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ABSTRACT

In this paper, a new blind equalization method is proposed for sys-
tems with cyclic prefix such as OFDM. With constrained minimum-
output-energy (MOE) optimization, a bank of equalizers can be
derived without the help of FFT/IFFT. Algorithms are developed
for blindly estimating the constraints and equalizers. When the
cyclic prefix is sufficient, i.e., longer than the channel length, the
complexity of the method is comparable to traditional FFT-based
receivers. A special property is that the new method works sim-
ilarly even if the cyclic prefix is insufficient, i.e., shorter than the
channel length. Therefore, it provides an effective way to improve
bandwidth efficiency with shorter cyclic prefix length. Simulations
demonstrate the superior performance of the proposed method.

1. INTRODUCTION

Intersymbol interference (ISI) is a severe degradation factor for the
performance of communications and must be mitigated by equal-
izations before a higher throughput can be obtained. Training
based equalization methods may be the most widely applied ap-
proaches in practice. However, since training sequences reduce
system throughput, blind equalization is more promising [4].

To simplify the problem of equalizations, transmitters with
cyclic prefix or some other precoding techniques are widely inves-
tigated [6]. The most well-known one is OFDM. With the help of
FFT, frequency selective channels are converted into a parallel of
flat fading channels. Then equalization can be performed by one-
tap equalizers or blindly with differential encoding [1]. OFDM
has already been used in some broadband systems such as wireless
LAN, ADSL, DVB/DAB, etc. It has been proposed as a candidate
for the future 4th generation mobile communications. Considering
that OFDM introduces large peak-to-average power ratio, another
candidate is to use cyclic prefix but without IFFT in the transmit-
ter. Signal detection is performed in the frequency domain at the
receiver with both IFFT and FFT, similarly as OFDM.

However, traditional systems with cyclic prefix require that the
length of the cyclic prefix be no less than the channel length. Then
either the block length should be large, which increases system
delay and computational complexity, or, with a short block length,
the efficiency becomes low due to the overhead of cyclic prefix.
Especially in the future broadband systems with long channels, the
system efficiency may greatly suffer from the overhead of cyclic
prefix. Channel shortening techniques were studied to improve
the efficiency [5]. However, similarly as time-domain equalization
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of single-input-single-output (SISO) channels, SISO channels can
usually be shortened approximately only [2].

On the other hand, because for frequency selective channels
some subcarriers have lower SNR than others, the performances
of signal detection on these subchannels are not uniform. In some
systems, it is impractical to use the optimal water-filling algo-
rithms to adjust the distribution of data among subcarriers because
of unknown or time-varying channels. Therefore, there is a reduc-
tion in performance.

In this paper, we propose a blind equalization method for the
receivers in OFDM and other systems with cyclic prefix. Tak-
ing the advantage of the special correlation property generated
by the cyclic prefix, we will show that blind equalization can be
performed without FFT/IFFT. Instead, the well-known minimum-
output-energy (MOE) receivers [3], [7] can be used with some
proper constrained optimization. With the conveniently available
adaptive implementations, the computational complexity can be
generally comparable to traditional approaches. However, the per-
formance is higher since every symbol (or subcarrier) is treated
fairly. More important, the new method works in systems where
the length of cyclic prefix is shorter than that of channels. There-
fore, shorter cyclic prefix length can be used to enhance system
efficiency.

This paper is organized as follows. In Section 2, the system
model with cyclic prefix is described. In Section 3, we develop the
new method for systems with sufficient cyclic prefix. Then this
method is extended to systems with insufficient cyclic prefix in
Section 4. In Section 5, simulations are performed to demonstrate
the performance. Finally, conclusions are given in Section 6.

2. SYSTEMSWITH CYCLIC PREFIX

Consider the baseband digital communication system with cyclic
prefix, as shown in Fig. 1. Note that although we consider the
OFDM system, our method does not depend on the IFFT/FFT
blocks. The input symbol sequence s, is grouped to form blocks,
each with IV symbols. Then each block may be processed by the
optional IFFT or other multi-rate filterbank precoders [6]. The re-
sult is a data sequence u,. Then L cyclic prefix (CP) samples are
added to each block.

