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ABSTRACT

In this paperwe presenta simple,but effective methodof creat-
ing and exploiting diversity from packet retransmissionsin sys-
temsthatemploy nonbinarymodulationssuchasPSKandQAM.
This diversity resultsfrom differing thesymbol mappingfor each
packet retransmission.By developing a generalframework for
evaluatingthebit errorrate(BER)upperboundwith multipletrans-
missions,a criterionto obtainoptimalsymbol(re)mappings is at-
tainedfor memorylessAWGN channels. The optimal adaptation
schemereducesto solutionsof theQuadraticAssignment Problem
(QAP).Symbolmapping adaptationonly requiresasmallincrease
in receiver complexity but providesvery substantialBERgains.

1. INTRODUCTION

In many communicationsystems,if errorsremainaftererrorcor-
rectionwhenprocessinga transmitteddatapacket, a frameerror
is declaredanda requestfor retransmssionis madeto the trans-
mitter. In systemsequippedwith this AutomaticRepeatreQuest
(ARQ) mechanism, variousapproaches have beenproposedfor
both packet combining andcreatingdiversity amongretransmis-
sions.For example,Chasedevelopedamaximum-likelihood com-
bining schemefor an arbitrary numberof packets [1]. Harvey
and Wicker proposed several ARQ strategies, including an ap-
proachwheresoft-decodedcodewords from the multiple packet
retransmissionsarecombined into asinglesoftcodeword [2]. Oth-
ers,includingHagenauer, Rowitch, andMilstein, have developed
schemesinvolving rate-compatiblecodes,whereretransmittedcop-
ies of a packet areeachuniquely puncturedto improve through-
put [3, 4]. StuberandNarayanandevelopedanARQ receiver for
turbocodeswheretheextrinsic informationfrom previouspackets
is reused[5]. Recentworks in [6, 7, 8] introducedapproaches
which exploit diversity createdby retransmissionsthroughinter-
symbolinterference(ISI) channels.

Thepurposeof thispaperis to presentasimpleretransmission
schemefor systemsthatemploy higher-ordermodulationssuchas
PSKor QAM in AWGN channels.By varying the bit-to-symbol
mappingfor eachretransmission,thediversityis enhancedamong�

transmissions.We first develop an upperbound for the BER
when

�
transmissionsaremadeusing

�
distinct symbol map-

pings.Fromthis upper bound, anoptimizationproblemis formu-
lated to determinethe mappings the produce the minimal BER.
An iterative solutionto this problemleadsto finding

�
solutions

to
�

instancesof theQuadraticAssignmentProblem(QAP).We
presentresultsfound for several constellationtypesthat illustrate�
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Fig. 1. Mapping diversitytransmitter.

the effectivenessof symbolmappingdiversityamongretransmis-
sions.

2. MAPPING DIVERSITY

Let usprovide anoverview of a mappingdiversity retransmission
system,with

�
denotingthenumberof packet transmissions.We

begin with a set � of realor complex valuedpointsthat represent
the pointsof a signalconstellation,e.g.16QAM. Given a packet
of bits, consecutive groupsof ���
	���
 ��
 bits ( � representsthe dec-
imal equivalent of thesebits) areassignedto symbols in � via a
symbol mappingfunction ��� �������
��������� 
 ��
�� � ����� . With�

transmissionsof apacket, wedefine
�

symbolmappingfunc-
tions �! �"������� ��# . Using differentmappingsenhancesthe diver-
sity acrossmultiple transmissions.

Fig. 1 shows a group of bits � that are ultimately transmit-
ted

�
times (via

�
transmissionsof a packet); the transmitter

sendssymbols �  �$ �"% ��������� � #&$ �"% . The receiver obtainssamples')(+* � ( $ �"%-,/. ( , where0 * ���������"� �
and . (+* . (21 3 ,54�. (21 6

is a complex Gaussianrandom variablewith . (71 3 and . (71 6 each
zero-meanwith variance8 �9 . We assumethat .  ���"����� . ( arein-
dependent.From '  �������"� ' # , thereceiverdecidesthatbits :� were
transmittedaccording to themaximumlikelihood(ML) rule;=<?>@ACBED 1  1 F F F 1HG IJG K  #L( B  
 ' ( �M� ( $ :�"%N
 � � (1)

Notethatthenumberof states
 ��
 remainsunchangedregard-
lessof thenumberof transmissionsmade.In fact,thecomplexity
of thereceiver only grows linearly with

�
.

3. OPTIMAL SYMBOL MAPPINGS

If we intendto transmitthesamegroupof bits
�

times,we want
theoptimalmapppingfunctions �O �"������� ��# . We defineoptimal-
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ity asminimizing the bit error rate(BER) whenthe symbols are
corruptedby additive white Gaussiannoise(AWGN).

