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ABSTRACT

A generalized discrete multitone (GDMT) scheme that not only
uses the guard interval but also redundancy in the frequency do-
main for equalization has been introduced recently [1, 2, 3]. In-
stead of assigning all redundancy in the time domain it allows to
take advantage of unused subcarriers to remove ISI and ICI. In
this paper, we calculate the signal-to-noise ratio for each subcar-
rier for the zero-forcing equalizer proposed in [3]. From there, we
derive a new adaptive loading algorithm that optimally chooses the
length of the guard interval and the position of unused subcarriers.
The cost function applied for the adaptive loading algorithm is the
achievable data rate at a fixed error probability.

1. INTRODUCTION

Discrete Multi-Tone (DMT) systems are restricted by the fact that
the guard interval (GI) introduced in form of a cyclic prefix has
to be at least as long as the order of the channel impulse response
(CIR). This mainly affects the achievable bandwidth efficiency and
latency time of practical DMT systems. One approach to shorten
the effective CIR length is to introduce a short FIR filter at the in-
put of the receiver, the so called time-domain equalizer (TEQ), see
[4] and references therein. In another approach the TEQ is trans-
ferred to the frequency domain, resulting in a separate complex
frequency domain equalizer for each tone [5].

More recently, a different frequency domain equalizer, has
been introduced under the name of generalized discrete multitone
(GDMT) [1, 2]. Here the one tap frequency domain equalizer of
a traditional DMT receiver is replaced by a block equalizer matrix
and the guard interval is omitted. The equalizer takes advantage
of inherent frequency domain redundancy in DMT due to unused
tones, i.e. subcarriers to which the adaptive loading algorithm does
not assign any data due to a too low signal-to-noise ratio (SNR).
These subcarriers do not need to be equalized at the receiver but
they contain information that can be exploited to obtain a better
compensation of ISI and ICI in used subcarriers. In [3] GDMT
has been extended to the case of an insufficient guard interval. It
has been shown, that zero-forcing equalization with no remaining
ISI and ICI is feasable if the length of the guard interval plus the
number of unused subcarriers is at least as high as the CIR order.
It thus allows to trade off time-domain redundancy for frequency
domain redundancy.

We here evaluate the noise enhancement of this zero-forcing
equalizer. This allows us to calculate the SNR in each subcarrier.
As we will see, it will not only depend on the channel frequency
response but also on the number and position of the unused sub-
carriers. The bit load per subcarrierk can then be derived as [6]

bk = log2

�
1 +

SNRk

Γ

�
. (1)

whereΓ denotes the SNR gap. A new adaptive loading algorithm
will be presented that maximizes the data rate at a given target error
probability by finding the optimal length of the guard interval and
the position of unused subcarriers.

2. THE GDMT TRANSCEIVER

The GDMT transceiver is depicted in Fig. 1. When compared with
a traditional DMT transceiver, the only difference is that the one-
tap frequency domain equalizer in DMT has been replaced by an
M ×M block equalizerE whereM denotes the number of sub-
carriers. The relationship between the input symbolu(k) and the
output symbol̂u(k) in Figure 1 is given by [7, 3]:
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whereWM/
√
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√

M describe the orthonormalized
DFT and IDFT matrix, respectively, andZT andZR the intro-
duction and removal of the guard interval, respectively.C =�
C0 C1

�
is the size(M + L) × 2(M + L) channel matrix

combining the P/S conversion at the transmitter, the convolution
with the channel impulse response and the S/P conversion at the
receiver, andr(k) is the additive channel noise after S/P conver-
sion. We here assume that the channel impulse responsec(n) is of
lengthLc and shorter thanM what is generally the case for ADSL
and VDSL. The entries of the matrices are then given by:

[WM ]k,l = exp(−j
2πkl

M
), [WH

M ]k,l = exp(j
2πkl

M
),

k, l = 0, . . . , M − 1,

ZT =

�
0L×(M−L) IL

IM

�
, ZR =

�
0M×L IM

�
,
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Fig. 1. GDMT transmission scheme
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3. ZERO FORCING EQUALIZATION

A zero-forcing equalizer removes the ISI and ICI introduced by
the transmission channel. It is designed for the noise-free case and
does not take noise enhancement into consideration. Given (2), ISI
and ICI is removed if the following condition holds true:

E
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��ZT 0
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WH
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=
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0M IM

�
(3)

To find the entries ofE, we introduce a matrix̃C that com-
bines introducing the guard interval, the channel matrixC, and
removing the guard interval:

C̃ =
�
C̃0 C̃1

�
= ZR

�
C0 C1

� �ZT 0
0 ZT

�
(4)

IntroducingC̃ into (3) and splitting it into two parts, we obtain
the following constraints for zero-forcing equalization:

