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ABSTRACT

This paper addresses the problem of the spatial scheduling of users
in a cell for simultaneous downlink transmission from a Base Sta-
tion (BS) having multiple antennas under a perspective of joint
Physical and Medium Access Control (PHY-MAC) design. First of
all, we compute the transmit beamvectors for each group according
to a Zero Forcing (ZF) criterion, which gives a simple closed-form
solution. We show first that it is equivalent to the minimization of
the maximum Bit Error Rate (BER). In this paper, the main con-
tribution lies on the resolution of the NP-complete combinatorial
problem that comes up as cost function if we want to minimize the
total transmit power. The solution of the NP-complete problem is
performed by the stochastic technique Simulated Annealing (SA).
Additionally, we present two heuristic algorithms that may enable
a real-time implementation of this scheduling approach.

1. INTRODUCTION

Multiple Element Antenna systems may provide a large increase in
capacity for future wireless communications standards. However,
in realistic scenarios and systems, the number of antennas might
be limited by the high cost of the RF front-ends. Therefore, we
focus on the use of a small set of antennas at the BS, or at the
Access Point (AP) in Wireless Local Area Networks (WLANs).

In this paper, we address mainly the problem of clustering a set
of users for simultaneous transmission in the downlink of a TDMA
system. We assume that the BS has to allocate the K users in the
cell in groups of Q, which is the number of transmit antennas.
After solving this combinatorial problem, G groups are formed
and the scheduler at the BS will choose how to allocate them in
different time slots, but this is out of the scope of this paper.

To begin with, we have to choose a transmit beamforming de-
sign. Optimal downlink beamforming is addressed in [1] or in
[2]. In the former, the transmit power is minimized while assur-
ing a certain Signal to Interference and Noise Ratio (SINR) at the
receivers. However, this kind of techniques are difficult to imple-
ment on a real system. As practical issues play an important role,
we have selected the minimization of the transmit power subject
to a ZF criterion. This criterion is suboptimal, but the key point is
that it provides a simple closed-form solution and guarantees that
there is no interference among users belonging to the same group.
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nological Center of Catalonia (CTTC), by the Spanish government FIT-
070000-2000-649 (Medea+ A105 UniLan), TIC99-0849 and the Integrated
Action HF2001-0055 and by the Catalan government thanks to grants
2001SGR 00268, 2003FI 00190 and 2001FI 00714.

As reported in [3], the performance of a Spatial Division Mul-
tiple Access (SDMA) system is better when each antenna at the BS
is assigned to a user rather than using all the antennas for transmis-
sion to a single user. On the other hand, several papers in the liter-
ature have dealt with the problem of spatial scheduling, but they do
not take into account the spatial signature of the users. Therefore,
the overall efficiency of the system is reduced because co-linear
spatial signatures may be allocated in the same group. In this pa-
per, the spatial signatures of the users are taken into account in the
optimal group assignment for the scheduling.

In [4], the authors maximize the capacity of a SDMA/TDMA
system. As in our work, their problem also resides on the best
combination of users that optimizes a certain criterion, in their case
the maximization of capacity. They propose a solution based on
graph-theory, which is a NP-complete problem, so they point out
the need for efficient heuristic algorithms.

In our paper, instead of the maximization of the capacity, we
have chosen the minimization of transmit power as a cost function.
In fact, we vote for a realistic physical parameter that yields to a
reduction in the power consumption and that can be easily used
in higher layers. On the other hand, we are taking into consider-
ation a spatio-temporal scheduler that could be developed in real
time, so exhaustive search methods or the solution in [4] based on
graph-theory have been disregarded. Firstly, we implement SA,
which obtains good near-optimal solutions with reasonable com-
puting time. In fact, simulations have shown to obtain the opti-
mum when the number of users is low. As a main contribution, we
propose simple heuristic solutions that may enable the real-time
operation of the scheduler with only a slight power degradation.

