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ABSTRACT

In this paper, we propose an approach to linear minimum-mean-
square-error (MMSE) prediction of a discrete-time fractional
Brownian motion (dt-fBm) traffic arrival process, a long range
dependent traffic model that well represents the characteristics
of observed Internet traces. Linear multi-step forecasts of the
future values of the dt-fBm process and the corresponding
prediction errors are first derived. We then proposed sliding
window finite-memory predictors suitable for the practical
implementation. Simulations using real-life traffic traces are
performed to compare the proposed finite-memory dt-fBm
predictors with fractional auto-regressive integrated moving
average predictors and an empirical predictor. We find that the
multi-scale dliding window dt-fBm predictor achieves best
performance on forecasting the future traffic level.

1. INTRODUCTION

The seminal study of Leland, Tagqu, Willinger, and Wilson [1]
pointed out the failure of the Poisson processes in modeling the
traffic in modern data networks and the long-range dependent
(and self-similar) nature of that traffic. Since then, long-range
dependence and self-similarity have been reported in various
types of data traffic: LAN [1,2], WAN [3,4], VBR video [5],
SS7 control [6], WWW [7], and most recently Internet backbone
[8]. In particular, Yao [8] reported the fitness of the fractional
Brownian motion (fBm) to the Internet backbone traces.

It is generally believed that the long-range dependence is a
bad news for network engineering since it introduces high
variability into the traffic arrival process: periods of sustainable
low and high traffic arrival rates. It could result in large delay
variation and delay even at low average link utilization.
However, it could aso be good news for network engineering
since the prediction-based traffic control can be implemented.

Tuan and Park [9] utilized the predicted traffic level to
modulate the linear increase/exponential decrease rate
adaptation used by TCP congestion control. Yao [8] proposed
the prediction-based random early detection. They all reported
encouraging results of improved TCP throughput and reduced
average delay.

The optimal predictor for the long-range dependent (LRD)
traffic is an essential component of the prediction-based traffic
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control. Tuan and Park [9] proposed a heuristic predictor based
on the conditional expectation of the future traffic level. The
optimal predictor for the fractional auto-regressive integrated
moving average (FARIMA(p,d,q)) model has been well studied
[10]. However, for fBm, only a continuous-time predictor has
been proposed by Gripenberg and Norros [11], which utilizes
double integrals and is typically difficult to implement. This
paper proposes an asymptotic linear minimum-mean-square-
error (MMSE) predictor for the discrete-time fBm (dt-fBm)
model.

The rest of the paper is organized as follows: Section 2
describes the asymptotic MMSE dt-fBm predictor; Section 3
discusses finite-length dt-fBm predictors for practical
implementation; Section 4 compares the rel ative performance of
various LRD predictors;, Section 5 finaly makes the
conclusions.

2. OPTIMAL DT-FBM PREDICTOR
We first define the discrete-time fBm model.

Definition 2.1: Let a random processZ, , nOZ, have the
following properties:
1) Z, has stationary increments;
2) Zo=0,and EZ_, =0 for dl n;
3)EZZ =c, (nA)2H , Where ¢, >0 isa constant depending
on the sampling period A ;
4)Z, is Gaussian, i.e. dl its finite-dimensional marginal
distributions are Gaussian.
Then the process Z,, nOZ, is a discrete-time fBm process
with time-scale A . |

It is easy to prove that Z,, , nOZ, is second-order self-similar
with the Hurst parameter H. c, accounts to the fact that the

self-similarity in real Internet traffic may vary with the
timescale and therefore the variance coefficient as defined by
Norros [12] for fBm model may also be different at different
timescales. For example, it has been observed in [8] that at high
traffic arrival rate, there is aso self-similarity at small
timescales (<100ms), but the correlation structure of small
timescales is different from that of large timescal es (>100ms).

ICASSP 2003




The classical prediction results for Gaussian process can
not be applied directly to dt-fBm because it does not satisfy the

following assumptions: Z,, =37 be, and X7 aZ;,., =&,
with absolutely summable {b}, where a and b; are constants,
and & are i.i.d Gaussian random variables. However, dt-fBm
has an important property as given in Theorem 2.1 [8], on
which the optimal dt-fBm predictor can be constructed.

