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ABSTRACT

In this paper, an analogy between oversampled filterbanks
and channel codes is considered. Parity-check polynomial
matrices and syndromes can be defined. Techniques for de-
tecting and correcting impulse noise are provided. Their
performances are illustrated on an example.

1. INTRODUCTION

This paper is concerned with impulse noise detection and
correction by mean of oversampled filterbanks (OFB). Re-
cently, OFB have gained growing interest in many area of
signal processing, mainly due to three advantages over crit-
ically sampled filterbanks (see, e.g., [1] and [2]). They pro-
vide increased design freedom, improved noise immunity
and have shown, due to the redundancy between their sub-
bands, to be robust to some subbands erasures [3]. This kind
of subband losses appears, e.g., in the framework of packet
transmission with losses.

In this paper, all subbands are assumed to be available
but some of them may be corrupted by impulse errors. This
situation can be modeled as a communication channel cor-
rupted by the sum of gaussian plus Bernoulli gaussian noises.
Such channels have already been studied by [4] and were
shown to be able to model the process of quantization (back-
ground noise) and transmission errors (impulse noise).

The corresponding channel is memoryless, and its input
(y(n)) - output (ỹ (n)) relation is

ỹ (n) = y(n) + a(n) + b(n). (1)

The gaussian noise b(n) has zero mean and variance σ2
g ,

while the impulse noise a(n) is modeled as Bernoulli gaus-
sian a(n) = ξ(n)b′(n). Here ξ(n) stands for a Bernoulli
process, an i.i.d. sequence of ones with prob(ξ(n) = 1) = p

and zeros, and b′(n) represents a gaussian noise with zero
mean and variance σ2

i , such that σ2
i � σ2

g [4]. The pdf of
the channel noise c(n) = a(n) + b(n) can be expressed as

p(c) = (1 − p) G
(
c,0, σ2

g

)
+ pG

(
c,0,

(
σ2

g + σ2
i

))
, (2)
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with G(c,mc, σ
2
c ) denoting a gaussian density with mean

mc and variance σ2
c .

Previous results on reconstruction of subbands impaired
by channel transmission errors have been presented in [5]
for critically sampled filterbanks. This work makes use of
residual redundancy in the subbands in order to recover the
errors. Hence, the efficiency of the source coding algorithm
has to be reduced (in order to leave some redundancy in
the subbands). Other work in [4] has also shown that real-
valued BCH codes had the ability to detect and correct im-
pulse errors. Other related works are the filterbanks over
finite fields for channel coding [6] and the multiple descrip-
tion schemes [7]. Compared to these previous works, our
intent is to provide a mechanism able to localize the im-
pulse errors in the presence of background noise without
impairing the coding efficiency.

In Sec. 2, after a brief recall on the structure of OFB,
benefit will be taken from the redundancy between sub-
bands to define syndromes. Sec. 3.1 presents an hypothesis
test to determine whether impulse noise is present. Sec. 3.2
provides a technique for determining the characteristics of
the detected impulse noise with examples in Sec. 4.

2. OVERSAMPLED FILTERBANKS

The block diagram of an OFB with L filters and decimation
factor M < L is shown in Fig. 1. The polyphase represen-
tations X(z) and Y (z) of the input and output signal of the
analysis filterbank can be related by

Y(z) = E(z)X(z), (3)

where E(z) = (Eij (z))L×M is the polyphase matrix of
the analysis filterbank. Ei,j(z) is the z-transform of the
polyphase component ei,j [n] = hi[nM + j]. E(z) admits a
Smith-McMillan decomposition

E(z) = U(z)

(
Λ(z)W(z)

0

)
, (4)

where U(z) and W(z) are unimodular matrices of sizes L×
L and M × M , respectively and Λ(z) is a diagonal matrix
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of size M × M . Let us partition the inverse of U (z) as

U−1(z) =

(
V0(z)

V(z)

)
, (5)

where V0(z) is of size M×L and V(z) of size (L−M)×L.

Using (4) and (5), one obtains V(z)E(z) = 0. When
multiplying the noise-free output (3) of the filterbank by
V (z), one gets

V(z)Y(z) = V(z)E(z)X(z) = 0. (6)

When transmission errors are considered, one gets

V (z) Ỹ (z) = V (z)A (z) + V (z)B (z) (7)

where A (z) and B (z) are the polyphase representations of
impulse and gaussian noises respectively.

V (z) can therefore be considered as a parity-check poly-
nomial matrix and S (z) = V (z) Ỹ (z) can be considered
as a syndrome, equal to zero when no transmission error is
encountered, and non-zero if there are some errors. This
property is used in the next section, to characterize the pres-
ence and location of the impulse errors.

3. IMPULSE NOISE CANCELLATION

The proposed technique for detecting and correcting im-
pulse noise in OFB involves the following steps. First, one
has to test whether impulses are present and optionally to
estimate the number of impulse errors. Then one has to find
out their location and amplitude before correcting them.

