OPTIMAL SYMBOL MAPPING DIVERSITY FOR MULTIPLE PACKET TRANSMISSIONS
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ABSTRACT

In this paperwe presenta simple, but effective methodof creat-
ing and exploiting diversity from paclet retransmissionin sys-
temsthatemplgy nonbinarymoduationssuchasPSKand QAM.
This diversity resultsfrom differing the symbd mappingfor each
paclet retransmission.By developing a generalframework for
evaluatingthebit errorrate(BER) upperboundwith multipletrans-
missions a criterionto obtainoptimal symbol(re)mapping is at-
tainedfor memorylessAWGN chanrels. The optimal adaptation
schemeeducego solutionsof the QuadraticAssignmen Problem
(QAP).Symbolmappirg adaptatioronly requiresasmallincrease
in recever compleity but providesvery substantiaBER gains.

1. INTRODUCTION

In mary communicatiorsystemsijf errorsremainaftererror cor-
rectionwhen processinga transmitteddatapaclet, a frameerror
is declaredand a requestfor retransmssiotis madeto the trans-
mitter. In systemsequippedwith this Automatic RepeatreQuest
(ARQ) mechaism, various approackes have beenproposedfor
both paclet combinirg and creatingdiversity amongretransmis-
sions.For example,Chasedevelopedamaximum-likelihood com-
bining schemefor an arbitrary numberof paclets [1]. Harwey
and Wicker propcsed several ARQ stratgies, including an ap-
proachwhere soft-decodedctodevords from the multiple paclet
retransmissionarecombinel into asinglesoftcodavord [2]. Oth-
ers,including HagenauerRawitch, andMilstein, have developed
schemegnvolving rate-compatibleodeswhereretransmitteadop-
ies of a paclet are eachuniqudy puncturedto improve through
put [3, 4]. StuberandNarayanardevelopedanARQ recever for
turbocodeswheretheextrinsic informationfrom previous paclets
is reused[5]. Recentworksin [6, 7, 8] introducedappro@hes
which exploit diversity createdby retransmissionthroughinter-
symbolinterferencgISI) channés.

Thepurpaoseof thispaperis to presentisimpleretransmission
schemdor systemghatemploy higherordermodulationssuchas
PSKor QAM in AWGN channels.By varying the bit-to-symbol
mappingfor eachretransmissiornthediversityis enhance@mong
M transmissions.We first develop an upperbourd for the BER
when M transmissionsare madeusing M distinct symbd map-
pings. Fromthis upper bound an optimizationproblemis formu-
lated to determinethe mappngs the prodice the minimal BER.
An iterative solutionto this problemleadsto finding M solutions
to M instance®f the QuadraticAssignmentProblem(QAP). We
presentresultsfound for several constellationtypesthatillustrate
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Fig. 1. Mapping diversity transmitter

the effectivenessof symbol mappingdiversity amongretransmis-
sions.

2. MAPPING DIVERSITY

Let us provide anoverview of amappingdiversity retransmission
systemwith M denotingthe numberof paclet transmissionswWe
begin with a setC of realor comple valuedpointsthatrepresent
the pointsof a signalconstellatione.g. 1L6QAM. Given a paclet
of bits, consective groupsof log, |C| bits (s representshe dec-
imal equivalent of thesebits) are assignedo symbds in C via a
symbd mappingfunctions : {0,1,...,|C| — 1} — C. With
M transmissionsf a paclet, we defineM symbolmappingfunc-
tions i, ..., Y. Usingdifferentmappingsenharesthe diver-
sity acrosamultiple transmissions.

Fig. 1 shavs a group of bits s that are ultimately transmit-
ted M times (via M transmission®f a paclet); the transmitter
sendssymbds 1[s],...,¥m[s]. The recever obtainssamples
Ym = Ym|[s]+vm, Wherem = 1,..., M andvy, = vm,r +jUm.i
is a complex Gaussiarrandan variablewith v, » andv,, ; each
zero-mearwith variances?2. We assumehatuvy, ..., v, arein-
depenlent.Fromy, ..., yum, therecever decideghatbits § were
transmittedaccordirg to the maximumlik elihood (ML) rule

M
i a112
gzo’lr,l_l_l_r,llc‘ilmzﬂlym ¢m[s]| . (1)

Note thatthe numberof stateqC| remainsunchamedregard-
lessof the numberof transmissionsnade.In fact,the complexity
of therecever only grows linearly with M.

3. OPTIMAL SYMBOL MAPPINGS

If we intendto transmitthe samegroupof bits M times,we want
the optimal mapppingfunctionssy, . . ., ¥ar. We defineoptimal-
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ity asminimizing the bit error rate (BER) whenthe symbds are
corruptedby additive white Gaussiamoise(AWGN).

