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ABSTRACT Although classical transform coding theory may appear as rather

The main advantage of backward over forward adaptive coding old gnd routine, the problem of bac_:kward adapta_tion in_transform
schemes is to update the coding parameters with the data avail-c0ding has, to our knowledge, received few attention until recently.
able at the decoder, avoiding thereby any excess bit rate. In this/ndeed, the interdependence of quantization and estimation noise
work, the performances of two practical backward adaptive trans- N the severa_ll estimates mak_es the analysis of the recursive back-
form coding schemes are analyzed in terms of rate and distortion Ward adaptation somehow delicate. Some convergenceresults have
for two transforms: the KLT (Karhunen-leve transform) and the ~~ however been proven in the unitary case [1]. A theoretic compar-
LDU (based on a Lower-Diagonal-Upper factorization of the co- iS0n between causal and unitary approaches was lead in [3, 4],
variance matrix® of the data) transform. For both algorithms, we Which did however not describe hqwactical backward adaptive
model the expected distortion w.r.t. the number of vectors avail- transform algorithms would perform. This is the aim of this work,
able at the decoder. Our analysis shows that for an algorithm using"Vhere we lead an analysis based on small perturbations.
Sheppard’s correction on the second order moment estimates, the>€Cction2 reviews an_d formalizes some results from the |_deal cod-
distortion should converge to the target distortion. Without this INg schemes. Sectiohstates how both the transformations and
correction, the effects of backward adaptation are shown to move the quantization stepsize are perturbed, and the two adaptive algo-
the actual r(D) point of the system from the target point by the rithms are presented. Sectlerdenves the dlst_ortlon analysis for
same term for both transforms. Simulations results confirming the the two proposed algorithms and sectiooonsiders the problem
theoretic analysis are then presented. of the rates. The last section presents some numerical results.

2. TRANSFORM CODING

1. INTRODUCTION 21. Framework
For non- or locally- stationary data, the efficiency of transform Consider a stationary Gaussian vectorial sogrEg. This source
coding relies on the updating of the coding parameters accordingMay be composed of any scalar sour¢es}. In the classical
to the source statistics changes. These updates aim to keep the peff@nsform coding framework, a linear transformatibns applied
formance of the structure close to a predetermined rate-distortiont0 €ach N-vectorX’ to produce an N-vector), = T'Xx whose
trade-off. Classically, they are sent as side information to the de- cOmponents are independently quantized using scalar quantizers
coder, though this excess bit rate could be saved by using closed-&:- A number of bitsr; is attributed to eacky. under the con-
loop, or backward adaptive algorithms. straint} ", ri = Nr. For an entropy constrained scalar quantizer
We propose to model the effects of the backward adaptation for Of @ Gaussian sourgg, the high resolution distortion i (y;’,, —
two simple algorithms and for two different transforms, the uni- y: x)* = o2, = 277"} , wherec = Z£. At the decoder, the
tary KLT and the causal LDU transform [5, 6], which are known quantized vectors are computed by recovering the quantized value
to be optimal for Gaussian signals in the ideal case (wifeie Y9 from the received codeword, and applyikg = 7~ Y1,
constant and known from the coder and the decoder). A transform An important property of commonly used transformations is that
coding scheme is in the ideal case designed to reach a target pointE||X||?T) = E||Y||%T) =D, Where||X||2T) denotes the variance
of the rate-distortion functiof?(r). Some value of the distortion  of the quantization error o', obtained éor a transformatidh.
D will for example be chosen to be acceptable for the purpose of
some application, resulting in an average bit ratéedicated to
represent the quantized signals. Assuming now that we use som o . SN N 2 Zor
backward adapted algorithm, an interesting question is to know ifethe vector2|al 1S|gna{Y}2. EllYlr = _%22:,':1 g = Ne2
the corresponding distortion will converge or not to the target dis- *(I1iZ; 73.) /N = Nog. Thus, the noise; should be indepen-
tortion, and if yes, how fast. Also, one may desire to control the dent ofi. The number of bits assigned to tié componentis then