3.1. Testing whether impulses are present

The test to decide whether impulse errors are present is
based on the norm of the syndrome and is similar to that
presented in [8]. V (z) is assumed to be of order NV , thus

V (z) =

NV∑

i=0

Viz
−i, with Vi ∈ R

(L−M)×L. (8)

The syndrome expression in the time domain over a window
of size N in the subbands with impulse errors is

S(n) =
(

V V
) (

b(n)
a(n)

)
, (9)

where

S(n) =
(
sT (n) , . . . , sT (n − N + 1)

)T
,

b(n) =
(
bT (n) , . . . ,bT (n − N + 1 − NV )

)T
,

a(n) =
(
aT (n) , . . . , aT (n − N + 1 − NV )

)T

and V is an (L − M) N × L (N + Nv) matrix

V =




V0 V1 · · · VNV
0 · · · 0

0 V0 V1 · · · VNV

. . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 V0 V1 · · · VNV




.

When ν impulse errors are present, a(n) contains thus only
ν non-zero values. Let k (ν) = (k0, . . . , kν−1)

T and ` (ν) =

(`0, . . . , `ν−1)
T be the vectors containing the subband and

time locations of the ν impulses. Then, (9) can be rewritten
as

S(n) =
(

V V (k (ν) , ` (ν))
)(

b(n)
a(n)

)
, (10)

where a(n) = (a0, . . . , aν−1)
T

, and V (k (ν) , ` (ν)) is
a size (L − M)N × ν matrix obtained by selecting the
columns of V indexed by ki +L (n − `i), i = 0, . . . , ν−1.

Since the gaussian and impulse noises do not have the

same variance, after multiplying
(
bT (n), aT (n)

)T

by a di-

agonal matrix D (ν) = diag
(
σ−1

g , . . . , σ−1
g , σ−1

i , . . . , σ−1
i

)

of size (L (N + NV ) + ν)
2 to normalize it, one gets

R (ν) = D (ν)

(
b(n)
a(n)

)
,

S(n) = R (ν)Q (k, `) ,

Q (k, `) =
(

V V (k, `)
)
D (ν)

−1
,

Now, QH (k, `)Q (k, `) can be diagonalized as

Q (k, `)
H

Q (k, `) = KH (k, `) G (k, `)K (k, `)

Hence, ‖S(n)‖2 can be written as a quadratic form of the
normalized gaussian vector u = K (k, `)R (ν)

‖S(n)‖2
= uHG (k, `)u =

rank(G(k(ν),`(ν)))−1∑

k=0

(gkuk)2

where the g2
k are the diagonal entries of G. Hence, the pdf

of y is a convolution of chi-square distributions with one
degree of freedom

p (y|ν,k (ν) , ` (ν)) =

rank(G(k(ν),`(ν)))−1⊗

k=0

χ2
1(gk, y), (11)

where

χ2
1(σ, y) =

1√
2πσ

y−1/2 exp
(
− y

2σ2

)
.

The pdf of the norm of the syndrome in presence of im-
pulse errors is then obtained by averaging (11) for all pos-
sible ν > 0, subband and time locations of the errors

p (y|ν > 0) =
∑
ν>0

∑
k(ν)

∑
`(ν)

p (ν,k, `) .p (y|ν,k, `) , (12)
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where p (ν,k, `) is the a priori probability of having ν im-
pulses in subbands k (ν) and at times ` (ν).

When there is no impulse noise in the observation win-
dow, (9) simplifies to

S(n) = Vb(n). (13)

Using computations similar to those developed previously,
one gets in this case

p(y|ν = 0) =

rank(G)−1⊗

k=0

χ2
1(gk, y). (14)

Now, two hypotheses can be formulated: (i) H0 (there is
no impulse error), with a priori probability P (H0) = p0 =
(1 − p)L(N+Nv), (ii) H1 (there are impulse errors), with
a priori probability P (H1) = p1 = 1 − (1 − p)L(N+Nv),

where p is defined in Sec. 1.
The likelihood ratio Λ(‖S (n)‖2

) for deciding which of
H0 or H1 is true can then be built using p0, p1, (14) and
(12). Finally, ‖S (n)‖2 has simply to be compared to a
threshold α for deciding which of H0 or H1 is true

‖S (n)‖2
≶H0

H1
α. (15)

A characterization of the test is obtained through the ROC-
curve (probability of detection Pd versus false alarm Pf ).

Extension to multiple decision tests to determine the
number of impulse errors is presented in [8].

3.2. Characteristics of impulse errors

For each impulse error, k and `, the subband and time where
it accurs and a, its amplitude have to be estimated. For the
sake of brevity, only the case of a single error occurring
during the observation of N samples of a syndrome in the
subbands is presented. In this case, (10) can be written as

S(n) = V
(
k, `

)
a + Vb(n). (16)

Thus, for each subband m ∈ {0, . . . , L − M − 1}, one gets

sm (n) = avmk

(
n − `

)
+ b̃m (n) , (17)

where

sm (n) = (sm (n) , . . . , sm (n − N + 1))T
,

b̃m (n) =
(
b̃m(n)....̃bm(n − N + 1)

)T

,

vT
mk(n − `) = (vmk(n − `), .....vmk(n − N + 1 − `)).