EWM C̃0 WH
M/M = 0M , (5)

EWM C̃1 WH
M/M = IM . (6)

If the GI is of sufficient length(L ≥ Lc − 1) then C̃0 =

0M , and thus (5) is always satisfied. AlsõC1 is circular such that
WM C̃1 WH

M/M in (6) becomes a diagonal matrix. The zero-
forcing equalizerE is identical to the DMT equalizer, namely:

[E]k,k = 1/C(ej2πk/M ), k = 0, . . . , M − 1 (7)

whereC(ej2πk/M ) denotes the channel frequency response at the
normalized frequencies2πk/M . If however the GI is of insuffi-
cient length(L < Lc−1) thenC̃0 andC̃1 have the following form

and it is no longer possible to solve (5) and (6) simultaneously:
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4. ZF EQUALIZATION FOR TRANSMISSION WITH

UNUSED SUBCARRIERS

Assuming thatK subcarriers are not used for data transmission,
i.e. the value zero is transmitted in these subcarriers, the block
equalizerE only needs to equalize theN = M − K subcarri-
ers used for data transmission, since there is no need to equalize
unused subcarriers. In [3] it has been shown that perfect ZF equal-
ization can be achieved forK ≥ Lc−L−1. The equalizer matrix
can then be obtained from solving (5) and (6) for the used subcar-
riers only, yielding:

E = S1 C†
freq

�
IM −W0((IM − S1)W0)

†
�

(8)

where† denotes the pseudo inverse.C†
freq is a diagonal matrix with

[C†
freq]k,k =

�
1/C(ej2πk/M ), if C(ej2πk/M ) 6= 0
0 otherwise

(9)

k = 0, . . . , M − 1,

S1 = diag(s0, . . . , sM−1) denotes a carrier selection matrix with

si =

�
1 if subcarrier is used
0 if subcarrier is unused
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andW0 contains the firstLc − L − 1 columns of the DFT ma-
trix WM . The nonzero entries ofE are illustrated in Fig. 2. To
equalize a used subcarrier, the signal is multiplied with the same
scaling factor as in the original DMT scheme. In addition, a linear
combination of the outputs of all unused subcarriers is added. The
values received in the unused subcarriers contain ISI and ICI from
used subcarriers as well as additive channel noise. The fact that the
ISI and ICI component is not negligible is due to the low stopband
attenuation of the IDFT at the transmitter that allows significant
leakage into neighboring subcarriers.
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Fig. 2. Nonzero entries of equalizer matrix

Given the equalizer coefficients and the varianceσ2
r of the ad-

ditive channel noise, we can now calculate the noise variance at
the output of the equalizer:

diag([σ2
n,0, σ

2
n,1, . . . , σ

2
n,M−1]) (10)

= σ2
r · diag
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·
�
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WH

0 (IM − S1)W0

�−1

WH
0

��
The derivation of (11) from (10) is described in [8]. The first noise
term is the same as in a conventional DMT receiver with diagonal
equalizer entries only. The second term arises from the non-zero
non-diagonal entries inE. It is proportional to the inverse of the
squared channel magnitude response at the subcarrier frequency
but in addition also depends on the position of the used and unused
carriers since it contains the carrier selection matrixS1.

5. OPTIMAL SUBCARRIER SELECTION

The adaptive loading algorithm in a DMT system assigns bitrate
and transmit energy to the subcarriers based on a specified bit error
probability at the receiver and on the SNR per subcarrier. Since
in GDMT, the equailzer noise enhancement not only depends on
the channel frequency response but also on the placement of used
and unused subcarriers, see (11), deciding which subcarriers to use
becomes a more elaborate task than just choosing those with the
highest channel magnitude response. In the following we will look
at two special cases first before evaluating the general case.

5.1. Guard Interval is Too Short by One Tap

If Lc − L− 1 = 1 then the matrixW0 in (11) just consists of the
first column ofWM and the inverse matrix in (11) is a scalar:�

WH
0 (IM − S1)W0

�−1

=
�M−1X

k=0

(1− sk)
�−1

=
1

K
(12)

Substituting this result into (11) we obtain for the SNR at the
output of a used subcarrierk :

SNRk =
σ2

u,k

σ2
n,k

=
σ2

u,k · |C(ej 2πk
M )|2

σ2
r

�
1 + 1

K

� (13)

whereσ2
u,k denotes the transmit power for subcarrierk. The SNR’s

in used subcarriers only depend on the channel magnitude fre-
quency response and the number of unused subcarriers. Thus, once
K has been chosen (and it has to be at least one since otherwise
zero-forcing equalization is impossible) in order to select the sub-
carriers resulting in the highest data rate, we just have to choose
thoseN = M −K ones with the highest SNR’s.