This paper is organized as follows. First, in Section 2 we de-
scribe our problem and find the global cost function to be min-
imized, together with the above-mentioned equivalence. Then,
Section 3 deals with the proposed solutions to the problem, i.e. SA
and the heuristic algorithms. After that, we give some simulations
results in Section 4 and the conclusions.

2. PROBLEM STATEMENT

In the following, boldface capital (lowercase) letters refer to matri-
ces (vectors). The operator (·)∗ denotes conjugation, (·)T transpo-
sition, and (·)H = ((·)∗)T . The element at row ith and column jth
of matrix A is denoted by [A]

ij
. We consider the downlink of a

communications system, where the BS is provided with Q transmit
antennas, although the notation and solutions presented henceforth
can be directly applied to the uplink. Let K ≥ Q be the number of
active users in the cell, each having a single antenna. The users are
then distributed into G = dK/Qe groups. Each group is sched-
uled for transmission in a different time slot, whereas the Q users
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in one group are served simultaneously by a SDMA scheme, i.e. a
different beamformer for each user.

Motivated within the context of Orthogonal Frequency Divi-
son Multiplexing (OFDM) systems, such as WLANs1, the channel
is assumed flat fading. In those systems, the frequency-selective
channel in the time domain is converted into a flat fading channel
at each of the useful subcarriers, see [5] for details.

Our problem is the minimization of the total transmit power,
subject to a ZF design criterion for each group. ZF implies that at
group g, 1 ≤ g ≤ G, there is no interference among users and the
same signal level is achieved for all of them. Let us first consider
the signal model for this MISO link2. The received signal vector
for the group at time instant n is y(n):

y(n) =

Q
∑

k=1

Hbksk(n) ∈ C
Q×1, (1)

where bk is the transmit beamvector for the kth user and H is the
Q×Q complex flat-fading channel matrix, the ith row (1 ≤ i ≤ Q)
of which contains the 1×Q vector of the channel gains for the ith
user, i.e. hi. At position k, 1 ≤ k ≤ Q, of vector y(n) we find
the received signal for the user kth. The transmitted symbols have
unitary mean energy E

{

|sk(n)|2
}

= 1.
As stated before, for each user we want to minimize the power

of the beamvector according to a ZF criterion:

min b
H
k bk s.t. Hbk = 1k, (2)

where the vector 1k is 1 at position kth and 0 elsewhere. It is
straightforward to obtain the solution to this problem:

bk = H
H

(

HH
H

)−1

1k ∈ C
Q×1. (3)

Applying an eigenvector decomposition to the hermitian ma-
trix HHH = UΣUH 3 , it is easy to verify that the power from
the kth transmit beamvector reduces to:

‖bk‖
2 =

Q
∑

m=1

1

λm

∣

∣

∣
1

H
k um

∣

∣

∣

2

, (4)

where λm is the mth eigenvalue of matrix HHH and um is the
normalized eigenvector associated with that eigenvalue (the mth
column of matrix U). If we sum up the powers of the beamvectors
for the Q users in group, the total power can be expressed as:

Q
∑

k=1

‖bk‖
2 =

Q
∑

m=1

1

λm

= trace

[

(

HH
H

)−1
]

. (5)

Inserting the index g denoting the group, the total transmit power
Pt added up over all the groups is finally expressed as:

Pt =

G
∑

g=1

trace

[

(

H(g)H(g)H
)−1

]

. (6)

In order to minimize the global transmit power Pt in Eq. (6),
we have to find the best distribution of the users in groups (among
all alternatives). Indeed, this is a combinatorial problem. As it
will be stated, the global transmit power may vary substantially
depending on how the users are grouped together.

1The main current standards are Hiperlan/2 and IEEE 802.11a.
2Strictly speaking, we should also add the group index g. But for sim-

plicity, this is omitted until Eq. (6).
3
Σ is the diagonal matrix of the positive eigenvalues and the columns

of the unitary matrix U contain the eigenvectors associated to them.
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Fig. 1. System configuration: a BS with Q antennas aiming to
transmit simultaneously to groups of Q users (mobile terminals).