Theorem 2.1: If Z,, isadt-fBm process,
0, m=1

def m-1

M =
m Zama.i [ﬂzm - Z(i—l)A]' m=23...

i=1

2.1)

def .. 1
=
where a,,; = [ 7

1 1
(iimuz H(mA—u)2 Hdu, is a martingale having
2

independent incrementswhen m — oo . u

The weighted sum of Gaussian random variables,
X, =Y he hasthe same distribution as M, , where & are
i.i.d Gaussian random variables with mean 0 and variance A
and b = ciaf™ —[[ -1 /a . Although {b} are not
absolutely summable, { b*}, a>4/ (2H —1) , are summable.

We define the optimal dt-fBm predictor as the one that
minimizes the h-step prediction error E{(Z, s — imm)z €},

def
where & =(Z,,--Z,) and h=1. According to the definition
of M, , n= 2, thefollowing relationships exist:

M,—-M (-9a = A na (Z(n—l)A - Z(n—z)A)

n-2

+Z(anA,i ECE )(Zm _Z(i—l)A) (22
=1
def N+l
Z,~ Z(n—l)A = mel,i (M in M(i—l)A) (23
i=2
Let
a'ZA,l' 0 0
,%di ) _EaZA,l' ag?,zf O
An1 T n-darr Bz T@nanzr 7 @
and
b,,, 0 - 0
def b3 , b3 ,
B 0

bn,2’ bn,3’ bn,n
SinceB, (A, (Z =7, where Z=(Z, = Zy,*,Zjpo = Zinaja) -
{b,} are entries of A;*. Since a,,, >0, we have b, >0.

Also since Ax is atriangular matrix, A" existsfor n<oo

Thus, the optimal dt-fBm predictor can be obtained by
directly computing E{Z,,.), [} using (2.3) and Theorem 2.1.

Theresults are given in Theorem 2.2 [8].

Theorem 2.2: The h-step (h=1) asymptotic MM SE predictor
of dt-fBm can be represented as

n+l h
Z[mem,i J(M ia _M(i—l)A)+ZnA asn- . (24)
=2 \ =1

The corresponding MSE is

E{(mem - ZA<n+h)A)2 <rn} =

$( g fess 7 e

i=n+2\_j=i-n-1
In particular, the one step dt-fBm predictor and its MSE are
respectively,

Z(n+h)A

i(n+l)A = Zb (Mm - M(i—l)A)"'ZnA ;88N -, (2.6)

E{(Z(mm ~Zipus )2 S } =

Ci(bn+2,n+2)2l(n + 2)2—2H _ (n + 1)2—2H JAz—zH _ 2.7)

|
Foreach hOZ, ,{bmh'i} can be obtained by solving the
following equations
bn+h+1,n+h+l 1
A bn+h+1,n+h+1 ._ bn+h+1,n+h — O (2.8)
bn+h+l,3 - bn+h+1,2 0
where
Qninsnanth 0 0
A= a(n+h+1).A,n+h—1' - a(mh?a,mh—l' . :
0
a(n+h+l)A,l' - a(n+h)A,1' T T gy

Figure 1 shows the normalized error variance,
Var(Z s = Zaa) EQ(Zpas = Zw)?} . of the one step

predictor as a function of H. The performance of the dt-fBm
predictor is close to that of the continuous time fBm predictor
derived by Gripenberg and Norros [11].

Normalized Error Variance
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Figure 1: Normalized Error Variance vs. H (n=10000 and
A=0.01)
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3. FINITE-LENGTH DT-FBM PREDICTORS

The ideal dt-fBm predictor uses all the previous history to make
prediction. However, in reality storage capacity is finite. It is
impossible to keep on tracking the infinite history. This section
discusses several methods for implementing finite length dt-
fBm predictor.

The finite length prediction system can be created using
sliding window (SW). In addition, we can use N latest
increments at the same time scale, i.e. A, or aternatively at
multiple time scales i.e.Aj (=mA,m0Oz,). We cdl the

former, single-scale (SS) scheme, and the latter, multi-scale
(MS) scheme.

Let n; (1< j <M ) denote the number of stored increments
at the j-th time scale, where M is the total number of time
scdes and 3" n =N. The MS scheme keeps consecutive

increments at severa different time scales, and typically uses
larger time scale to track older data, which allows it to track
much longer history of the time series than the SS scheme with
the same number of stored increments. The motivation for
using larger time scale to track older data is the slow decaying
of the coefficients {b,,,.,;} a smaller j (See Figure 2 for an
example of by.2j as a function of j). We assume m..>m and
my=1.

Let dus and dss denote the overall duration covered by MS
and SS schemes, respectively. We have d,s=> " nmA and
des = NA.

