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ABSTRACT

This paper presents a study on the end-to-end performance of dual-
hop wireless communication systems equipped with non-regenerative
fixed gain relays and operating over flat Rayleigh fading channels.
More specifically, it first derives generic closed-form expressions
for the outage probability and the average probability of error when
the relays have arbitrary fixed gains. It then proposes a specific
fixed gain relay that benefits from the knowledge of the first hop’s
average fading power and compares its performance with previ-
ously proposed relay gains that in contrast require knowledge of
the instantaneous channel state information of the first hop. Fi-
nally, the paper investigates the effect of the relay saturation on the
performance of the systems under consideration. Numerical results
show that non-regenerative systems with fixed gain relays have a
comparable performance to non-regenerative systems with variable
gain relays. These results also show that relay saturation of these
systems results in a minimal loss in performance.

1. INTRODUCTION

Dual-hop transmission is a technique by which the channel from
the source to the destination is split into two, possibly shorter,
links using a relay. This scenario was originally encountered in
bent-pipe satellites where the primary function of the spacecraft
is to relay the uplink carrier into a downlink [1]. It is also com-
mon in various fixed microwave links to enable greater coverage
without the need of large power at the transmitter. More recently,
this concept has gained new actuality in the context of collabora-
tive/cooperative wireless communication systems [2]-[7]. In this
case, the key idea is that a mobile terminal relays a signal between
the base station and a nearby mobile terminal when the direct link
between the base station and the original mobile terminal is in deep
fade. As a result, similar to the scenarios described above, signals
from the source to the destination propagate through two hops/links
in series.

Depending on the nature and complexity of the relays, dual-
hop transmission systems can be classified into two main cate-
gories, namely, regenerative or non-regenerative systems. In re-
generative systems, the relay fully decodes the signal that went
through the first hop and retransmits the decoded version into the
second hop. This is also referred to as decode-and-forward [3] or
digital [5] relaying. On the other hand, non-regenerative systems
use less complex relays that just amplify and forward the incoming
signal without performing any sort of decoding. That is why it is
sometimes referred to as amplify-and-forward [3] or analog [5] re-
laying. As a further categorization, relays in non-regenerative sys-
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tems can in their turn be classified into two subcategories, namely,
(i) channel state information (CSI)-assisted relays and (ii) “blind”
relays. Non-regenerative systems with CSI-assisted relays use in-
stantaneous CSI of the first hop to control the gain introduced by
the relay and as a result fix the power of the retransmitted signal.
In contrast, systems with “blind” relays do not need instantaneous
CSI of the first hop at the relay but rather employ at these relays
amplifiers with a fixed gain and consequently result in a signal with
variable power at the relay output. Although systems with such
kind of blind relays are not expected to perform as well as systems
equipped with CSI-assisted relays, their low complexity and ease
of deployment (together with their comparable performance as we
will show later in this paper), make them attractive from a practical
standpoint. While the exact end-to-end performance of systems
employing CSI-assisted relays was extensively studied and com-
pared with that of regenerative systems in [6, 7, 8, 9], the perfor-
mance of non-regenerative systems with blind relays has not been
investigated so far. In this paper, we look into this problem and fo-
cus on the case in which the two hops experience independent not
necessarily identically distributed Rayleigh fading.

The remainder of this paper is organized as follows. Next sec-
tion introduces the system and channel models under considera-
tion. Section 3 presents closed-form expressions for the outage
probability and average probability of error of these systems. Sec-
tion 4 proposes a specific “semi-blind” relay and studies its per-
formance. Finally, section 5 addresses a practical implementation
issue related to the effect of saturation on the performance of sys-
tems with semi-blind relays.