Let P = N + L. Define sy (nN) = [sun, -, San—n+1]7
and up(nP) = [unp,- -, Unp—p+1]". If there is IFFT (or other
precoders), we have

[unp, ,unp—n41]" =F 'sy(nN). 1)
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Fig. 1. Baseband OFDM transmitter and MOE receiver. Note that
the IFFT/FFT blocks are optional.

where F~1 is the inverse discrete Fourier transformation matrix

(or other precoder matrices). We add cyclic prefix to construct the
other L elements in the block up (nP) as
i=0,---,L—1. )

UpnP—N—i = UpP—i,

Then the cyclic-prefixed data sequence {u,, } is transmitted.
At the receiving end, the received baseband signal is

Lp,

Yn = Tn + vp é Z hkunfk + vn (3)
k=0

where v, and z, denote noise and noiseless signal, respectively.
The channel h = [ho, - - -, hz, ]” isassumed to be FIR with length
Ly, + 1. In traditional OFDM or other multicarrier systems, the
condition of sufficient cyclic prefix should be satisfied, i.e., L >
Ly, Because the transmission efficiency is N/(IN + L), large L
value decreases transmission efficiency.

Traditionally, equalization is performed after FFT. In this pa-
per, however, as shown in Fig. 1, we perform MOE-based equal-
ization before FFT. In fact, as can be seen obviously, the IFFT/FFT
blocks are optional only.

Since we allow that the length of the cyclic prefix L may be
shorter than the channel length Ly, for the flexibility of manipu-
lating correlations of cyclic prefix, we construct the received data
vectors with dimension M

ym (k) = xar (k) + var (k) @)

where y s (k) = [yk, - - -, yr—m1]” xn (k) = [T, -+, Taonrga]”

and the AWGN vas (k) = [vk, -+, ve—nm+1]7. Considering the
FIR channel, the noiseless received signal vector is
x (k)
= Hu(k) ®)

ho th Uk

>

ho -+ hg, Uk—M—Ly+1

where the channel matrix 7 is with dimension M x (M + Ly).
As a special case, if L, < L, we can choose M = N to
construct

xn(nP) = Huy(nP) (6)
ho - hi,
UnP
2
- hr, .
: . : UnP—-—N+1
hi -+ hr, ho

where H is an N x N circulant matrix similarly as traditional
OFDM systems.

The general idea of this paper is to find linear filter equalizers
{f4} to equalize the channel matrix # or H before performing
FFT, ie.,

fi/H=epq, or fiH=e4, d=0,---,N—1, (7)

where e, is a unit vector with a value 1 in the (d + 1)th entry, and
D denotes some proper equalization delay. Note that in (7) the
vectors f; and ey should have proper dimensions. We will show
that this task can be achieved with constrained MOE optimization.

In this paper, we assume that the symbols s, are i.i.d. with
zero mean and unit variance. The noise v, is AWGN with zero-
mean and variance o2, and is uncorrelated with s,,.

3. BLIND MOE-BASED EQUALIZATION FOR SYSTEMS
WITH SUFFICIENT CYCLIC PREFIX

3.1. Constraint parameter estimation

For simplicity, we consider first the special case where the cyclic
prefix length L is no less than channel length L. We consider the
noiseless system first.

In order to apply minimum-output-energy optimization, we
need to find a proper constraint. The optimal constraint might be
the columns in the channel matrix 7 or H in equations (5) and
(6). It is therefore similar to blind channel estimation. However,
the channel length is not required to be estimated. In addition,
some scalar phase ambiguity in estimation is also permitted.

Let M = L + 1 in(5). Then we construct L + 1 dimensional
data sample vectors and calculate the following three correlation
matrices

R, = E{xr41(nP)x141(nP)},
Rri1() = E{xzi1(nP +0x[ 1 (nP — N + ()},
(=0, L+1. 8)

Proposition 1. If P > 3L, then channels can be estimated as
the eigenvector corresponding to the largest eigenvalue of R +1 =
R: —Rr4+1(0) —Rr41(L+1).

Proof. Because P > 3L, from (5), we have

R. = HE{u(nP)u” (nP)}H" = HHn" 9
and similarly
Rz41(0) = HE{u(nP)u” (nP - N)}H"
I.
= X [ 0z, 11 ] HY (10)
Rryi(L+1) = H[O““ 1, ]HH (11)

where the matrices I, and Oz, are L x L identity and L x L zero
matrices, respectively. Therefore R 41 = Hdiag{0r,1,0z, yHE.
Hence the channel can be identified [4]. a

Note that the condition P > 3L is reasonable because of the
requirement of high efficiency.