The single-scale sliding window (SSSW) predictor keeps on
tracking the latest w increments at the same time scale, where w
is the window size. The h-step SSSW predictor can be obtained
from (2.4) with n set to w. With the varying time scale for
different increments, the multi-scale sliding window (MSSW)
predictor is more complex. We describe its details in the rest of
the section.

Let  N,=>"n, t,=>"nA;, wherel<psM,
N,=0,t,=0,and

d = o (' N, A, Np_1<iSNp
i t+( N)A, N <i :

=1

(3.1)

b

n+2,j
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Figure 2: bns2j vs. j (n=100)

We have

i-1
M =)> a, X forl<i<N, (3.2
; N |
where X is the |-th increment at time-scale q for Nq_1 <|< Nq,
and
d qu
1, 1,
3, = J- u? (di —u)z du. (3.3)
Aq

dj —
! 2

Then the h-step predictor becomes
N +1 h
ZdN +hA = Z[ZbNﬂﬂ,ij(Mi - Mi—1)+ ZdN . (3'4)
i=2 \_ j=1
For each j (j=1), by,,,,can be obtained by solving the
following equations:

bN+j+1,N+j+1 1
bN+j+1,N+j+1 _bN+j+1,N+j _ 0
A\/IS : RN (35)
bN+j+1,3 _bN+j+1,2 0
where
adN+j+1vN+J" 0 0
_ adN+j+1vN+J"1’ _adN+ij+J"1’ K :
A\ns - : : . 0
adN+j+1v1’ _adN+jv1’ _adzvl

4. SSIMULATION RESULTS

The performance of the fARIMA, dt-fBm and empirical
predictors for LRD traffic is tested on several collected Internet
traces. The traces were collected on an Internet backbone link
(OC-48) using a monitoring device attached by an optical
splitter. Packet timestamps have the granularity of 12.5ns.
Detailed descriptions of the traces can be found in [8].

The duration of the traces ranges from 511 to 1352 seconds.
We compute the time series of aggregate traffic within non-
overlapped 10ms time intervals. The resulted time series are
further divided into smaller time series each with a length of
2000. For each smaller time series, the multi-step forecasts up
to h=8 steps given by each predictor are eval uated.

The empirical (EMP) predictor is implemented according
to [9]. The Typel (FARIMAT1) and Typell (FARIMAT2)
fARIMA predictors are implemented according to [10].
FARIMAL uses a truncation length of 100 while the optimal
truncation length in FARIMAT? is determined by the Akaike
information criterion). FARIMAT2 is constructed based on
fARIMA(1,d,1) where d is estimated using the Whittle's
estimator.

For dt-fBm predictors, the following configurations are
used in simulations:

- The SSSW predictor uses a window size of 100;
- The MSSW predictor uses three time scales (4A,2A,A) and the
corresponding number of increments are (25,25,50).
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Figure 3: Normalized Error Variance of SSSWand MSSW
Predictors

Normalized Error Variance

Figure 4: Normalized Error Variance of EMP, FARIMAT1,
FARIMAT2 and MSSW Predictors

Note that the optimal selection of the multiple time scales and
the number of increments at each time scale needs further
research.

Figure 3 shows a typical example of the normalized error
variance of the two dt-fBm predictors with respect to the
increment of the traffic arrival process

E{(Ana)e = Anea)H E{(Ann —Aw)’} . in which the tested
time series has a Hurst parameter H=0.868. It turns out that the
MSSW predictor has better performance than the SSSW
predictor for multi-step forecasts. Figure 4 shows the
normalized error variance of the EMP, FARIMAT1, FARIMAT2
and MSSW predictors for the same time series as used in Figure
4. As shown in the figure, the MSSW predictor also has better
performance than other classical LRD predictors.

5. CONCLUSIONS

This paper derives an asymptotically optimal multi-step
predictor for a special model of long range dependent traffic,
discrete-time fractional Brownian motion (dt-fBm). The ideal
predictor has infinite length. For the purpose of practical
implementation, two types of finite-length dt-fBm predictor, i.e.
the single-scale sliding window (SSSW) predictor and the multi-
scale dliding window (MSSW) predictor, have been proposed as
approximations to the optimal predictor. Simulations have been

performed to compare the relative performance of different
types of dt-fBm predictor and other predictors, i.e.,, empirical
(EMP), Type | fARIMA (FARIMAT1) and Type Il fARIMA
(FARIMAT?) predictors. Simulation results show that MSSWis
not only the better dt-fBm predictor but also more accurate than
all other classical LRD predictors.
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