2. SYSTEM AND CHANNEL MODELS

Consider the wireless communication system shown in Fig. 1. Here,
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Fig. 1. A wireless communication system where terminal B is re-
laying the signal from terminal A to terminal C.

terminal A is communicating with terminal C through terminal B
which acts as a relay. Assume that terminal A is transmitting a sig-
nal s(t) which has an average power of E1. The received signal at
terminal B can be written as

rb(t) = α1s(t) + n1(t), (1)
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where α1 is the fading amplitude of the channel between terminals
A and B, and n1(t) is an additive white Gaussian noise (AWGN)
signal with a power of N01 . The received signal is then multiplied
by the gain of the relay at terminal B, G, and then retransmitted to
terminal C. The received signal at terminal C can be written as

rc(t) = α2G(α1s(t) + n1(t)) + n2(t), (2)

where α2 is the fading amplitude of the channel between terminals
B and C, and n2(t) is an AWGN signal with power N02 . The
overall signal-to-noise ratio (SNR) at the receiving end can then be
written as

γeq =

E1α2
1

N01

α2
2

N02

α2
2

N02
+ 1

G2N01

. (3)

It is clear from (3) that the choice of the relay gain defines the
equivalent end-to-end SNR of the two hops. In case of available
instantaneous CSI at B, a gain of

G2 =
E2

E1α2
1 + N01

, (4)

where E2 is the power of the transmitted signal at the output of the
relay, was proposed in [3]. The choice of this gain aims to invert
the fading effect of the first channel while limiting the output power
of the relay if the fading amplitude of the first hop, α1, is low.
However, this CSI-assisted relay requires a continuous estimate of
the channel fading amplitude which may make this choice of gain
not always feasible from a practical point of view. Substituting (4)
in (3) leads to γeq1 given by

γeq1 =
γ1γ2

γ1 + γ2 + 1
, (5)

where γi = Eiα
2
i /N0i , (i = 1, 2) is the per hop SNR. The per-

formance of systems employing such relays over Rayleigh fading
channels was first studied in [3] and then in [6, 7]. In addition,
[8, 9] presented tight lower bounds on the performance of all CSI-
assisted relays for Rayleigh and Nakagami fading channel, respec-
tively.

In this paper, we are interested in studying the performance
of the other class of non-regenerative systems, namely, those with
blind relays. These relays introduce fixed gains to the received
signal regardless of the fading amplitude on the first hop. Let C =
E2/(G2N01), then

γeq2 =
γ1γ2

C + γ2
, (6)

where C is a constant for a fixed G. The two hops are assumed
to be subject to independent not necessarily identically distributed
Rayleigh fading. Hence, γ1 and γ2 are exponentially distributed
with parameters γ1 = E1Ω1/N01 and γ2 = E2Ω2/N02 respec-
tively, where Ωi = α2

i (i = 1, 2) is the average fading power on
the ith hop. In the following section, we present generic formulas,
in terms of C, for the outage probability and average probability
of error of systems equipped with blind relays. Later, we focus on
a specific relay gain and compare its performance to the one pro-
posed in [3] and studied in [3, 6, 7]. In what follows we refer to
γeq2

as simply γeq.

3. PERFORMANCE ANALYSIS

3.1. Outage Probability

In noise limited systems, outage probability is defined as the prob-
ability that the instantaneous equivalent SNR, γeq, falls below a

predetermined protection ratio, γth. Consequently, outage proba-
bility is given by

Pout = P [γeq < γth] = P

[

γ1γ2

γ2 + C
< γth

]

, (7)

which can be calculated as

Pout =

∫

∞

0

P

[

γ1γ2

γ2 + C
< γth|γ2

]

pγ2(γ2) dγ2

=

∫

∞

0

1

γ2

[

1 − e
−

γth
γ1

(

1+ C
γ

)
]

e
−

γ

γ2 dγ

= 1 −
1

γ2

e
−

γth
γ1

∫

∞

0

e
−

γthC

γ1γ
−

γ

γ2 dγ. (8)

The integration in (8) is evaluated using [10, Eq. (3.324.1)] to yield

Pout = 1 − 2

√

Cγth

γ1γ2

e
−

(

γth
γ1

)

K1

(

2

√

Cγth

γ1γ2

)

, (9)

where K1(·) is the first order modified Bessel function of the sec-
ond kind defined in [11, Eq. (9.6.22)].