As b̃m (n) = Vb(n), its covariance matrix Γm is easily

obtained from V and E
(
b(n)bT (n)

)
= σ2

gI.

First, compute the joint a posteriori pdf of k, a and `.

This is easily obtained from f
(
b̃m (n) |I

)
. Then the a

posteriori pdfs for k and ` are obtained by marginalizing
the joint pdf with respect to the other parameters. The a pri-
ori pdfs for k and ` are uniform ones over the subbands and
over the observation windows. Thus, one obtains

f(k|s0, s1, . . . , sL−M−1,Γ0, . . . ,ΓL−M−1, I)

=
n−N−NV +1∑

`=n

K1√
Rk(n, `)σi

exp

(
Q2

k(n, `)

2Rk(n, `)

)
,

(18)
f(`|s0, s1, . . . , sL−M−1, k,Γ0, . . . ,ΓL−M−1, I)

=
K2√

Rk(n, `)
exp

(
Q2

k(n, `)

2Rk(n, `)

)
,

(19)

where

Qk(n, `) =

L−M−1∑

m=0

sT
m (n)Γ−1

m vmk(n − `),

Rk(n, `) =
1

σ2
i

+
L−M−1∑

m=0

vT
mk(n − `)Γ−1

m vmk(n − `)

and K1 and K2 are constants independent with k and `.
Estimates for k and ` are obtained by computing the ar-

gument of the maximum of (18) and (19). Once the sub-
band and time location of the error have been estimated, its
amplitude may be obtained using (10), by computing an es-
timate of a (n) in the least-squares sense.

Note that despite the apparent complexity of the com-
putation, the practical complexity of the test is reasonable,
since the test to decide whether impulses are present amounts
to compute only scalar product and to compare it to a thresh-
old. The more complex calculations (also scalar products),
require only to be realized once errors have been detected.

3.3. Algorithm

Fig. 2 summarizes the impulse error detection and correc-
tion algorithm. At each iteration, a syndrome is computed.
If the test on the norm of the syndrome described in Sec. 3.1
concludes that there are errors, an estimation of their char-
acteristics is performed (Sec. 3.2) before correction. The
test on the syndrome can be applied again in order to detect
other impulses or to verify a posteriori that the correction
has been correctly performed. Once there is no more de-
tected impulses, the buffer is flushed to the synthesis filter-
bank and new subband samples are collected.

4. EXAMPLE

An OFB oversampled twice with L = 4 subbands and a dec-
imation factor M = 2 has been built from a critically sam-
pled TDAC filterbank. In this case, a parity-check polyno-
mial matrix can be defined without using any Smith-McMil-
lan decomposition by

V (z) = z−2
(
z−1IM ,−IM

)
Ẽ0(z

2), (20)
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where E0(z) is the analysis polyphase matrix of the TDAC
filterbank. The order of V(z) is NV = 3, and an observa-
tion window of size N = 4 has been chosen. The filterbank
input is a correlated noise sequence of unit variance. All
subbands have been corrupted with gaussian and impulse
noise with INR = 30dB and p = 10−3, and the impulse
error detection and correction algorithm has been applied.

For the test defined in Sec. 3.1, the a priori probabili-
ties are p0 = 0.9724 and p1 = 0.0276. Given these num-
bers, the probability of having more than two errors is lower
than 2.10−4, thus, to compute p(y|ν > 0), only the cases
ν = 1 and ν = 2 have been considered. The obtained the-
oretical and simulated ROC-curve have been represented in
Fig. 3, showing a very good accordance. Table 1 presents
the SNR values before and after impulse noise cancella-
tion for different values of the threshold α. The reference
number SNR0 = 30dB is the gaussian channel case, while
when Bernoulli gaussian noise is added, a SNR1 = 27dB is
observed. The best SNR is obtained when α = 0.18. This
corresponds to Pd = 0.47, meaning that only the impulse
errors with high amplitudes have been detected. Missing
the low amplitude impulse errors that could not be distin-
guished from gaussian noise does not impair the SNR.

5. CONCLUSION

This paper has presented an analogy between OFB and chan-
nel codes. We have shown that OFB have the ability to cor-
rect impulse noise in presence of background noise. Current
work is applying this technique to image coding.
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Fig. 1. Block diagram of an oversampled filter bank
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Fig. 3. Theoretical and simulated ROC curves

α 0.02 0.05 0.1 0.15 0.18 0.22
SNR 23.5 29.5 29.7 29.82 29.83 29.81
Sim. Pd 0.89 0.70 0.58 0.51 0.47 0.44
Sim. Pf 0.27 0.01 0.007 0.006 0.005 0.005

Table 1. Performances for various values of the threshold α
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