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ABSTRACT

Multi-carrier (MC) systems are known for being very effective
to cancel intersymbol and multi-user interference provided that a
cyclic prefix (CP) of length at least equal to the channel order is
inserted at the beginning of each transmitted block. However, this
insertion causes a reduction of the transmission speed which is not
negligible when the channel delay spread is not small with respect
to the block-length. In this paper we propose an algorithm for de-
signing time-domain pre-equalizers which shorten the channel im-
pulse response. The method does not require neither the a-priori
knowledge of the channel impulse response nor the transmission
of training sequences. The only basic assumption underlying our
method is that the transmitted MC stream contains null (virtual)
sub-carriers, a condition which is verified in many current MC
transmission systems.

1. INTRODUCTION

Multi-carrier systems are commonly adopted in broadband com-
munications as very effective tools to compensate for the time dis-
persion encountered in wireless channels affected by multipath or
in subscriber lines [8]. MC systems simplify the channel equal-
ization task considerably, as they convert a time dispersive chan-
nel onto a set of flat fading sub-channels whose equalization is
obtained with a simple multiplication. This property is achieved
by using block transmissions and inserting a cyclic prefix (CP) of
length at least equal to the channel order, at the beginning of each
block so as to convert the linear convolution operated by the chan-
nel into a circular convolution. The only price paid for inserting
the CP is the reduction of the transmission data rate. Specifically,
if N is the number of symbols multiplexed in each block andL is
the cyclic prefix length, the insertion of the prefix implies a reduc-
tion of the transmission rate by a factorε = N/(N + L). This
efficiency loss is not negligible in applications whereL is big and
N cannot be chosen too large because of constraints on decoding
delay or on receiver complexity.
To limit this loss without increasing the receiver complexity ex-
cessively, it is common practice to insert, at the receiver side, a
pre-equalizer, or channel shortener, whose task is to concentrate
the energy of the impulse response of the combined channel/pre-
equalizer response within a window smaller than the initial chan-
nel support. Ideally, if the channel shortener yields a final com-
bined response of orderLS (with LS < L), it is sufficient to use
cyclic prefixes of orderLS , instead ofL, and still achieve per-
fect ISI/MUI elimination with a simple FFT processor. Several
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works have already addressed this problem finding alternative so-
lution for the design of the pre-equalizer [2], [4], [7], [3], [1]. In
all these works, the channel was supposed known or estimated by
transmitting known preamble sequences. Furthermore, the over-
all channel was single-input/single output (SISO). In such a case,
using an FIR pre-equalizer we can at most concentrate the energy
of the combined channel/pre-equalizer response within the desired
window, but we cannot ISI completely. Perfect channel shorten-
ing using FIR filters is only possible if the channel is single in-
put/multiple output (SIMO), as already suggested in [5]. In such
a case, it is possible to find abankof FIR filters able to squeeze
all the energy of the final impulse response within the desired win-
dow. In a wireless scenario, SIMO structures are obtained by using
multiple receive antennas, whereas in a wired link one can resort
to fractional sampling. The design of perfect pre-equalizers for
OFDM/DMT systems in SIMO structures was considered in [5],
under the hypothesis that the channel was a-priori known or esti-
mated by transmitting known sequences. In this work, we propose
an adaptive strategy for designing a SIMO pre-equalizer, capable
of perfect ISI/IBI cancellation, which does not require neither the
knowledge nor the estimate of the channel impulse response and
it is able to derive the impulse response of the pre-equalizersdi-
rectly from the data, without requiring the transmission of training
sequences. The proposed approach exploits the presence of null
(virtual) sub-carriers. Clearly, transmitting virtual sub-carriers is
equivalent to transmit null, and thus known, symbols. However,
differently from training symbols, transmitting virtual sub-carriers
does not imply any waste of power and is, in any case, implicit in
many transmission systems such as, for example HIPERLAN/2,
where virtual sub-carriers are introduced for synchronization pur-
poses, or in multi-user OFDM systems where some sub-carriers
are not used when the system is not fully loaded, or, finally, in
ADSL modems, where, because of bit loading made according to
the water-filling principle, the most faded sub-carriers are not used.

2. TRANSCEIVER STRUCTURE

In this paper we refer to a single user scenario, but the same for-
mulation can be extended to the broadcast (downlink) channel of
a multi-user context.