3.2. Average Probability of Error

In order to get the moment generating function (MGF) of γeq,
Mγeq(s) = E(e−sγeq), where E(·) denote the statistical aver-
age operator, we need first to get the probability density function
(PDF) of γeq. This PDF can be found by taking the derivative of
(9) with respect to γth, yielding

pγ(γ) =
2

γ1

e
−

(

−γ

γ1

)
[√

Cγ

γ1γ2

K1

(

2

√

Cγ

γ1γ2

)

+
C

γ2

K0

(

2

√

Cγ

γ1γ2

)]

, (10)

where K0(·) is the zero order modified Bessel function of the sec-
ond kind defined in [11, Eq. (9.6.21)] and where we used the ex-
pression for the derivative of the Bessel function, given in [10, Eq.
(8.486.12)] to get the desired result in (10). The MGF of γeq can
now be calculated as

Mγeq(s) =

∫

∞

0

2

γ1

e
−

(

−γ

γ1

)
[√

Cγ

γ1γ2

K1

(

2

√

Cγ

γ1γ2

)

+
C

γ2

K0

(

2

√

Cγ

γ1γ2

)]

e−sγdγ. (11)

The integral in (11) can be evaluated with the help of [10, Eq.
(6.643.3)] yielding an expression in terms of the Whittaker func-
tion which can be further simplified using identities [11, Eqs. (13.1.33),
(13.6.28), (13.6.30)] and finally identity [10, Eq. (6.5.19)] to yield
the compact closed-form expression

Mγeq(s) =
1

(γ1s + 1)
+

Cγ1se

(

C
γ2(γ1s+1)

)

γ2(γ1s + 1)2
E1

(

C

γ2(γ1s + 1)

)

,

(12)
where E1(·) is the exponential integral function defined in [11, Eq.
(5.1.1)].

Having the MGF of γeq in closed form as given in (12) and
using the MGF-based approach for the performance evaluation of
digital modulations over fading channels [12] allows to obtain the
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average bit and symbol error rate for a wide variety of M -ary mod-
ulations (such as M -ary phase shift keying (M -PSK), M -ary dif-
ferential phase shift keying (M -DPSK), and M -ary quadrature am-
plitude modulation (M -QAM)). For example, the average bit error
rate (BER) of binary differential phase-shift keying (DPSK) is well
known to be given by Pb(E) = 1

2
Mγeq(1).

4. SYSTEMS WITH SEMI-BLIND RELAYS

The performance analysis presented in the previous section applies
to blind relays with arbitrary fixed gains. In this section, we still
consider fixed gain relays and we still assume that these relays do
not have access to instantaneous CSI of the first hop. However,
we assume that they have statistical CSI about the first hop and
have in particular knowledge of the average fading power Ω1 which
changes slowly (relative to α1) and as such does not imply contin-
uous monitoring of the channel (as it is the case in CSI-assisted
relays). We call these relays “semi-blind” and we study in what
follows their performance in comparison with that of CSI-assisted
relays [3] as per (4).

The relay gain in the semi-blind scenario is chosen such as

G2 = E

[

E2

E1α2
1 + N01

]

. (13)

This way, both relays in (4) and (13) consume the same power on
average. For Rayleigh fading, G2 in (13) can be shown to be given
by

G2 =
E2

E1Ω1
e

1
γ1 E1(

1

γ1

). (14)

Consequently, C is given by

C =
γ1

e
1

γ1 E1(
1

γ1
)
, (15)

which when substituted back in (6) results in an equivalent end-to-
end SNR of

γeq =
γ1γ2

γ2 +
γ1

e

1
γ1 E1( 1

γ1
)

. (16)

Fig. 2 compares the outage probability performance of a dual-hop
non-regenerative system employing a fixed gain relay as per (14)
with that of an equivalent (in terms of average power consumption)
system with a relay as per (4), whose exact performance was de-
rived in [6]. The figure also plots, as a benchmark, the performance
of the more complex regenerative systems studied in [8]. For the
medium to large average SNR region, systems with variable gain
relays (4) outperform those with fixed gain relays (14). However,
the surprising and interesting result is that the gap in performance
is not as much as one would expect in comparison with the differ-
ence in implementation and complexity of both relays. Note also
that systems with fixed gain relays can even slightly outperform
systems with variable gain relays at low average SNR. This is due
to the fact that the variable gain relay has a gain floor of E2/N0

when α1 is too small, which is a relatively frequent event in the
low average SNR region. Finally, note that as γth is increased,
the range of average SNR in which fixed gain relays outperform
variable gain relays extends to the right. Fig. 3 illustrates a similar
comparison but from the average BER of DPSK perspective, where
the performance results for variable gain relays were given in [7].
It is clear again that the gap in performance is very small for all
ranges of average SNR.

