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ABSTRACT

This paperstudiesquantizedframe expansionsbasedon
tree-structuredoversampledfilter banksfor robusttransmis-
sion of multimediasignalsover erasurechannels.The de-
pendenciesbetweenthe expansioncoefficients introduced
by theoversampledtree-structuredfilter banksareanalysed
in the � -transformdomain. The capacityof correctionin
the presenceof differenterasurepatternsthenfollows nat-
urally. This analysisleadsto the designof a reconstruc-
tion algorithmin thepresenceof erasures,andfirst without
quantizationnoise.Theimpactof quantizationerroron the
reconstructionerroris thenstudied.

For thetree-structuredoversampledfilter banks,weprove
thatreconstructionfrom a largerclassof erasurepatternsis
possibleas comparedto regular oversampledfilter banks.
Thereconstructionmeansquareerror is significantlylower
in thecaseof tree-structuredfilter bankascomparedto reg-
ularoversampledfilter banks[6] andblocktransforms,even
if theerasuresareburstyin nature.

EDICS:Multiple DescriptiveCoding,JointSourceChan-
nel Coding,ErasureResilientCoding,OversampledFilter
Banks.

1. INTRODUCTION

Datatransmissionover delivery infrastructuresoffering no
QoSguarantee(e.g.thecurrentbest-effort Internetor wire-
lesschannels)suffer from impairementsdueto transientsin
the physicallayeror from lossesdueto network failureor
congestion.In thisarticlewefocusontheproblemof losses
or erasures. Traditional approachesto fight againstera-
suresconsistin sendingredundantinformationalongwith
the original information so that the lost data (or at least
part of it) can be recoveredfrom the redundantinforma-
tion. The designprinciplesthathave prevailedso far stem
from Shannon’ssourceandchannelseparationtheoremstat-
ing that sourceandchanneloptimumperformancebounds
canbeapproachedascloseasdesiredby designingindepen-
dentlysourceandchannelcodingstrategies. However, this
holdsonly underasymptoticconditionswhereboth codes
are allowed infinite length and complexity. If the design
of the systemis heavily constrainedin termsof complex-
ity or delay, theseparate(alsocalledtandem)approachcan
be largely suboptimal.This observationhasrecentlymoti-

vatedextensive work on thedesignof joint source-channel
codes. In literatureso far, DFT codeshave beenstudied
asjoint source-channelblock codesto obtainrobustnessto
erasures[4]. It is shown in [4] that DFT codesarea spe-
cial classof frames.Filter bankframeexpansionshavealso
beenstudiedto achieve resilienceto erasures[1], [3]. In
[1], theauthorshaveshown correspondencesbetweenover-
sampledfilter banksandframesin �����	��
 . They haveshown
that if the framesare uniform and tight, the meansquare
reconstructionerror is minimized. The filter bankscon-
sideredin [1], arehowever specialfilter bankswhich have
filters with lengthsrestrictedto the downsamplingratio in
order to avoid overlaps,henceare similar to block trans-
forms. Quantizedframeexpansionsbasedon two-channel
oversampledfilter bankshave beenstudiedin [6]. When
usedin a tree-structuredwaveletsignaldecompositiononly
to protectthe low frequency bands,the two-channelover-
sampledfilter bank(OFB) allows to recover from a larger
rangeof erasurepatternsthanblock transformcodes,such
as the DFT codesand the OFB [6]. However, in [6], the
reconstructionalgorithmexploitsonly thedependenciesin-
troducedin the laststageof the iteratedwaveletdecompo-
sition. In this article,we extendtheresultsof [6] to general
tree-structuredoversampledfilter banks(TSOFB).Thede-
pendenciesintroducedby theseOFBhavebeenanalyzedin
the � -transformdomain. They areexpressedin termsof a
polynomial in � , �
����
 , conditioningthe existenceof per-
fect reconstructionsolutions,whenthereis no quantization
noise. A practical reconstructionalgorithm then follows
naturally. We prove that a larger classof erasurepatterns
can be reconstructedwhenTSOFB areusedas compared
to OFB.Further, thereconstructionmeansquareerrorwith
quantizationfor burstyerasurepatternsof theTSOFBissig-
nificantly lower ascomparedto OFB andblock transforms
like theDFT codes.