2.2. Quantization Stepsize and Optimal Bit Assignment
The optimal bit assignment yields the well known distortion for

1

rate which will then actually be required to represent the resulting 7+ 3 log, o2 AT]'L, #2)% Under high resolution assumption, the
quantized signals. quantization noise resulting from quantization with stepaizes

a uniformly distributed (ove —%, %]) random variable (r.v.),
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Ascom, Swisscom, Thales Communications, STMicroelectronics, CEGE- With variances;, = 73-. A simple way of realizing the optimal
TEL, Motorola, France &lécom, Bouygues Telecom, Hitachi Europe Ltd.  bit assignment is therefore to quantize all the components with an
and Texas Instruments. equal stepsize\. If now the y! are entropy coded, the bitrate
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(correponding to the average lengths of the codewords represent-  Algorithm [1]:

ing the transformed _signals) is given by the_ zérorder discrete o Step 1: A first estimate of the covariance maﬁxzzﬁzlj-v_lXiX,T
?ntropyH 0; these signals. For Gaussian signals= (y/) ~ is available at both encoder and decoder. -
5 log, 2weq;, —log, A. It canthen easily be checked that choos- Step 2: A transforni’y is computed such théfNﬁNfﬁ is
ingA = \/ﬁz—r(HlNzl gil)ﬁ = 27we2™" det(TRTT)ﬁ diagonal, wher@'y is either a KLT, either an LDU factorization of
ensures; = H(y?!) = r Vi. Both approaches are equivalentas Ry, and astepsizé[;] is computed by/27r62_rdet(TNﬁiNf§)2+\f.
long as the rate dedicated to each component is at lelistper ¢ Step 3: These parameters are used to transform and quantize the
sample [1]. The corresponding distortion is then (N + 1)th vector by [VNXN+1]£[1] in the unitary case, or

N

A2

D_ Y9=[Xnyy41 — qu]AU] in the causal case, whefé, denotes

= 28972 Qet(TRTT) ™.
126

- @
uniform quantization wi]tvh stepsizk. The expected distortion for
the (N + 1)th vector is therD!(N + 1) = AL /12,

e Step 4: Back to Step 1: the decoder disposes then of an es-
timate of the covariance matriky 41 = (X, XX/ +

XJ‘ZVJrlXJ‘ZVTJrl), from whichT1, andAyy; can be computed,
used to code theN + 2)th vector, and so on.

Algorithm [2]:

A simple improvement to the previous algorithm can be made by
using the following result. Suppose that th& ;- } are quantized
without transformation using the same (constant) ste@siZzEhen

it can be shown [1] that

EXLX = RY

2.3. Optimal Transforms
In the causal casé/ = LX = X — LXY, whereL X1 is the
reference vector. The outplX? is Y + X1 Note that the
reconstruction erroX equals the quantization erraf :
X=X-X'=X-ILX-Yi=Y-Y'=Y, (2
as in (A)DPCM. If we neglect the fact that (2) uses quantized
data, one shows [6, 5] that the optimal (unimodular)n terms
of coding gain is such that RL™ = diag{o;, ,...07}, where
diag{...} represents a diagonal matrix whose elementsogre
In other words, the componenjs are the prediction errors af;
with respect to the past values &f, the X;.;,_;, and the optimal ~ where | denotes the Identity matrix ait — 0 elementwise as
coefficients- L, 1,1 are the optimal prediction coefficients. The A — 0. In the previous algorithm now, if the stepsize converges
distortion is then . . to some small stepsiz& .. (7), one may expect that the estimate
Do 227" det(LRL" )~ = Z£27>" det(VRV ") ™ 25D 7 Thus
T2 det AN = Z2272" det(R) ¥, ' ‘

A2

=R+ —I+C 5
+ I+ (®)

of the covariance matrix converges to some- —=
a better estimate aR can be computed after a certain amount of

vectors, sayV,, by substracting‘%] to the current estimate dt.
This correction on the estimate of the second order moment of the
whereV denotes a KLT of?, andA its eigenvalue matrix. data by their quantized version is usually referred to as Sheppard’s

If we take now into account the fact that (2) uses quantized data, correction [2]. Except from this difference concernifigthe steps
the actual prediction error variances, are greater than the op-  of Algorithm [2] are the same as in Algorithm [1].
timal oness? [6] due to a quantization noise feedback similar as The estimate of the covariance matrix for the second algorithm can

that occuring in ADPCM, and are given by is the variance of now be expressed as

©)

the quantization noise) N Ny . r  ARP
N N RPI=L(3 xox74y . Doy §° y PPl Sior
! 1 1 K K r<te B 7 7 %
H cry2l ~ det(R) (1 + 03 Z(A_ — a_2)> , 4) i=1 i=N+1 i=Np+1 12
=1 =1 ' v Ny K
=L (NR+ Y (R+DYGOD+ > (R+ DV
1=N+1 1=Np+1

3. BACKWARD ADAPTIVE ALGORITHMS

N Ny K
As can be seen from (L) and (3), the design of a transform coding + (> _ ARE”'FZ AR > AR
scheme indeed results, as every source coding problem, from a rate i=N+1 i=Ni+1
distortion trade-off. The higher the bitrate dedicated to the trans-
form signals, the less the resulting distortion. Siitcdepends on

1)

=1

©)

R, as well asA (for a given target rate, A is related toR by (1)),
changes in the statistics of the source require to upflaaad A

whereD(:) denotes the distortion obtained for tith vector, and
where we used the following notation:

if one want the system to perform close to a chosen target point of - superscript! refers to algorithm [j],

the r(D) function. We now propose two algorithms updatifig
andA with the data available at the decoder only.