5. EFFECT OF RELAY SATURATION

Up to this point, we assumed that the relay under study ampli-
fies the signal by multiplying it with a fixed gain, regardless of the
magnitude of the input signal. Obviously, under this mode of oper-
ation, if the first hop is only slightly faded then the relay amplifier
may go into saturation. Although this problem may not be an is-
sue when relaying is used over severely faded first hops, the loss
in performance due to saturation has to be quantified especially in
the context of cooperative/collaborative diversity where per design
first hops are often picked such as good channel conditions exist
between the transmitter and the relay. As such, assume that the re-
lay has a maximum output power of KE2. Hence, a fixed gain as
per (13) can be used as long as

G2(E1α
2
1 + N01) ≤ KE2. (17)

If the fading conditions of the first hop are such as (17) is violated,
the output power is clipped at KE2, and as a result the relay reduces
its gain. Mathematically speaking, this is equivalent to using, when
(17) is violated, the relay gain (4) with a fixed output power of
KE2. It is straightforward to transform the constraint (17) into a
threshold on the SNR of the first hop above which clipping takes
place. Consequently, the modified relay gain Gs is given by

G2
s =

{

E2
E1Ω1

e
1

γ1 E1

(

1
γ1

)

γ1 < T
E2

E1α2
1
+N0

γ1 > T
(18)

where the SNR threshold T is given by

T =
Kγ1

e
1

γ1 E1

(

1
γ1

) − 1, (19)

and the resulting equivalent SNR can be shown to be given by

γeq =











γ1γ2

γ2+
γ1

e

1
γ1 E1

(

1
γ1

)

γ1 < T

Kγ1γ2
γ1+Kγ2+1

γ1 > T

(20)

Using this definition for the equivalent SNR, and assuming that
γth < T , the outage probability can be calculated in a similar
fashion to (8) yielding

Pout = 1 −
1

γ1

e
−

γth
γ1

∫

T −γth

0

e
−

γthC

γ2γ
−

γ

γ1 dγ

−
1

γ1

e
−

γth
Kγ2

−
γth
γ1

∫

∞

T −γth

e
−

γth(γth+1)

Kγ2γ
−

γ

γ1 dγ. (21)

As a double check, it is clear that (21) reduces to (9) when the
threshold T goes to infinity, where outage probability in that case
can be evaluated in closed-form as per (9). One point to note here
is that with the gain definition in (18), the overall average power
consumed is less than that using (14) since less power is used dur-
ing clipping. In order to have a fair comparison and investigation
on the effect of saturation, the average power consumption for the
equivalent gain in (18) has to be found in terms of the parameter
K, and then this value can be used to set up an equivalent fixed
gain relay. The average of (18) can be shown to be given by

E

(

G2
s

)

=
E2e

1
γ1

E1Ω1



E1

(

1

γ1

)

[

1 − e
−

T

γ1

]

+E1





K

e
1

γ1 E1

(

1
γ1

)







 ,

(22)
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which when equated to the average power consumption of the relay
in (14) results in a transcendental equation in K given by

E1

(

1

γ1

)

e

−

(

K

e

1
γ1 E1

(

1
γ1

)

−
1

γ1

)

= E1





K

e
1

γ1 E1

(

1
γ1

)



 .

(23)
Now the values of K resulting from solving (23) are used to con-
struct an equivalent fixed gain relay with a gain given by

G2 =
KE2

E1Ω1
e

1
γ1 E1

(

1

γ1

)

, (24)

where K is solution of (23) and as such is different for different
values of γ1.

Fig. 4 compares the outage probability of a “practical” relay
which uses clipping with an equivalent fixed gain relay. It is clear
from the figure that the loss in performance is not only minimal but
is also affecting only the low average SNR ranges. This is due to
the fact that the proposed semi blind relay has a larger gain (relative
to γ1) in these ranges and this makes clipping a more probable
event.
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Fig. 2. Outage probability of a dual-hop system for different relay
configurations.
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Fig. 4. Effect of relay saturation on the performance of non-
regenerative systems with fixed gain relays, γth = 0 dB.
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