2. TREE-STRUCTURED OFB

OFB canbe constructedfrom from critically sampleduni-
form filter banksby replacingthe downsamplingfactorto
a numberlesserthanthenumberof channels.Considerthe
tree-structuredfilter bank shown in Fig. 1, which is crit-
ically sampled. Using Noble Identity, this filter bankcan
be expressedin � -domainasshown in Fig. 2. If the three
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downsamplerson the laststagehave not beenused,we ar-
rive at an oversampledtree-structuredfilter bankshown in
Fig. 3. This structureof decompositionallows to support
unequallossprotection,the low frequency informationbe-
ing morevital to protectthanthe high frequency informa-
tion. The rationalebehindthe different oversamplingra-
tios associatedwith thedifferentcomponentsis asfollows.
Thecoefficientscorrespondingto thelowpasscomponents,
i.e. ��������
 , ��������
 , � � ����
 have to be betterprotectedthan
the component��������
 . Amongst ��������
 , ��������
 , � � ����
 ,
moreprotectionis to begivento ��������
�����������
 than � � ����
 .
If the filters � ���"!#
 and �$����!#
 have length % , then the fil-
ters &'����� � 
(&'������
 and &������ � 
)&*������
 , denotedas &,+� ����
 and& +� ����
 respectively have length -�%/.10 . If thefilter bankis
seenasanencoder, thentherateof thecodeis 243 �� . Let
the input sequence5 + �"!#
 to theoversampledportionof the
filter bankshown in Fig. 3 be written asa vectordenoted
as 687 , i.e. 68793;:=<><><?5 + ��@�
A5 + �)B�
A5 + �C0�
$<D<><FEHG . Let thethree
outputsequencesof thefilter bank 5 � ��!#
 , 5 � �"!#
 and 5 � ��!#

becombinedin onevector I , i.e.IJ34:K<D<><#5L����@�
#5$����@�
M5 � ��@�
N5L���)B�
#5$���(B�
5 � �)B�
#5O����0�
M<><><)E GQP (1)

We canexpressI astheoutputof a lineartransformR act-
ing on 687 , wherethematrix R is givenby

RS3
TUUUUUUUUUUUUUV

. . . �O+� ��-�%/./-�
W�L+� ��-�%X.Y0�
Z<><D<[�O+� ��@�
� + � ��-�%/./-�
W� +� ��-�%X.Y0�
Z<><D<[� +� ��@�
@ @ <><D<[�\����@�
@ �L+� ��-�%X./-�
Z<><D<[�O+� �(B]
@ �L+� ��-�%X./-�
Z<><D<[�O+� �(B]
@ @ <><D<[�\���(B]

. . .

^>_____________`
We concentrateon reconstructionof erasuresin the sub-aa

aab�cDd=egf
b�hQd=egf

i?j
i?j

b�cDd=egfb h d=egf i?ji?j
b�cDd=egfb h d=egf i?ji?jk d=egf

k cDd=egfk h�d=egfk�l d=egfk�m dne�f
Fig. 1. Tree-structuredcritically decimatedfilter bank.

bandcomponents5O���"!#
 and 5$���"!#
 . If acomponentin these
subbandsis lost, we loosea value o�687p�)q\rCs , where qLr is one
of therows of R corresponingto � +� or � + � . It is possibleto
reconstructthat componentfrom the received components
if andonly if q r canbe expressedasa linear combination
of other rows of R , say q r 3utwv�x�yz r�{�| q v�x , such that,o�6 7 �)q v�x s is notlostfor all } in thesummationunderconsid-
eration.In thefollowing sequel,insteadof writing ‘symbol

aa
a
a

~ cDdn�>f� dn�Df
~ h�dH�>f

~ h�dH� l f ~ c�dn�Df~ h dn�Df
~ cDdn� l f ~ c�dH�>f � h�dH�>f

� c>dH�>f
� l dH�>f� m dH�>f

i?j
i?j

i��
i?ji��

Fig. 2. � -domainrepresentationof thetree-structuredfilter
bank

.

a
a
a
a~ c dn�>f� dn�Df

~ h�dH�>f
~ h�dn� l f ~ c�dH�>f~ hQdn�Df
~ c dH� l f ~ c dn�>f � h�dH�>f

� c>dH�>f
� l dH�>f� m dH�>f

i?j k + d=egf
i?j

Fig. 3. � -domainrepresentationof theTSOFB
.

correspondingto inner productof 6 with a particularrow
of R ’, we will write ‘valuecorrespondingto thatparticular
row’.