We denote bys(p; m), with m = 0, . . . , M − 1, the m-th
information symbol transmitted with thep-th block. We assume
that our system may incorporate frequency hopping (FH). We will
show in Section 5 that FH facilitates the convergence of our adap-
tive shortening method. Each transmitted block is then composed
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Fig. 1. Receiver block diagram.

of the followingN + L samples

x(p; i) =

M−1X
m=0

s(p; m)ej 2π
N

(im+ip)i , i ∈ [−L, N − 1], (1)

whereim is the frequency index associated to them-th symbol and
ip is the (possible) frequency hopping index associated to thep-th
block. Because of the periodicity of orderN of the exponentials
in (1), the firstL samples in (1) are equal to the lastL sample
and constitute the cyclic prefix. We assume that the indicesim,
m = 0, . . . , M −1, are all different from each other (i.e. different
symbols are associated to different sub-carriers) and thatM < N ,
i.e. there exists a set ofN − M null (virtual) sub-carriers which
are not used for transmitting information symbols. We denote by
SM the set of indices not used in (1), i.e.SM is such thatSM ∪
{i0, i1, . . . , iM−1} ≡ {0, 1, . . . , N − 1}.

In Fig. 1 we report the receiver structure, composed ofK par-
allel channels and pre-equalizers, having impulse responseshk(n)
andgk(n), with k = 1, . . . , K, respectively. We denote withLh

andLg the maximum order of the channel and pre-equalizer fil-
ters, respectively and we assume that
A1) Lh + Lg − 1 < N .
This assumption guarantees that interblock interference involves
no more than two consecutive blocks. UnderA1), theq-th received
block is composed of the following entries

yk(q; n) =

LhX
i=n+L+1

hk(i)x(q − 1; n + N + L− i)

+

n+LX
i=0

hk(i)x(q; n− i) , n ∈ [−L, Lh − L− 1],

yk(q; n) =

LhX
i=0

hk(i)x(q; n− i) , n ∈ [Lh − L, N − 1]. (2)

The first term in the first of these equations represents the interfer-
ence on theq-th block from the previous one. Clearly, removing
the firstL samples of each block, we eliminate IBI only ifLh ≥ L;
otherwise, there will be IBI. The stream of data received from the
k-channel is

yk(n) =

∞X
p=−∞

N−1X
i=−L

y(p; i)δ(n− p(N + L)− i)

and thus the sequencez(n) at the output of the pre-equalizer fil-

terbank is

z(n) =

KX

k=1

LgX

l=0

gk(l)[yk(n− l) + vk(n− l)], (3)

wherevk(n) is the additive noise in thek-th channel.

3. CONDITIONS FOR PERFECT EQUALIZATION

Denoting withHk(z) andGk(z) theZ-domain transfer function
of thek-th channel and filter, respectively, perfect ISI/IBI cancel-
lation is achieved if the combined channel-equalizer transfer func-
tion, corresponding to the system of Fig. 1, satisfies the relation-
ship

C(z) =

KX

k=1

Hk(z)Gk(z) = z−dP (z), (4)

whered is a possible delay andP (z) is a polynomial of degreeL.
In the SISO case, corresponding toK = 1, the equation

H(z)G(z) = z−dP (z) can be satisfied by using an FIR equal-
izer, only if the channel is ARMA. However, ARMA modeling
may be too critical to adopt in a practical context becuse of possi-
ble instabilities and we will not consider this case.

Let us then consider a proper SIMO structure, as in Fig. 1,
with K > 1. In this case, we will show thatperfectchannel short-
ening is possible if theK channels satisfy a generalized disparity
condition, which is an extension of the one required in [6]. To
derive the conditions for perfect shortening, it is better to express
(4) in matrix form. We start withK = 2, for simplicity, and then
we will extend the formulation to the most general case. Our no-
tation is the following:h1 = [h1(0), h1(1), . . . , h1(Lh)]T and
h2 = [h2(0), h2(1), . . . , h2(Lh)]T are the channel vectors;g1 =
[g1(0), g1(1), . . . , g1(Lg)]T andg2 = [g2(0), g2(1), . . . , g2(Lg)]T

represent the pre-equalizers vectors; the vectorp = (p(0), p(1),
. . . , p(L)) is formed with the coefficients ofP (z). We also in-
troduce the(Lh + Lg + 1) × (L + 1) matrix T T := (0T

d,L+1,
IL+1,L+1 , 0T

Lh+Lg−L−d,L+1)
T Then we build the(Lh + Lg +

1)× (Lg +1) Toeplitz matricesT (h1) andT (h2), whereT (hk)
has first column[hT

k ,0T ]T and first row[hk(0),0T ]T , with k =
1, 2. We are now able to formulate (4) in matrix form as follows

� T (h1), T (h2), −T �
0
@
g1

g2

p

1
A = 0. (5)

We wish to find now the conditions under which (5) admits a non
null solution forg1, g2, andp. To enforcep 6= 0, we set one of
its elements, let us say itsδ-th one, to be equal to one so thatp has
the formp := [pT

1 , 1,pT
2 ]T . Thus, (5) becomes

� T (h1), T (h2), −T̄ �
0
B@

g1

g2

p1

p2

1
CA =

0
@

0
1
0

1
A , (6)

whereT̄ is equal toT deprived of itsδ-th column. We are now
able to prove the following
Theorem: A set of sufficient conditions for the existence of a non-
trivial solution of (6) is that:
A2) Lg > Lh − L− 1;
A3) the two polynomialsH1(z) andH2(z) do not share more than
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L common zeros.

