hi(—n). Notethatif the z-transformof the zero—th and
first row of T areH(')(z) and H, (z) respectiely, thenthe
z-transformof the 3k — th and3k + 1 — th row of T are
zFHy(z) and z* H, (z) respectiely, for all integer k (We
alusethe term z-transform,sincewe are actually consid-
ering the z-transformof the time reversedand shiftedver-
sions). If somerow canbe written asa finite linear com-
bination of otherrows, thenits z-transformcanbe written
asa correspondindinear combinationof the z-transforms.
If the zero-throw canbewritten asafinite linearcombina-
tion of rows with indices{3k;}}, androws with indices
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{3n; + 1}IL,, thenits z-transformcanbewritten as

M
Zaiz’“Ho + ijz JH1
i=1

E;'Vzl bjz"
1— Yo aizke
Let the value correspondingo the row H(z?)
erasedLetthevaluescorrespondingo rows { 2% Hy(22)

{2 H1(2?)Hy(z)}; be not erased.If thereexists scalars
a;, b; suchthat

Hy(z) = 2)(2)

Ho(2)
Hy(2)

®)

Hy(z) be

= Zaiz’“Ho(z2 Ho(2) +
i
> " b;z" Hy(2%)Ho(2), (4)
J
thenreconstructiorof thaterasedralueis possible.
Let the value correspondingo row Hy(22)Ho(z) be

erasedLet thevaluescorrespondingo rows
{2% Ho(2*)Ho(2) }i, {z" H1(2*)Ho(2)}j, {2 H1(2)}m
benoterased.

If thereexistsscalarsy;, b; andc,, suchthat

z) = Z a;z" Hy(2?)Ho(2) +

szJHl Zc 2Pm

thenreconstructiornf thaterased/alueis possible.To know
if reconstructions possibleusing(5), we get,

(]. - Za,z ’) HO H()( ) ijz"le(zz)Ho(z)

+ Hy(2) Z Cm 2P
m

)+ Hi(z (5)

— H()(Z)

SinceH,(z) and H, (z) arerelatively prime[2],

2 (1 — Zaiz’“) — Hy(2?) (Z bjz”f>
= Hi(2)K(2),
Zcmzpm = HO(Z)K(z)7

()
(8)

for somepolynomial K (z). If thereexists sucha polyno-
mial K(z), thenreconstructionis possible. Similar rela-
tions canbe obtainedif the valuecorrespondingdo the row
H,(2%)Hy(z) is erased.

3.1. Bursty Erasure Reconstruction Conditions

In this section,we find boundson lengthsof consecutie
erasuresn subbandcomponentszy(n) and z1(n) which
canbereconstructedWe first considelexpressing, (22) Ho (z)
(or Hy (2%) Hy(2)) aslinearcombination®f z* Hy(22?) Ho(2)
andz*H, (2%)Hy(z). FromEqn. (3), we conclude

ijz”j = Hy(2)K (2),
1-— Zal

for somepolynomial K (z). Thenext two resultspertainto
theerasuréburstlengthboundsfor reconstructiomf zo(ng)
or 1 (ng), for someintegerng, only from received zo(n)
andz (n) (son cantake only selectedralues).

(9)

Ho(2)}4,

(2) K (2), (10)

Theorem 1. For thetree-structuredversampledilter bank
shavnin Fig. 3, with analysisfilters hg(n) andh; (n) both

of length L, a sufficient conditionto reconstruct burst of

6L — 5 erasuress thatthe 6L — 5 symbolsfollowing and
precedinghis erasurebursthave no erasures.