3. ANALYSIS OF CONDITIONS FOR PERFECT
RECONSTRUCTION

In thissection,weanalyseconditionsunderwhich it is pos-
sible to reconstructerasuresin subbandcomponents5O���"!#

and 5$���"!#
 . Observe that the rows of R areright shifts or
left shiftsof basicallythreerowsof R correspondingto the
time-reversedfilters � +� �"!#
 , � + � �"!#
 and �\���"!#
 . Wefirst focus
on expressing� +� �(.�!���} 
 (or � + � �).�!���} 
 , for someinte-
ger } ) asa linearcombinationof integershiftsof � +� �(.�!#
 ,� + � �(.�!#
 . Note that if the � -transformof the zero.��)� and
first row of R are & +� ����
 and & +� ����
 respectively, thenthe� -transformof the -�}�.
�)� and -�}'��B�.
�)� row of R are� | & +� ����
 and � | & +� ����
 respectively, for all integer } (We
abusethe term � -transform,sincewe are actuallyconsid-
ering the � -transformof the time reversedandshiftedver-
sions). If somerow canbe written asa finite linear com-
binationof otherrows, thenits � -transformcanbe written
asa correspondinglinearcombinationof the � -transforms.
If thezero-throw canbewritten asa finite linearcombina-
tion of rows with indices �]-�}�rF���r z � androws with indices
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��-�!\���wB����� z � , thenits � -transformcanbewrittenas& +� ����
�3 �� r z � { rC� |Q� & +� ����
N� ��� z �$� �D� v�� & +� ����
 (2)

3N� &,+� ����
& +� ����
 3 t �� z � � � � v��B�.1t �r z �M{ r � | � P (3)

Let the value correspondingto the row & � ������
(& � ����
 be
erased.Let thevaluescorrespondingto rows �]� |Q� &'��������
(&'������
Q��r ,��� v�� &��������D
)&'������
���� be not erased.If thereexists scalars{ r , � � suchthat& � ��� � 
(& � ����
�3 � r { r � | � & � ��� � 
)& � ����
N�� �S� �>� v � &������ � 
(&'������
�� (4)

thenreconstructionof thaterasedvalueis possible.
Let the value correspondingto row &'�������D
)&'������
 be

erased.Let thevaluescorrespondingto rows��� | � &'�������D
)&'������
Q�]r , ��� v � &��������D
)&'������
Q�>� , �]���>�9&�������
Q�]�
benot erased.

If thereexistsscalars{ r , � � and � � suchthat&*����� � 
)&*������
83 � r { r�� |Q� &'����� � 
(&'������
N�� � � � � v�� & � ��� � 
(& � ����
N�1& � ����
 � � � � � � � � (5)

thenreconstructionof thaterasedvalueis possible.To know
if reconstructionis possible,using(5), we get,� B�. � r { rC� |Q�	� &'����� � 
(&'������
�3 � � � �D� v�� &������ � 
(&'������
� &�������
 � � ����� �>� (6)

3N��& � ����
�� )& � ��� � 
 � B�. � r { r � |Q�	� .X& � ��� � 
 TV � � � � � v�� ^`�¡¢
3£&�������
¥¤ � � ���¦� �>�?§ P

Since& � ����
 and & � ����
 arerelatively prime[2],&'����� � 
 � B�. � r { r�� | �	� .X&������ � 
 TV � �S� �D� v � ^`3£& � ����
(�¨����
�� (7)� � �>�¦� �>� 3£&*������
(�¨����
�� (8)

for somepolynomial �¨����
 . If thereexists sucha polyno-
mial �
����
 , then reconstructionis possible. Similar rela-
tionscanbeobtainedif thevaluecorrespondingto therow&��������D
)&'������
 is erased.

3.1. Bursty Erasure Reconstruction Conditions

In this section,we find boundson lengthsof consecutive
erasuresin subbandcomponents5O���"!#
 and 5M����!#
 which
canbereconstructed.Wefirst considerexpressing&'�������D
)&'������

(or &������ � 
)&*������
 ) aslinearcombinationsof � | &'����� � 
(&'������

and � | & � �����D
)& � ����
 . FromEqn.(3), we conclude� �S� �>� v � 3£& +� ����
(�¨����
�� (9)B�. � � { r � |Q� 3©& +� ����
(�¨����
�� (10)

for somepolynomial �
����
 . Thenext two resultspertainto
theerasureburstlengthboundsfor reconstructionof 5L����!M�]

or 5M����!M��
 , for someinteger !M� , only from received 5O���"!#

and 5M����!#
 (so ! cantakeonly selectedvalues).