5.2. Unused Subcarriers are Spaced Equidistantly

The other special case that is easy to solve is where the inverse ma-
trix in (11) is a scaled identity matrix. Remember thatW0 consists
of the firstLc−L− 1 columns of theM -point DFT matrixWM .
Taking advantage of the fact that we can writeWH

0 (IM − S1)W0

as WH
0 (IM − S1)

H (IM − S1)W0, we can conclude that the
columns of(IM − S1)W0 must be orthogonal to each other. If
the total number of subcarriersM is a power of two, then, if we
chooseK to be also a power of two, satisfyingK ≥ Lc − L −
1, and place the unused subcarriersM/K subcarriers apart from
each other, the non-zero entries of(IM − S1)W0 form the first
Lc − L− 1 (rotated) column vectors of a sizeK DFT matrix and
are thus orthogonal. Taking further into consideration that in DMT
the data in subcarrierM − k is the complex conjugate of the data
in subcarrierk, with k = 1, . . . , M/2 − 1, in order to guaran-
tee a real valued data at the output of the transmitter, yields the
following possibilities for the carrier selection matrixS1 :

si =

�
0 if i = j + `M/K, j = 0, M/2K
1 otherwise. ` = 0, . . . , K − 1

(14)

For these solutions we obtainWH
0 (IM − S1)W0 = K·ILc−L−1

and thus for the SNR in a used subcarrierk:

SNRk =
σ2

u,k

σ2
n,k

=
σ2

u,k · |C(ej 2πk
M )|2

σ2
r

�
1 + Lc−L−1

K

� (15)

The SNR’s again depend on the channel magnitude frequency
response and the number of unused subcarriers but also on the
number of samples by which the guard interval is too short.

5.3. General Case

To determine the noise variance at the equalizer output for a gen-
eral placement ofK unused subcarriers, we apply the matrix in-
version lemma [9] to (11):

diag([σ2
n,0, σ

2
n,1, . . . , σ

2
n,M−1]) = σ2

r C†
freq(C

†
freq)

H S1

·
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W0 WH
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M

�
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M
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(16)

= σ2
r C†

freq(C
†
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S1−IM +diag
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IM−S1

W0 WH
0

M

�−1
!!

For ||S1 W0 WH
0 /M || < 1 the inverse matrix can be ex-

pressed using the Neumann expansion [9] and thus be approxi-
mated through a finite series:�

IM − S1
W0 WH
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=
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�i

(17)
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6. SIMULATION RESULTS

The performance of the GDMT ZF equalizer was evaluated through
simulation of a GDMT transceiver in Matlab for a lowpass channel
of lengthLc = 14 with impulse response

c(n) =
sin(.55π(n− 4))

4.17n
, n = 0, . . . , 13. (18)

The GI was varied from 0 toLc−1 (traditional DMT), and AWGN
channel noiseσ2

r with different variances was applied. Each used
subcarrier was assigned the transmit powerM

N
σ2

u such that the to-
tal transmit power remained constant independently ofN . The
bitrate per used subcarrier was then calculated according to (1)
assuming a SNR gapΓ of 0 dB. The SNR at the output of a
used subcarrier was calculated using (16). An iterative strategy
was applied to assign used subcarriers to the carrier selection ma-
trix S1: starting with just one used subcarrier in the index range
k = 1, . . . , M/2 − 1 (assuming that no data can be transmitted
at dc (k = 0) and the Nyquist frequency (k = M/2) and that the
rangek = M/2 + 1, . . . , M − 1 is reserved for complex conju-
gate data) the optimal position is found. Then the next subcarrier
and its complex conjugate copy is added the same way, until the
number of used subcarriers reachesM − (Lc −L− 1). Although
this strategy does not guarantee optimality, simulation results have
shown that forL = Lc−2 it produces the same results as applying
(13) directly. Denoting the sampling rate at the transmitter output
fs = 1/T , the bitrate is calculated as:

bitrate=
fs

M + L

M/2−1X
k=1

bk (19)

This approximation neglects the fact thatbk can only take inte-
ger values. Figure 3 shows the bitrate normalized by the sampling
period forM = 32. For a small number of used subcarriers, the
higher bandwidth efficiency when using a small GI is contributing
more than the noise enhancement that increases with decreasing
L. The weights of both contributions change when increasing the
number of used subcarriers and then results in higher bitrates for
longer GI’s. The lower the additive channel noise, the further this
point is moved towards higher numbers of used subcarriers.
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Fig. 4 shows the normalized bitrate over the transceiver la-
tency time that is proportional toM + L for M = 32 and64 and
L = 0 to 13. For each value ofL, the number of used subcarriers
that resulted in the highest data rate was selected. GDMT allows
to reduce the latency time at a moderate loss of data rate.
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