Proof: The system (6) admits a non trivial solution if the ma-
trix B :=

� T (h1), T (h2), −T̄ �
is fat and full row rank.

ConditionA2) insures thatB is fat. Let us examine now when
B is full row rank. We wish to prove that, underA2), A3), there
is no (Lh + Lg + 1)-size vectorr 6= 0 such thatrHB = 0T .
Every(Lh +Lg +1)-size vectorr can always be expressed as the
linear combination of a set ofLh + Lg + 1 Vandermonde vectors

v(ρ) = (1, ρ−1
l , . . . , ρ

−(Lh+Lg)

l )T having all differentρl, since
such vectors are linearly independent and thus they form a basis
for a (Lh + Lg + 1)-dimensional space. If we multiplyB from
the left side byrH :=

PL̄
l=1 αlv

H(ρl), whereL̄ is still to be
determined, we obtain

rHB =

L̄X

l=1

αl[H1(ρl), . . . , ρ
−Lg

l H1(ρl), H2(ρl), . . . ,

. . . ρ
−Lg

l H2(ρl),−ρ−d−δ−1
l , . . . ,−ρ−d−δ−L

l ]. (7)

Therefore, ifH1(z) andH2(z) are co-prime, there is nor 6= 0
such thatrHB is equal to zero. From (7), the only possibility for
rHB to be null requiresH1(z) andH2(z) to share at leastL + 1
zeros so that, takinḡL = L + 1 and choosingρl equal to the com-
mon roots ofH1(z) andH2(z), for l = 1, . . . , L + 1, the first
2(Lg + 1) entries ofrHB in (7) are null and we can always find
a set ofL + 1 coefficientsαl, l = 1, . . . , L + 1 that null also the
lastL components of (7). This concludes the proof.

Generalizing these arguments to a SIMO structure composed
of K channels, we can prove the following

Theorem: Given a SIMO scheme composed ofK parallel
channels, a set of sufficient conditions for the existence of a non-
trivial shortening filterbank is that:
A2) Lg > (Lh − L−K)/(K − 1);
A3) the polynomialsHk(z), with k = 1, . . . , K, do not share
more thanL common zeros.

From conditionsA2) and A3) we can draw some important re-
marks:
Remark 1. SIMO equalizers are known to suffer from the so
called disparity condition [6], requiring that theK channels do
not have common zeros. Perfect equalization is in fact a particular
case of (4) corresponding toL = 0. Interestingly, the combination
of the SIMO structure with the OFDM transmission scheme in-
cluding cyclic prefixes of lengthL allows the existence of perfect
pre-equalization even if the channels share up toL zeros.
Remark 2. In [5], the conditions for perfect pre-equalization in a
SIMO structure with an underlying OFDM structure were derived
assuming the polynomialP (z) to be known. Here, we have re-
laxed this constraint to give the adaptive equalizer all the freedom
to evolve towards the right solution without assuming any knowl-
edge neither about the channels nor aboutP (z).
Finally, note that the theorem establshes only a sufficient condi-
tion, which means that ifA2 andA3 are not satisfied, there could
still exist a non trivial shortening filterbank.

4. ADAPTIVE PRE-EQUALIZATION

In this section we propose our adaptive algorithm for estimating
the coefficients of the pre-equalizer filterbank directly from the re-
ceived data. With reference to Fig. 1, we introduce a cost function
measuring the energy falling in the virtual sub-channels. Specifi-
cally, we denote byZ(q; l) the l-th sample of theN -point FFT of
theq-th received block extracted fromz(n), namely

Z(q; l) =

N−1X
n=0

z(q; n)ej 2π
N

(l+iq)n, l ∈ VM , (8)

wherez(q; n) := z(q(N + L) + n), with n = 0, . . . , N − 1,
and we define our cost function as the energy falling in the virtual
sub-carriers, averaged overNb consecutive blocks:

JNb(g1, . . . , gK) :=
X

l∈VM

1

Nb

NbX
q=1

|Z(q; l)|2. (9)