3.1. BER Upper Bound

In orderto optimizetheBER,wefirst deriveaBERexpressionfor
multiple transmissions.Our generalerror PRQTS expressionisUWV $ QX% * G IJG K  L ACBED UOV $ �"% UWV $ :�=Y* �J
 �"% � (2)

Thefunction
UOV $ �"% denotesthea priori probability that � is trans-

mitted. Theerror detectionprobability
UWV $ :�ZY* �[
 �"% is difficult to

obtain.Weapplytheunionbound,which statesthatUWV $ :�\Y* �J
 �"%^] G IJG K  L _T`bac)dBEA UWV $ eO# PRfbShg eW# Pi��S�
 ��% � (3)

with eO# Pi�jS theminimizationmetricin (1). This allowsusto deal
with thepairwiseerrorprobability(PEP)

UWV $ eO# PRfbShg eO# Pi��S�
 �"% ,
theprobabilitythat f is detectedwhen � is transmitted.

To obtain the BER upper bound, we needto account for the
numberof bit errorscausedby adetectionerror. Wedefinea func-
tion k $ � � f[% to be

k $ � � f[% * >Jlm;/npo V �jqWr <HsEo V <?> 	 nm<Htvuwnpoxt-y!o"o�> �{z > r|f���
	��{
 ��
 �
Including k $ � � f[% and(3) into (2) leadsto a BERupper bound ofG IJG K  L ACBED

G IJG K  L _x`�ac�dB}A UOV $ �"%~k $ � � fJ% UOV $ e #ZPRfmS!g e #ZPi��S�
 �"% � (4)

Wenow needto definethePEP. UsingtheML criterionin (1),UWV $ eO# PRfbShg eO# Pi��S�
 ��% becomes

UOVO� #L( B  
 ' ( �&� ( $ f[%N
 � g #L( B  
 ' ( �M� ( $ ��%N
 �b����� � � f^� � (5)

Because' ( * � ( $ �"%�,�. ( , we reduce(5) to anequivalent prob-
ability expression

UWV � #L( B  �� � $ � ( $ �"% � � ( $ f[%?%�,�� � $ � ( $ �"% � � ( $ fJ%?%�. (71 3 g � ����� � � f �(6)
where � $ � �C� % is theEuclideandistancebetweenpoints � and

�
(in� ). With theindependenceassumptionontheGaussiannoisevari-

able . ( , we simplify (6) to derive thePEPexpression

UOV $ e #ZPRfmShg e #ZPi�jS�
 �"% *+��������� �� 8 �9 #L( B  � � $ � ( $ ��% � � ( $ f[%?%��� �
(7)

and � PX� S is thewell-known Gaussianintegral. Substituting(7) into
(4) providesuswith a BERupperbound.

3.2. Optimization Criterion

Our problem is to determinethe
�

optimal symbol mappings�! �������"� ��# thatminimizetheBER upperbound in (4). This op-
timizationis statedas

;=<�>�b� 1 F F F 1 �b�\��� G IJG K  L ACBED
G IJG K  L _x`�ac�dB}A/� $ � �C��� f �v� % � (8)

� * $ �p �����"��� �b# %~� * $ �  �$ �"% �����"��� � #Z$ �"%?%�� �� * $ �  �"�������C� #�% � * $ �! $ f[% ��������� ��# $ fJ%?% � �
with � denoting thesetof mappings.Thecost � $ � �C��� f �C� % is the
pairwiseBER that resultsby mapping � to symbols

�
and f to

symbols
�

acrossthe
�

mappings,

� $ � �C�}� f �X� % * UWV $ �"%~k $ � � f[% � ������� �� 8 �9 #L( B  � � $ � ( �C� ( %��� �
With 
 �¡
 * 
 ��
 ¢ , (8) becomesa massive combinatorialopti-

mizationproblemwhosesolutionspacecontainsPv
 ��
 ¢ S # possible
solutions.Thus,we proposea simpler, andprobably sub-optimal,
iterative solution by computing mapping

�
from the previous� � � mappings.Weassumethatthefirst

� � � mappingshave
alreadybeendeterminedandwe work towardsobtainingonly the�¤£¦¥

mapping, �W# . Our optimizationproblemthensimplifiesto

;=<�>���\�)� G I�G K  L ACBED
G I�G K  L _x`�ac)dBEA|§ $ � � ��# $ �"% � f � ��# $ fJ%?% � (9)

where § $ � � � � f �C� % is the pairwiseBER that resultsby mapping �
to symbol � and f to symbol

�
in the

� £¦¥
mapping,

§ $ � � � � f �X� % * UWV $ ��%~k $ � � fJ% �©¨^ª �� 8 �9 PR« $ � � f[%�, � � $ � �C� %�S-¬ �
« $ � � f[% * # K  L( B  �� � $ � ( $ �"% � � ( $ f[%�% �

Thissolutionis optimalfor ARQ-typeapplicationswhichhave
a secondary objective to minimize the number of transmissions
(mappings) needed to achieve a desiredBER.In otherwords,it is
desirableto choosemapping

�
withoutrelyingonfuture(re)trans-

missions.
Thoughstill computationallydifficult, (9) falls into acategory

of combinatorialoptimzationproblemscommonlyreferredto as
theQuadraticAssignmentProblem(QAP).