The estimated channel is in fact a[hr, - - -, ho]” with a scalar
phase ambiguity a. It can be looked as zero-padding when L; <
L.
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3.2. Blind MOE equalization

Since the length of the cyclic prefix L is no less than the channel
length Lj,, we construct the sample vector with M = N as in (6).
Then we calculate the following correlation matrix

Ry = E{xn(nP)xX(nP)}, (12)

and construct an IV x 1 dimensional vector with N — L —1 padding
Zeros as constraint

h=alhz,---,ho,0,---,0]". (13)
Consider the following constrained minimization problem

fr = argmin fIRNTL, st fffl =1. (14)

It is well known that the optimal solution £, in (14) is a generalized
eigenvector of the matrix pencil (R, hh'?) [7].

Proposition 2. If the channel matrix H is full column rank,
then ffH = a”er.

Proof. We can subdivide the channel matrix H into two parts:
the Lth column b and all other columns B. Note that h = ab.
Therefore, f Ryfr = £ bbb, + £ BB £, > 1, where the

equality holds iff fZ B = 0. O
Because of the circulant property, once fy, is estimated, then
we can shift £ circularly to obtain f; foralld = 0,---,N — 1

such that f7H = a*e4. Hence
fi'xn(nP) = u(nP —d), d=0,---,N—1. (15)

Then symbols can be estimated with a phase ambiguity o™ which
can be removed by differential encoding.

If considering noise, then from (4) we use y v (nP) instead of
xn~ (nP). The optimization (14) converges to the minimum-mean-
square-error solution [3], [7].

The constraint h and the equalizer 7, can be estimated from
Proposition 1 and (14) with adaptive implementations such as LMS
algorithm. The computational complexity is on the same order as
the traditional FFT based receivers because the equalizer bank (15)
can be implemented efficiently via FFT.

If the column b is independent from all other columns, we
have the same results. On the other hand, if b falls in the subspace
spanned by other columns, we can utilize the L discarded sam-
ples, which we discuss in the more general scenario with possibly
insufficient cyclic prefix.

4. BLIND MOE-BASED EQUALIZATION FOR SYSTEMS
WITH INSUFFICIENT CYCLIC PREFIX

4.1. Constraint parameter estimation

In this section, we consider the general scenario where the length
of the cyclic prefix L may be less than the channel length Ly,. If
Ly, is unknown, we can use an over-estimated one. Obviously, the
traditional FFT-based method fails. We will show that the MOE-
based method, with some modifications, can still be used.
If Ly, is possibly longer than L, the constraint estimation method

in Section 3.1 should be modified to apply repeatedly the correla-
tion matrices

Rk (£) E{xx(nP + )x(nP — N +0)}
0,

H 1L

H7, (16)

Ork4r,—L—¢

where{ =0,---, K+Ly—L. Onthe other hand, if K+L,—L <
¢ < K + Ly, we have

0,

Rx(f)=H [ Ho. (17)

Iy, —¢ ]

The dimension K, i.e., M in equations (4) and (5), can be chosen
as
K >Lp+1. (18)

Then, we evaluate the summation of a sequence of matrices

Q
Ri = [Ri(Ln+(L) —Ri(Ly +1+(L)],  (19)
£=0

where @ = | (K — 1)/L]. Then the correlation matrix R x satis-
fies
Rk = Hdiag{0z,,1,0x_1}H". (20)

Hence the channel coefficients can be estimated as the eigenvec-
tors corresponding to the largest eigenvalue of R x in (20), which
will be in the same form as (13).

4.2. Blind MOE equalization

In case of insufficient cyclic prefix, circulant channel matrix may
not be available. However, the cyclic prefix can still be exploited
for equalization. We construct the data sample vector xas(nP)
according to equation (5) with properly chosen dimension M. The
channel matrix # is with dimension M x (M + Ly,).

Define m = | (M + L)/ P]. Considering the L cyclic prefix
in every P symbols, there are at most M + L, — mL columns
if we combine those columns in A that are corresponding to the
same symbols. Denote the combined channel matrix as #.

Proposition 3. With proper M and m > L;/L, the corre-
sponding channel matrix # is full column rank.