Ideally, if the combined channel impulse responsec(n), corre-
sponding toC(z) in (4), had an order at most equal to the cyclic
prefix length, such energy would be null. However, if the channel
c(n) is longer thanL + 1, there is some energy falling in the vir-
tual sub-channels. Based on this remark, we propose an adaptive
algorithm which estimates the pre-equalizers’ impulse responses
as the coefficients that minimizeJNb(g1, . . . , gK). More specifi-
cally, using a conventional iterative steepest descent approach, the
k-th filter responsegk(n + 1) at the(n + 1)-th step is obtained as

gk(n + 1) = gk(n)− µ∇gkJNb(g1(n), . . . , gK(n)), (10)

whereµ is the step size and∇gkJNb(g1(n), . . . , gK(n)) is the
conjugate gradient ofJNb(g1(n), . . . , gK(n)) with respect togk,
computed at then-th step. In formulas,

∂JNb

∂g∗r (i)
=

1

Nb

X

l∈VM

NbX
q=1

Z(q; l)
∂Z∗(q; l)
∂gr(i)

=
1

Nb

X

l∈VM

NbX
q=1

·
N−1X
n=0

Z(q; l)y∗r (q(N +L)+n−i)e−j 2π
N

(il+iq)(q(N+L)+n−i). (11)

We are not able to prove the absolute convergence of our method,
without FH. Conversely, if we incorporate FH, we have proved
the absolute convergence property. Specifically, we proved that,
under ergodicity assumptions about the transmitted sequence and
allowing the FH indexiq to sweep all the range[0, N − 1], asq
goes from0 toN−1, the cost function tends asymptotically, i.e. as
the number of blocksNb tends to∞, to the following expression

J(g1, . . . , gK):= lim
Nb→∞

JNb(g1, . . . , gK)=

LcX
i=L+1

αi|c(i)|2,

(12)
where the coefficientsαi are all positive and independent of the
channel. From (12), we infer that the only possibility forJ(g1, . . .,
gK) to reach its absolute minimum is to havec(n) = 0, for
n > L. Furthermore, (12) shows that the cost function is a hyper-
paraboloid and thus the convergence of our steepest descent method
towards the absolute minimum is guaranteedirrespectiveof the in-
izialization (at least asymptotically, i.e. using an infinite number
of blocks).
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Fig. 2. Average ISI forL = 1, 5, and9 (Lh = 15).

5. NUMERICAL RESULTS AND CONCLUSION

Ideally, at the end of our adaptation we would like to havec(n) =
0 for n > L. Thus, to quantify the performance of our method, we
have introduced the following parameter, which we will term ISI
(we use Matlab notation)

ISI :=
||c(L + 1 : Lh + Lg + 1)||2

||c(0 : L)||2 . (13)

As a numerical test, we have considered an OFDM system with
N = 32 samples per block and a cyclic prefix of variable length
L. The number of information symbols per block isM = 31,
so that there is only one null sub-carrier per block. The num-
ber of receive channels isK = 4 and each channel has order
Lh = 15. The channel coefficients are generated as complex
i.i.d. Gaussian random variables with zero mean and unitary vari-
ance. In each iteration, the gradient is averaged over256 blocks.
The orderLg of the pre-equalization filters is computed asLg =
b(Lh − L − K)/(K − 1)c + 1, wherebac denotes the integer
part of a. At the beginning of each iteration, the coefficients of
the pre-equalization filters are all set to0, except the center one
set equal to1. In Fig. 2 we report the averageISI (averaged
over30 independent channel realizations), forL = 1, 5, and9, as
a function of the SNR, obtained after 200 iterations of the steep-
est descent method (the upper, middle and lower curves refer to
L = 1, 5 and9, respectively). As we can see, the performance
improves as the CP-length increases. In fact, asL increases the
probability of being close to an ill-conditioned situation (the chan-
nels share more thanL zeros) decreases and thus the performance
improves. Furthermore, since the ultimate performance factor in
a digital link is BER, in Fig. 3 we report the BER vs. the SNR,
obtained with a QPSK constellation (solid, dash and dotted, and
dotted lines refer toL = 1, 5 and9, respectively). The number of
iterations used to obtain the pre-equalization filters is200. Again,
for L = 1 there may be some situations where one out of the15
channel zeros of one channel is close to one of15 zeros of another
channel. In such cases the algorithm does not converge and the
final BER is very poor and thus it affects the average BER con-
siderably. However, asL increases, the probability of having an
ill-conditioned problem decreases and the BER decreases accord-
ingly. In conclusion, channel shortening is a useful tool to limit
the efficiency losses in wireless OFDM systems and the choice
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Fig. 3. Average BER forL = 1 (solid), 5 (dash and dots), and9
(dots);Lh = 15.

of the CP-length must result from a trade-off between efficiency
and performance: The shorter is the prefix, the smaller is the effi-
ciency loss but the bigger is the performance loss, and viceversa.
Interesting developments of our approach should incorporate the
design of a shortening filterbank which dos not necessarily aims
at nulling the ISI exactly, but it minimize the signal to interference
plus noise ratio. This should give more flexibility to the design and
then achieve better performance in terms of SNR.
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