Theorem 1. For thetree-structuredoversampledfilter bank
shown in Fig. 3, with analysisfilters � � �"!#
 and � � �"!#
 both
of length % , a sufficient conditionto reconstructa burst ofª %«.¨¬ erasuresis that the

ª %¨.«¬ symbolsfollowing and
precedingthiserasurebursthaveno erasures.
Proof. If thereexists a polynomial �
����
 which satisfies
Eqn. (9) and(10), for the given burst length, thenrecon-
structionof theburstyerasuresis possible.If we definethe
matrix ­ asTUUUUUUUUUUUV

. . . � + � ��@�
 @ <><D< @ @� + � �(B�
 � + � ��@�
 <><D< @ @�O+� �(B�
 �L+� ��@�
 <><D< @ @
. . .� +� ��-�%X./-�
W� +� ��-�%/.Y0�
Z<><D<[� +� ��@�
 @@ � + � ��-�%/./-�
Z<><D<[� +� �(B]
W� +� ��@�
@ � +� ��-�%/./-�
Z<><D<[� +� �(B]
W� +� ��@�


^ ___________` �
then,for aerasureburstof length

ª %®.J¬ , Eqn. (9) and(10)
canbewritten in matrix form as

­ TUUUV ...} �}��}��
^ ___` 3 TUUUV ...@ B@

^ ___` P
It canbeshownthatthe

ª %�.¦¬#¯ ª %�.¦¬ matrix ­ is invertible
andhencetheexistenceof �
����
 . Further, from thedegree
of �
����
 , weconcludethatweneed

ª %°.±¬ symbolsfollow-
ing andprecedingtheerasureburstfor reconstruction.
Due to spacelimitations, we only statethe next theorem,
which canbeprovedon similar linesasin [6].

Theorem 2. It is not possibleto reconstructa burstof era-
suresof length

ª %².²- andit is possibleto reconstructaburst
of erasuresof length

ª %¨.
³ if andonly if this burst starts
with a 5M����!#
 for someinteger ! .
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4. RECONSTRUCTION ALGORITHM

Thesubbandcomponentsarequantizedbeforetransmission.
On receiving the datawith erasures,we first checkif it is
possibleto reconstructtheerasuresin thecomponents5L����!#

and 5$���"!#
 usingonly the receivedvaluescorrespondingto
subbandcomponents5O���"!#
 and 5$���"!#
 . To checkif this is
possible,Theorem1 and2 canbeused.

For still imagesandaudiodata,differentsubbandcom-
ponentsarealloteddifferentbit budgets;thelow frequency
componentsare quantizedusing finer quantizersthan the
high frequency components.Quantizationleadsto error in
the reconstructedsignal even if thereare no erasures.In
the event of erasures,the linear combinationsusedfor re-
constructiondeterminethereconstructedmeansquareerror.
Sinceit is difficult to computethemeansquareerroranalyt-
ically, weperformedsimulationsto computethesame.

5. SIMULATION RESULTS

Simulationswereperformedusinganorthogonalfilter bank
with filters of length %£3´B ª . We usea simpleimagecod-
ing systemwhereinthe imageis decomposedinto µ sub-
bandsusinga 0 -channelwavelettransform.Therowsof the
lowestfrequency subbandcomponentaretheninput to the
oversampledbranchof theOFB.Sobasicallytherowsactas
thesignal 5\+)�"!#
 in Fig. 3. Note that this will leadto a rate2¶3 �� codeoperatingon the lowest frequency subband.
In orderto performa fair comparisonto theschemein [6],
which usesa rate �� code,we allocatedifferentbit budgets
to theoversampledcomponents,sothattheoutputdatarates
arethe samefor both the cases.The reconstructionPSNR
valuesfor different burst lengthswith quantizationof the
subbandcomponentsaretabulatedin Table1 for both, the
TSOFBandtheOFB.Thereconstructedimagesareshown
in Fig. 4. Thesimulationsfor theTSOFBareperformedus-
ing only thelinearcombinationsfrom � | & � �����>
(& � ����
 and� | & � �����D
(& � ����
 . We noticea significantimprovementin
thePSNRvaluesfor theTSOFBascomparedto theOFB.

# of Bursty Non-Bursty Bursty Non-Bursty
Erasures TSOFB TSOFB OFB OFB

0 33.8449 33.8449 33.8406 33.8406
4 33.2995 33.6125 31.3989 31.9125
8 32.1326 33.0231 17.1312 29.0241
12 18.8148 30.2822 - -

Table 1. PSNRValuesfor Lenaimage.

6. CONCLUSIONS

We generalizedtheerasurereconstructionmethodsfrom 2-
channelOFB proposedin [6] to tree-structuredOFB.Since
the filter lengthsare larger, the erasurereconstructionca-
pabilitiesof thesefilter banksis alsobetter. In the caseof
quantization,we observe a significantimprovementin the

Fig. 4. ReconstructedImages-With no erasures(Top Left),
Burstof 4 erasures(TopRight),Burstof 8 erasures(Bottom
Left), Burstof 12 erasures(BottomRight).

reconstructionmeansquareerror valuesfor the TSOFBas
comparedto blockcodesandOFB.
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