Proof. The matrix 7 has M rows and at most M + L, —
mZL columns. In addition, considering the Toeplitz structure of
the channel matrix %, it is easy to find that the matrix # can be
arranged in a block upper-triangular form with ho on the main
diagonal. Therefore, it is full column rank. O

Let the correlation matrix be

Ry = E{xpu(nP)xY(nP)} = HH". (21)

We can select any adjacent V columns in #, e.g., the (D, - - -, D+
N —1)th columns with some proper delay parameter D. We denote
them as M dimensional columns ¢4, d = 0,---, N — 1. In fact,
they can be represented by the estimated channel coefficients (13)
as obtained in Section 4.1. Hence we can use them as constraints.
We define a bank of IV constrained MOE optimization prob-
lems as
f; = argmin £ Ry, st filcg=1, (22)
forall d = 0,---,N — 1. Then similarly as analyzed in Sec-
tion 3.2, the closed form solution of (22) can be obtained from
the fact that f; is the generalized eigenvector of the matrix pencil
(R, cdcf). Because H is full column rank, f; is zero-forcing
in noiseless case, i.e., ffﬁ = ep+q. On the other hand, in noisy
case or if we choose m < Ly /L to reduce complexity, the equal-
izer £; becomes the MMSE solution [7].
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Fig. 2. Compare the proposed MOE blind equalizer and the
OFDM receiver in systems with sufficient cyclic prefix.

The block of NV data symbols can be estimated by the equalizer
bank f; as

tnp-p-a="F, xu(nP), d=0,---,N—1. (23)

Then FFT can be used to re-construct the transmitted symbols s,
in OFDM systems.

Similarly as discussed in Section 3.2, in noisy case, we can use
yu (nP) instead of xas(nP). In addition, because the estimation
of constraints {cs} and the equalizer bank {fs} can all be con-
veniently implemented as LMS adaptive algorithms, the computa-
tional complexity is O(NM). Furthermore, with highly parallel
implementation of the filterbank (each with complexity O(M)),
the complexity will still be comparable to traditional FFT based
methods.

5. SIMULATIONS

In this section, we use simulations to study the performance of
the proposed algorithms in Sections 3 and 4, and to compare them
with some existing algorithms, specifically, differentially encoded
OFDM systems where blind detection can be performed without
channel estimation, and OFDM with channel shortening techniques
[5] which we denote as SOFDM. We used the bit error rate (BER)
to evaluate the performance of equalizations. The transmitted sym-
bols s, are QPSK and differentially encoded. We used the aver-
age of 100 Monte Carlo runs to evaluate BER. The channel was
chosen as h = [-1.28 — 50.301, —0.282 + 30.562,0.031 —
70.211, 0.106 + 51.164] with channel length Lj, = 3.

First, we compare the new algorithm in Section 3 with OFDM
detector when the cyclic prefix length is sufficient L = L;. We
chose N = 16 for both transmissions. We used M = L for chan-
nel estimation, and M = N = 16 for MOE equalization. 500
blocks are used for channel and equalizer estimation. The BER is
compared in Fig. 2. The proposed method has better performance.
The reason might be that symbols from all subcarriers are treated
fairly in our method, whereas in OFDM and SOFDM, some sub-
carriers may have lower SNR compared with others.

Second, we compare the new algorithm in Section 4 against
OFDM and SOFDM [5], considering an insufficient cyclic prefix
length L = 2. To achieve similar transmission efficiency as in the
first example, we chose N = 8. We used K = 5 for channel esti-
mation and M = 28 for MOE equalization. 1000 data blocks are
used for constraint and equalizer estimation. For SOFDM, we used

5 10 15 20 25 30
SNR (dB)

Fig. 3. Performance in systems with insufficient cyclic prefix.

a 10-tap filter to shorten the channel, where we used the known
channel to obtain its optimal performance. As shown in Fig. 3,
the new MOE algorithm can still achieve sufficiently low BER,
whereas the OFDM and SOFDM receivers fail.

6. CONCLUSION

In this paper, we present a new blind receiver for systems with
cyclic prefix such as OFDM. Constrained minimum-output-energy
optimization is used to derive blind equalizers. The new method
has computational complexity comparable to the traditional OFDM
receivers, whereas its performance outperforms the latter. More
important, the new method works even when the length of the
cyclic prefix is smaller than the channel length. Hence smaller
cyclic prefix and smaller block size can be used to enhance system
efficiency and to reduce complexity.
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