2.1. Equivalent problem

We show here that the solution to Eq. (6) is equivalent to the min-
imization of the maximum BER of all users and groups. First,
recall that an additional parameter αk can be inserted in Eq. (2),
which denotes the desired signal power at the receiver4. With this
approach, the optimum solution is that minimizing the global BER
of all the users in the cell, e.g. if the symbols are BPSK and there
is no interference among users in the same group5,

min

G
∑

g=1

Q
∑

k=1

Q
(

√

2 · SNRk,g

)

, (7)

where SNRk,g =
|αk,g |2

σ2 , being σ2 the noise power, is the SNR
of user kth in group g. This is equivalent to the minimization of
the 1-norm of the BERs for all users in all groups. As this problem
is difficult to solve, we can choose the infinity-norm instead of the
1-norm. Therefore, Eq. (7) is now transformed into:

min max
g,k

Q
(

√

2 · SNRk,g

)

. (8)

This problem is in fact the minimization of the maximum BER
among all the users and groups. Intuitively, let us have an scenario
where a user has a high SNR (thus very low BER) and the other
users equally low SNR. Then, we can always increase the SNRs
of bad users so that their BER is reduced. In the end, all the users
will have the same SNR (and BER), therefore |αk,g|

2 = α, ∀k, g,
thus the ZF solution if we set α = 1. Finally, note that the ZF
approach does not guarantee the minimization of the mean BER.

3. PROPOSED METHODS

Several options have been evaluated so as to solve the combinato-
rial problem of Eq. (6). First, exhaustive search in the possibility
space or the graph-based solution in [4], are prohibitively expen-
sive in terms of complexity when the number of users increases.
Instead, we have applied the stochastic method SA, which may
yield to the optimum solution with a reasonable computing time.
Moreover, we have developed some low complex heuristic algo-
rithms that achieve a low degradation with respect to SA.

3.1. Simulated annealing

SA is an iterative algorithm which is capable of finding the global
optimum of a function even if the problem is not convex. SA has
analogies with the physical process of annealing, i.e. cooling of a

4The 1k vector will have now αk at position kth.
5This condition is satisfied by the ZF solution.
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Table 1. Simulated Annealing

1. Choose an initial solution G. This G × Q matrix contains a
user index at each position g, k, i.e. each row contains the Q
users belonging to the same group.

2. Compute the global transmitted power P (G) as in Eq. (6).

3. Initially, Pmin ← P (G) and Gmin ← G.

4. Generate a new solution G′ exchanging two users’ positions in
different groups.

5. As in Eq. (6), compute the power P (G′) and the difference
with the previous solution ∆(P ) = P (G′)− P (G).

6. Accept G
′ with probability min

(

1, e
−∆(P )

T

)

. If G
′ is ac-

cepted, G←G′.

7. If P (G′) ≤ Pmin, then Pmin ← P (G′) and Gmin ←G′.

8. If stopping condition not satisfied, decrease T and repeat 4.

9. Return the solution: Gmin and Pmin.

system [6]. The key parameter is the temperature T , which helps
avoiding local minima, as it is explained below. The application of
this algorithm to our problem is summarized in Table 1. Now, let
us briefly describe the technique.

Given a current solution, a new one is proposed by exchang-
ing two users belonging to different groups. If it is better than
the previous one, it is accepted as the current solution, else, it
is accepted with a certain probability. This mechanism is called
hill-climbing, and avoids finding a local minimum. The parameter
that controls the acceptance probability is the temperature T . The
higher it is, the higher the acceptance probability. Therefore, T
shall be lowered gradually, so that asymptotically only better solu-
tions are accepted and a minimum is achieved. Better in our case
means having less global transmitted power, see Eq. (6).

Initially, the temperature shall be high enough in order to ac-
cept most of the proposed solutions, in our case we increase T until
the acceptance ratio is 95%. In this work, we run Nit = 50 iter-
ations per value of temperature. After that, we run the algorithm
until the acceptance ratio is lower than 0.05 for 5 times (stopping
condition). After each run, we lower the temperature with an ex-
ponential profile T ← βT, β = 0.9. We have chosen a low β in
order to speed up the algorithm.