Proof. If thereexists a polynomial K (z) which satisfies
Eqgn. (9) and (10), for the given burst length, thenrecon-
structionof the bursty erasuress possible.If we definethe

matrix E as

hy (0) 0 0 0
hy(1) h (0) 0 0
ho(1) ho(0) 0 0
ho(3L —3) ho(3L—2) --- hy(0) 0
0 hy(3L—=3) -+ hy(1) hy(0)
0 ho(B3L—3) -+ ho(1) ho(0)

then,for aerasureburstof length6 L — 5, Eqn. (9) and(10)
canbewrittenin matrix form as

FE k‘z — 0
k1 1
ko 0

It canbeshovnthatthe6L—5x6L—5matrix E isinvertible
andhencethe existenceof K (z). Further from the degree
of K(z), we concludethatwe need6é L — 5 symbolsfollow-
ing andprecedingheerasureburstfor reconstruction.
Due to spacelimitations, we only statethe next theorem,
which canbe provedon similarlinesasin [6].

Theorem 2. It is not possibleto reconstruct burstof era-
sureof length6 L — 3 andit is possibleto reconstrucaburst
of erasure®f length6L — 4 if andonly if this burst starts
with az; (n) for someintegern.
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4. RECONSTRUCTION ALGORITHM

Thesubbanadtomponentarequantizeeforetransmission.
On receving the datawith erasureswe first checkif it is
possibleo reconstructheerasurefn thecomponents (n)
andz; (n) usingonly the receved valuescorrespondingo
subbandcomponents(n) andz; (n). To checkif thisis
possible, Theoreml and2 canbeused.

For still imagesandaudiodata,differentsubbandom-
ponentsarealloteddifferentbit budgetsithe low frequeng
componentsare quantizedusing finer quantizersthan the
high frequeny componentsQuantizationeadsto errorin
the reconstructedsignal even if thereare no erasures.In
the event of erasuresthe linear combinationsusedfor re-
constructiordeterminghereconstructetheansquareerror.
Sinceit is difficult to computethe meansquareerroranalyt-
ically, we performedsimulationsto computethe same.

5. SIMULATION RESULTS

Simulationswvereperformedusinganorthogonafilter bank
with filters of length L. = 16. We usea simpleimagecod-
ing systemwhereinthe imageis decomposednto 7 sub-
bandsusinga2-channelvavelettransform.Therows of the
lowestfrequeny subbancdcomponentretheninputto the
oversampledbranchof theOFB. Sobasicallytherowsactas
thesignalz (n) in Fig. 3. Notethatthis will leadto arate
R = % codeoperatingon the lowest frequeny subband.
In orderto performa fair comparisorto the schemen [6],
which usesa rate% code,we allocatedifferentbit budgets
totheoversampled@omponentssothattheoutputdatarates
arethe samefor boththe cases.The reconstructioPSNR
valuesfor differentburst lengthswith quantizationof the
subbandcomponentsaretatulatedin Table 1 for both, the
TSOFBandthe OFB. Thereconstructedmagesareshovn
in Fig. 4. Thesimulationsfor the TSOFBareperformedus-
ing only the linearcombinationsrom z* Hy (%) Hy (2) and
2¥H, (2%)Hy(z). We notice a significantimprovementin
the PSNRvaluesfor the TSOFBascomparedo the OFB.

# of Bursty | Non-Bursty | Bursty | Non-Bursty
Erasures| TSOFB TSOFB OFB OFB
0 33.8449| 33.8449 | 33.8406| 33.8406
4 33.2995| 33.6125 | 31.3989| 31.9125
8 32.1326| 33.0231 | 17.1312| 29.0241
12 18.8148| 30.2822 - -

Table 1. PSNRValuesfor Lenaimage.

6. CONCLUSIONS

We generalizedhe erasureeconstructionmethodsrom 2-
channelOFB proposedn [6] to tree-structure@®FB. Since
the filter lengthsare larger, the erasurereconstructiorca-
pabilities of thesefilter banksis alsobetter In the caseof
guantization,we obsere a significantimprovementin the

Fig. 4. Reconstructetinages-With no erasuregTop Left),
Burstof 4 erasure¢Top Right), Burstof 8 erasure¢Bottom
Left), Burstof 12 erasureg¢Bottom Right).

reconstructiormeansquareerror valuesfor the TSOFBas
comparedo block codesandOFB.
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