3.1. BER Upper Bound

In orderto optimizethe BER, we first derive a BER expressiorfor
multiple transmissionsOur generalerror (¢) expressions

[cl-1

= Z Pr[s] Pr[3 # s]s]. 2

ThefunctionPr[s] denoteghea priori probabilitythats is trans-
mitted. The error detectionprobability Pr[§ # s|s] is difficult to
obtain.We apply the unionbound,which stateghat

=
s] < Y Prlan(k) < an(s)ls], )
RZs
with aar(s) theminimizationmetricin (1). This allows usto deal
with the pairwiseerror probability (PEP)Pr[aa (k) < anr(s)|s],
the probabilitythatk is detectedvhens is transmitted.
To obtainthe BER uppe bourd, we needto accout for the

numberof bit errorscausedy adetectiorerror We defineafunc-
tion B[s, k] to be

Pr[§#s

number of differing bits between s and &

Bl[s, k] =
[s, K] Tog, €]

Including B[s, k] and(3) into (2) leadsto a BER uppe bourd of

[€l-1ic|-1

Z Z Pr[s]|BJs, k] Prlam (k) < arm(s)|s]- 4)
0k

We now needto definethe PER Usingthe ML criterionin (1),
Prlaam (k) < anm(s)|s] becomes
M M
Pr{ D lgm = YmlK” < D ym — emls]| s k} (5)
m=1 m=1

Becaus@), = ¥m[s] + vm, we reduce(5) to anequivalert prob-
ability expression

s,k
(6)

whered|a, b] is the Euclideandistancebetweerpointsa andb (in
C). With theindependaceassumptioron the Gaussiamoisevari-

ablev,,, we simplify (6) to derive the PEPexpressim
M
5 Y d[mls], YmlK] |
Y m=1

Priam (k) < am(s)|s] = Q (\J 41
(1)

andQ(-) isthewell-known Gaussiarintegral. Substituting7) into
(4) providesuswith a BER upperbound

Pf{ > A[pmls), Ymlk]] + 2d[hm ], Y [E]]vm,, <0

m=1

3.2. Optimization Criterion

Our problemis to determinethe M optimal symbd mapping
1, ... ,¥n thatminimizethe BER upperboundin (4). This op-
timizationis statedas

lel-11¢|—1
,“Iﬂjne¢;kzofsakb (8)
k#s
a= [al,...,aM]T = [1/}1[3],...,1/1M[s]]T
b =[b1,...,bm]" =[]k, .., om[E]]",

with ¢ dending the setof mappings.Thecostf [s, a, k, b] is the
pairwise BER that resultsby mappings to symbds a and k to
symbds b acrosghe M mapping,

f[s, a, k,b] = Pr[s]BJ[s, k]Q (J 107 Z d?lam, m) .

m=1

With || = |C|!, (8) beconmesa massie combinatorialopti-
mizationproblemwhosesolutionspacecontains(|C|!)* possible
solutions.Thus,we proposea simpler andprobally sub-ogimal,
iterative solution by compuing mapping M from the previous
M — 1 mappings We assumehatthefirst M — 1 mappirgshave
alreadybeendeterminedandwe work towardsobtainingonly the
M*® mapping 1. Our optimizationproblemthensimplifiesto

[cl-1jc|-1

Jin, 2 D glsypulsl byl (©)
wheregls, a, k, b] is the pairwise BER thatresultsby mappings
to symbd a andk to symbolb in the M*" mappirg,

gls,a, k,b] = Pr[s]B[s, k]Q (\/412 (h[s, k] + d*[a, b]))
K = 3 ) vl

Thissolutionis optimalfor ARQ-typeapplicationsvhichhave
a seconary objective to minimize the number of transmissions
(mapping) neede to achieve a desiredBER. In otherwords, it is
desirableo choosenappirg M withoutrelyingonfuture(re)trans-
missions.

Thoughstill compuationallydifficult, (9) fallsinto a cateyory
of combinatorialoptimzationproblemscommonlyreferredto as
the QuadraticAssignmenProblem(QAP).

3.3. The Quadratic Assignment Problem

The QAP is oneof themostdifficult andextensvely studiedprob-
lemsin optimization. It wasfirst introducedin 1957to modelthe
assignmat of N econanic facilitiesto N physicallocations[9];
a more generalversionwas publishedin 1963 [10]. Using the
facilities-locationanalogy we have the costsof assigningfacility
s to locationa andfacility & to locationbd, dendedby c[s, a, k, b].
Theobjective is to minimize the total costby choosirg the assign-
menty : {0,1,...,N —1} — {0,1,..., N — 1} thatsatisfies
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N-1N-1

min %~ > cfs, ¥s], k, P[k]],

vey s=0 k=0
where is the setof all possibleassignmets. Clearly, (9) is an
instanceof the QAP Yetto fully applythe QAP, we needto define
thecostgls, a, s, a] of assignings to symbd a. This costis zero,
sinceit doesnotexist in the BER upperbound.