- superscript refers to quantization,
- superscript!) refers to estimation noise occuring by estimating

Suppose that the coder deals with locally stationary data. We as-a covariance matri® by the estimatex X 7 = RY = RYARW,
sume zero mean independent identically distributed (i.i.d.) Gaus-- subscripty refers to the total number of vectors available at the
sian vectors (which is for example the case if the sampling period decoder (except indeed frai,, which denotes théth vector).

is high in comparison with their typical corre_-lation time), anq that e corresponding estimate for the first algoritﬁﬁ] can also be
the first/V vectors are very accurately quantized and sent (without computed from (6), where in this case the underiined terms vanish.

transformation) to the decoder.

~ 212
AL,

12

By writing = DB(K) + 6 DPI(K), the estimate (6) can
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5[2]

also be written agty,; = R+ AR[I?, with

1 .
AR = f( z pll(s) z pel; )_D[zl(lg)]]
=N+1 t=Np+1
AR[E]M
L (S5 0 o) XS A paltl(0) o) AR
4 4 K—1
e (SSam 43S a3 are) S
i=1 1=N+1 1=Ny+1
ARK sto
(7)

WhereAR[ﬁ] 4¢¢ 1S @ deterministic diagonal matrix, arzikiR[\ sto
is a stochastic matrix. The update of the transform (to simplify
the notations, the subscriff will be omitted for7%) is then

computed so thaf - R/ T is diagonal, and the updated stepsize
_1_

A[I?:\/zweZ‘Tdet(TKR[I? TZ) “"is used to quantize tiiéH)th

transform vector. The expected distortion is then

pi

o =2 det(Tr RATE) %

= EAR 12 =9 )

Using the unimodularity property of the transforms and consider-

ing AR[I? in (7) as a perturbation term on R, one should compute
in both unitary and causal cases (lenotes the trace operator)

1
DI, =v2me2™" det (RY) QNzDo[l—i— L per{ AR R7Y
s B {ARD R™1))? — B {ARD R ARPI R,

9)

4. DISTORTION ANALYSIS

In order to compute the three expectations in (9), we can describe

the r.v.s involved in (7) as follows. The elementary te[rmRE”}
corresponds to "one-shot” estimates Bfbased on a single ob-
servation. Since théXI\} are i.i.d., so isAREl). The elemen-
tary terms{ARq[1 211 correspond to "one-shot” estimates of
R + E(AL2 /12)1 which, from (5), can be approximated as
R+ DU21(3)I. Theseterms are indeed not identically distributed.
They are neither independent sink& 11") depends o[-
53[1,2]

which depends orizl"2!, which in turns depends an R

1—17

However, we assume that this is the case, since this dependence
concerns only the noise part of the quantized vectors. Because of

the quantization noise, th& {. are not Gaussian; again, for high

The first term of (9) may be written as

—W+EM{AR%ﬁJT4ﬁ
]

0

LE{ARIR =1 |er{ARY R

~
~

& [F e = DR R,
(11)

L DP1(i). The second term

(tr{R_EAR[2]R_5})

with or= DU (5K
Ieadsté t Zz N+1 ( ) Zz_

(tr{AR[2]R )2 = 5
(UecTR )(R__ ® 1)
EUecAR[If,] UecTAR[If,](R_% ® ])UecR_%

2N2

~
~ 2N2
X

vecTAR[2]

[2] T A pl2l [2]
vecARK)detvec ARK,det-I-EUSCARK sto K, sto

12)
where the term corresponding to the deterministic part can be com-
puted using the fact thaXR[f]d . is diagonal. The stochastic term

in (12) generates, according to (7), four terms, which can be com-
puted using (10). The second term in (9) leads finally to

s B {ARDRTY = e + (R 1 (48
T 1 2
+% [(Etot D[2]([X )) + E(SD[I%,];] 7

13)
where for the purpose of this first order analysis, only the domi-
nating terms needs to be retained. For example, the term

o~ 4 2
EsDPY (i) = EAR /122 — DI will be neglected.
Concerning the third term of (9) l€t be ‘%AR[}? R™%. Then
we havevecG = (R™% @ R™ 2 )vecARY!, and we get
S Btr{ AR RV ARD R

= — - Etr{vecGvec’ G}

— L Etr{(R 3 @R~ %) EvecARDvec” AR (R~ @ R™3)}
(14)

where again, the arising terms can be computed using (10).