Table 2. Initialization procedure for heuristic algorithms

1. Compute the cost of all possible combinations of two users. The
cost of clustering together users i and j is:

[C]ij = trace

[

(

HijH
H
ij

)−1
]

, (9)

where the matrix Hij is defined as in Eq. (1), but in this case
only for users i and j.

2. Sort the cost values of the matrix C in descending order in the
vector cs, keeping the information of the index i, j in the matrix
C. Set l to 0.

3. Increase l. Select the lth position in vector cs. If the users
i, j corresponding to the index l have not yet been assigned,
separate them in different groups g(i) 6= g(j). Note that g(i)
is the group where we put user i and that only one user shall be
assigned per group.

4. If the number of assigned users is not G, repeat step 3.

Table 3. Heuristic algorithms

1. Build matrix D as in Eq. (10).

2. For the selected criterion, either MAX-MIN or MAX-RATIO,
store the cost values in the vector c and keep the information
about the user and also about the group that has the minimum
cost for that user, i.e. the minimum of each row of D.

3. Sort c is descending order, cs is the sorted vector. Set position
index l to 0. Note that g(l) is the group having minimum cost
for the user at position l.

4. Increase l and select that position in the sorted vector cs. If
the group g(l) has not been filled in current iteration, assign to
group g(l) the user corresponding to index l.

5. Repeat step 4 until l points to the last element of cs or if the G
groups have been filled by a different user at this iteration.

6. Repeat step 1 until every user is assigned to a group.

3.2. Heuristic techniques

In this section, we propose much simpler methods than exhaustive
search or SA, which yield to suboptimal performances but reduce
drastically the computational load. Basically, we propose two ap-
proaches: MAX-MIN and MAX-RATIO. Essentially, they separate
the users that are close in terms of angle of arrival, the spatial sig-
natures of which are very similar or highly co-linear, see Table
4. If we grouped these users together, the required power would
increase substantially.

Their initialization procedure is described in Table 2. After
that, we have the G users that are most difficult to separate asso-
ciated to G different groups. We can then proceed in assigning
remaining users to groups. Therefore, at each iteration of the al-
gorithm we need to build the K ′ × G′ matrix D, where K ′ is
the number of remaining users and G′ the number of uncompleted
groups. At the k′th row and g′th column we put the cost of assign-
ing user index k′ to group g′, i.e.

[D]
k′g′ = trace

[

(

H(g′)H(g′)H
)−1

]

, (10)

where H(g′) is the Q′×Q channel matrix of group g′, the last row
of which corresponds to the channel of user k′. Note that Q′ − 1
is the number of users belonging to group g′ at that iteration.

The basic procedure for both algorithms is depicted in Table
3. They differ in the way the cost values are computed (step 2).
Whereas the MAX-MIN approach selects the minimum cost of as-
signing a user to a group, i.e. the minimum of each row of D,
MAX-RATIO calculates the ratio between the maximum and mini-
mum cost for each user, i.e. the maximum and minimum values at
every row of matrix D. We shall remark that at each iteration we
assign at most G users, i.e. we do not assign two users to the same
group nor fill groups that are not optimal for the users.

Now, let us briefly explain the ideas behind the selected crite-
ria. The MAX-MIN approach selects the best-suited group for each
user and it assigns then first those who are most difficult to cluster,
i.e. those having a maximum value of the minimum cost. In terms
of performance, it does not take into account that a user may not
be assigned to its best-suited group, e.g. because it is already full.
Then, a big degradation may occur.

Instead, the selection criterion shall be related with the disper-
sion of the cost values. We shall first allocate in the groups the
users that may provoke a high penalty in terms of power if they
are not assigned to the best group. This is the behavior of the
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Fig. 2. Example of two users that have to be assigned to groups.
MAX-MIN first allocates user j whereas MAX-RATIO selects user
i. If user i is not assigned to group 1 a high degradation occurs,
while if user j is not in group 1, the loss in performance is negligi-
ble. MAX-RATIO allocates first the users incurring in a big loss if
they are not in the best group, thus achieving a better performance.