3.3. The Quadratic Assignment Problem

TheQAPis oneof themostdifficult andextensively studiedprob-
lemsin optimization.It wasfirst introducedin 1957to modelthe
assignment of ­ economic facilities to ­ physicallocations[9];
a more generalversionwas publishedin 1963 [10]. Using the
facilities-locationanalogy, we have the costsof assigningfacility� to location � andfacility f to location

�
, denotedby ® $ � � � � f �C� % .

Theobjective is to minimizethetotal costby choosing theassign-
ment �¯� �������
��������� ­°� � �±� �������
��������� ­²� � � thatsatisfies
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;=<�>�}���2³ K  L ACBED ³ K  Lc B}D ® $ � � � $ �"% � f � � $ fJ%?% �
where � is the setof all possibleassignments. Clearly, (9) is an
instanceof theQAP. Yet to fully applytheQAP, weneedto define
thecost § $ � � � � � � � % of assigning� to symbol � . This costis zero,
sinceit doesnot exist in theBERupperbound.

Most exactsolutionsto theQAP involve a branch-and-bound
search.Typically, lower bounds for theQAP arecomputationally
expensive ( ´\PR­¶µ�S ) andgenerallynot very tight. Recentwork by
HahnandGrantproposedan efficient lower bounding technique
andits inclusionin a branch-and-bound scheme[11].

4. RESULTS

Wenow presentresultsfoundby optimizing(9) for severalconstel-
lation types,beginning with 16QAM. Fig. 2 containsthe optimal
16QAM symbolmappings for 2, 3, and4 transmissionswith an·7¸T¹ ­ D of 6 dB for eachtransmission.Noticethatthefirstmapping
is a Graymapping,which is intuitively pleasing.Thesubsequent
mappings arenot Gray mappings;bits that areassignedto adja-
centsymbolsin onemapping areassignedsymbolsthatarespaced
furtherapartin subsequentmappings.Thisagainis intuitively sat-
isfying, since(7) implies that increasingthe combineddistance
(acrossall mappings) betweentwo bit groups reduces their PEP.
Thus,bits assignedto largely spacedsymbols can“afford” to be
assignedto adjacentsymbols in subsequentmappings.

Fig. 3 containstheupperbounds achievedby themappingsin
Fig. 2, aswell as the upper bounds achieved by ML combining,
wherethefirst optimalmappingis usedfor thesubsequent

� � �
transmissions( �h * ����� * ��# ).

Fig. 4 illustratesthetightnessof theBER upperbounds when
comparedto simulatedBER curves for 16QAM. Clearly, these
bounds areessentiallyequalto the actualBER for valuesbelow��� K �

. Figs. 5-8 presentthe BER upper bounds obtainedin op-
timizing (9) for

� * �
��������� �
transmissionsusingconstellation

types16PSK,16PAM, 8PSK,and8PAM, respectively. In nearly
all cases,theoptimizationfor

� * �
producedtheexpectedGray

mapping, with theexceptionof caseswith very low
·{¸x¹ ­ D values.
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Fig. 2. Symbolmappingsof 16QAM.
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Fig. 3. BERupper boundsfor symbolmappings of 16QAM.
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Fig. 4. SimulatedBERsvs. upperboundsfor 16QAM mappings.
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Fig. 5. BERupperbounds for symbolmappingsof 16PSK.
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Fig. 6. BERupperboundsfor symbolmappingsof 16PAM.
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Fig. 7. BERupper boundsfor symbol mappingsof 8PSK.

Thesefigures indicate that the mappingdiversity gains are
actuallyquite substantial.For example,two transmissionsusing
mappingdiversity provide approximategainsof 4, 7.5, 9, 5, and
6 dB over ML combining for 16QAM, 16PSK,16PAM, 8PSK,
and8PAM, respectively. For all constellationtypes,two mapping
diversity transmissionsaresuperiorto four ML combining trans-
missions.Onecanview thesemultiple transmissionsasrate-

� ¹��
codeswith considerablecodinggains.

5. CONCLUDING REMARKS

In conclusion,this paperpresenteda methodfor enhancing diver-
sity amongpacket retransmissionsby adaptingsymbolmapping.
This methodrequiresa minimal increasein transmittercomplex-
ity while receivercomplexity only grows linearlywith thenumber
of transmissions.A generalframework wasintroducedfor finding
optimalsymbolmappingsthatminimizeBER.Thisframework ul-
timatelysimplifiesinto iterativesolutionsof theQuadraticAssign-
mentProblem. Resultsrevealedthat mappingdiversity leadsto
quitesubstantialgains(up to 9 dB) for severalconstellationtypes.
It would beof interestto extendthisdiversityto severalothersce-
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Fig. 8. BERupperboundsfor symbolmappingsof 8PAM.

narios including codedtransmissions,transmissionsthroughISI
channels,andspace-timecodedtransmissions.
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