Most exact solutionsto the QAP involve a branch-anebound
search.Typically, lower bounds for the QAP arecomputationty
expensve (O(N®)) andgenerallynot very tight. Recentwork by
Hahnand Grantpropcsedan efficient lower bourding technique
andits inclusionin a branchand-bounl schemd11].

4. RESULTS

We now presentesultsfoundby optimizing(9) for severalconstel-
lation types,beginning with 16QAM. Fig. 2 containsthe optimal
16QAM symbolmapping for 2, 3, and 4 transmissionwith an
E, /N, of 6 dB for eachtransmissionNoticethatthefirst mapping
is a Gray mapping,which is intuitively pleasing.The subsegent
mapping are not Gray mappings;bits that are assignedo adja-
centsymbolsin onemappirg areassignedgymbolsthatarespaced
furtherapartin subsegentmappirgs. Thisagainis intuitively sat-
isfying, since (7) implies that increasingthe combineddistance
(acrossall mapping) betweentwo bit groups reduce their PEPR
Thus, bits assignedo largely spacedsymbds can“afford” to be
assignedo adjacensymbds in subsegentmappings.

Fig. 3 containsthe upperbounds achiezed by the mappingsn
Fig. 2, aswell asthe uppe bound achiezed by ML combining
wherethefirst optimalmappingis usedfor thesubsegentM — 1
transmission$yr = ... = ).

Fig. 4 illustratesthe tightnessof the BER upperbounds when
comparedto simulatedBER curves for 16QAM. Clearly, these
bounds are essentiallyequalto the actualBER for valuesbelow
10~2. Figs. 5-8 presentthe BER upper bounds obtainedin op-
timizing (9) for M = 1,...,4 transmissionsising constellation
types16PSK,16FAM, 8PSK,and8PAM, respectiely. In nearly
all casestheoptimizationfor M = 1 prodiwcedthe expectedGray
mapping with theexceptionof casewith very low E, /N values.

Map 1 Map 2
o o L] L] L J L J L] L]
0000 1000| 1001 0001 1110 0101| 0100 1111
L J L J L] L] LJ LJ L] L]
0100 1100| 1101 0101 1000 0011| 0010 1001
L J L J L] L] LJ LJ L] L]
0110 1110| 1111 0111 1010 0001| 0000 1011
LJ LJ L] L) [ J [ J L] L]
0010 1010| 1011 0011 1100 0111| 0110 1101
Map 3 Map 4
o * L] L] LJ LJ L] L]
1001 0011| 0010 1100 1000 0010| 0000 1010
L J o L] L] L J LJ L] Ll
0110 1000| 1101 0101 0111 1011| 1001 0101
L J L J L] L] [ J [ J L[] L]
0111 1111| 1010 0100 0100 1110| 1100 0110
L J LJ L] L) [ J LJ L] L]
1110 0000| 0001 1011 1101 0011| 0001 1111

Fig. 2. Symbolmappngsof 16QAM.
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Fig. 4. SimulatedBERsvs. upperboundsfor 16QAM mappings.
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Fig. 5. BER upperbounds for symbolmappingsof 16PSK.
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Fig. 7. BER uppe bourdsfor symbd mapping of 8PSK.

Thesefigures indicate that the mapping diversity gains are
actually quite substantial. For example,two transmissionsising
mappingdiversity provide approximategainsof 4, 7.5, 9, 5, and
6 dB over ML combiningfor 16QAM, 16PSK,16PAM, 8PSK,
and8PAM, respectiely. For all constellationtypes,two mapping
diversity transmissionsre superiorto four ML combiring trans-
missions.Onecanview thesemultiple transmissionsisrated /M
codeswith consideablecodinggains.

5. CONCLUDING REMARKS

In conclwsion, this paperpresentech methodfor enharing diver
sity amongpaclet retransmissionby adaptingsymbol mapping
This methodrequiresa minimal increasen transmittercomple-
ity while recever compleity only grows linearly with thenumbe
of transmissionsA generalframevork wasintroducedfor finding
optimalsymbolmappingghatminimize BER. This framework ul-
timatelysimplifiesinto iterative solutionsof the QuadraticAssign-
ment Problem. Resultsrevealedthat mappingdiversity leadsto
quite substantiagains(up to 9 dB) for severalconstellatiortypes.
It would be of interestto extendthis diversity to several othersce-

T
—&- ML Comb.,, K =4
B Map. Div., K=4
—#— ML Comb.,, K=3
- Map. Div,, K=3
—&— ML Comb.,K=2 13
A Map. Div., K=2
- K=1

Fig. 8. BER upperboundsfor symbolmappingsof 8PAM.

nariosincluding codedtransmissionstransmissionghrough ISI
chanrels,andspace-timeodedtransmissions.
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