Finally, the distortion occuring with the second algorithm can be
approximated by the recursive expression

= E - Atr{GG}

Df,]_l_l = Do x

Ny
1-1—%(%—]\7)—1—#{]%_1}(%[%(2 pig z DB ) Dl IQD]
i=N+1 i=Nj+1

(15)

resolution, we assume that this is however the case. The follow- Inspecting the vanishing terms in (6), we obtain then the following

ing result is now necessary to compute (9). mz;” =R =
X XT be the (symmetric) estimate of sorRe = [gll...glN] by
means of one real zero mean Gaussian vestorwith £X;, X7
R;. Then it can be shown thaﬂng1 is a zero mean rv., and
that among theV? blocks of EvecA R{M vec” AR, the (i, 5)th
b|OCk(EU60AR§1)UGCTAR§1))block(l)j) equals{R@Rl)block(l)j)
—|—gljgl7:,where® denotes the Kronecker product. If ndf& =

recursive expression for the algorithm without correction

1 tr{R""} ( i Dm“))}
1=N+1

AL KN
(16)

N
On the one hand, the recursive expression (15) shows that the al-
gorithm based on the Sheppard’s correction shouldy as> oo,
converge to the target distortidn,. On the other hand, the model

DY ~Do|14+—

7 =

R+ D, 1, the previous expression may, for highly correlated sourcesprovided by (16) does not convergeflly but to some ., > Dy.

be approximated as

EvecARMvec’ ARV22 R @ Ry~ 2RO R + Di(R® I+ IQR)].
(10)

It can be shown that

D
Do ~ 0

— 7
1— Do triitl
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5. RATE ANALYSIS

This section analyzes the bitrate required to entropy code the trans{1]
form signals ag< — oo. For the algorithm using the correction
on the second order moment estimate, one should compute

Hi‘il 02211700
det R’
(18)

[2]
[2] Zlog2 27T60'y co—log, Ao r+ Nlog2

(3]
wheres?. ., are the variances of the transform signals obtained by
using the transform based on the asymptotic estin®tE which

in this case is?. Thus, the estimated KLT and LDU should con-
verge to the optimal transforms. The variances of the transform
signals in the unitary case are thenand

rﬂ) =r. (19) -
In the causal case, a quantization noise feedback occurs which
increases the variances of the transform signals, because the ref[6]
erence signal is composed with quantized data. Using (4) with
o2 = Aj/12 to evaluate (18) gives

(Lot

. A o2 )"
=1

As a conclusion, though the target distortion is reached in both

cases, the unitary approach yields to lowest asymptotic rate.
For the algorlgpm [1] now, one §\I/:10uld compute

[171 = NZ Zlog2 27recry co—logs Ao

[4]

Dy
2In 2

i Rt

(20)

0.012

(1)

Distortion

where, this time, the. ., are the variances of the transform sig-
nals obtained by using the transform based on the asymptotic esti-

mateRY ~ R + °° I In the unitary case, since a KLT & is

also a KLT of R + 2 I theo?
Ai. Using (17), we obtaln

should again be equal to the

r[l] ~r—

) & (22)

0 -1
vz R
In the causal case, the noise feedback in (4) involves this time
A = 12D}/?, and computing (21) yields

DO —1
N
Thus, the effect of not using the Sheppard correction in the back-
ward adaptive algorithms is, for both transforms, to deplace the
actual rate-distortion point from the targeted point by a fate:
tr{ R~} (or equivalently, as given by (17), by a distortion

Ditr{R™'}/N).
6. SIMULATIONS

For the simulations, we generated real Gaussiani.i.d. vectors with
covariance matri®xx = HRari H”. Rar is the covariance
matrix of an AR(1) process with = 0.9. H is a diagonal ma-

trix whose th entry is(N —i+ 1), N = 3. The target rate i8

b/s. Figure (1) plots the averaged observed distorsions for the KLT
and the LDU versug(, the theoretic model as given by (16), and
the theoretic asymptotic distortion from (17). The optimal distor-
tion is given by (3). Similar results are shown in Figure (2) for
the algorithm [2], where the Sheppard’s correction is applied after
N1 = 60 vectors, and where the theoretic model is given by (15).

o 2
"y B

(23)

2N1n2

0Dy ~

Distortion
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Algorithm [1] : Distortions vs K for KLT and LDU
T

— — Dist obs based on AKLT
Dist optimal D

—— Theoretic Dist
Dist obs based on A LDU
Asymptotic Dist D_
T

10 10 10° 10

Fig. 1. Distortions for Algorithm [1] vsk .

Algorithm [2] : Distortions vs K for KLT and LDU

— — Dist obs based on A KLT
Dist optimal

—— Theoretic Dist
PISl obs based on A LDU

° . .
10 N, 10° 10° 10"

Fig. 2. Distortions for Algorithm [2] vsK .