Group User angles [degrees]
1 -41.17 -1.11 29.82
2 -41.10 -10.15 33.78
3 12.92 -28.58 -57.43
4 14.85 -50.99 -20.66

Table 4. Spatial distribution of users. Single run, G = 4, Q = 3.

MAX-RATIO proposal: instead of selecting the users according to
the minimum costs, we sort them by means of the ratio between
the maximum and the minimum costs. Note that other approaches
might also be possible as long as they consider the variation of
the cost values. For an illustrative example of the behavior of the
heuristic algorithms, see Fig. 2.

4. SIMULATIONS

Nr = 10000 runs of the simulations have been conducted for a
number of transmit antennas ranging from Q = 2 to Q = 4, and
a number of groups6 from G = 2 to G = 7. The channel is flat
fading, and static users are distributed uniformly between −60◦

and 60◦ (sectored antennas at the BS ). No noise is included in the
simulations. The aim is to see what is the performance in terms of
power for the techniques that have been previously described.

We have also simulated the random scheduler, i.e. the users are
arbitrarily allocated to the groups. We see in Figs. 3 and 4 that this
solution is not convenient at all as the output power7 is at least one
magnitude order worse than the MAX-RATIO solution. We also
see that the MAX-MIN approach yields to bad performances due
to the fact explained in the example (see Fig. 2): it does not take
into account all the possible options for a user, i.e. it may not be
assigned to the best-suited group, so this worsens the performance
because of a high penalty in terms of power.

As expected, SA has the best performance. Note that the total
power when G is low is greater than in the high range. This is
due to the fact that, if we have very few users and they are close
together, we cannot cope with their separation. On the other hand,
when we increase G, we also increase the degrees of freedom of
the system. This allows a better separation of the groups. In turn,
the MAX-RATIO technique approaches the minimum power of SA.
The degradation is mainly between 3 dB and 6 dB. The key advan-
tage is that the the computational load is reduced drastically paying
the price of a slight increase in the global transmit power.

Finally, we show in Table 4 the spatial distribution of users
given by a single run of the simulation with the MAX-RATIO so-
lution. It is seen that the users that are closer (in terms of angle

6For simplicity, we assume K to be a multiple of Q.
7In those figures, we show the outage power for a certain threshold x.

That means that the x% of the obtained powers are below the plotted value.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
10

0

10
1

10
2

10
3

10
4

              Outage Probabilities for fixed number of Groups, Q= 2

Number of groups G

T
ot

al
 P

ow
er

 (
lin

ea
r)

Random (95%)
Random (90%)
Maxmin (95%)
Maxmin (90%)
Maxratio (95%)
Maxratio (90%)
SA (95%)
SA (90%)

Fig. 3. Outage Powers (90% and 95%) for Q=2.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
10

1

10
2

10
3

10
4

Outage Probabilities for fixed number of Groups, Q= 4

Number of groups G

T
ot

al
 P

ow
er

 (
lin

ea
r)

Random (95%)
Random (90%)
Maxmin (95%)
Maxmin (90%)
Maxratio (95%)
Maxratio (90%)
SA (95%)
SA (90%)

Fig. 4. Outage Powers (90% and 95%) for Q=4.

of arrival) are separated in different groups. If we grouped them
together, the increase in power would be remarkable.

5. CONCLUSIONS

There are two main contributions of this paper. First, we deal with
the spatial scheduling a set of users in groups for simultaneous ser-
vice and propose a new joint MAC-PHY spatial channel allocation.
Second, we focus on the techniques for the resolution of this NP-
complete problem. Therefore, we apply the stochastic technique
SA and propose suboptimal solutions that are shown to have a low
degradation with respect to the SA performance with much lower
computational load. As this is a first insight in the joint Physical
and Medium Access Control (MAC-PHY) design, the next step is
to take fairness issues [7] into consideration.
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