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ABSTRACT

Standardized wireless transmissions include fixed-size frag-
ments per packet. Relying on this structure, we develop
two schemes for distributing redundancy across fragments,
in order to improve performance of packet transmissions
over frequency-selective fading channels. We prove that both
schemes guarantee symbol detectability, which implies that
they both enable the full multipath diversity. We test their rel-
ative merits, and compare them with competing alternatives
using simulations.

1. INTRODUCTION

Block transmissions relying on linear redundant precoding
with cyclic prefix (CP) or zero padding (ZP) guards have
gained increasing interest recently for mitigating frequency-
selective multipath effects; see e.g., [1, 2, 3] and references
therein. Sufficient redundancy removes inter block interfer-
ence (IBI), and facilitates (even blind) acquisition of chan-
nel state information at the receiver. It also leads to data ef-
ficient low-complexity linear equalizers (zero-forcing (ZF)
or minimum mean-squared error (MMSE)) with guaranteed
constellation-irrespective symbol detectability regardless of
the zero locations of the underlying finite impulse response
(FIR) channel [2]. Guaranteed symbol detectability implies
full multipath diversity, and thus improved performance at
moderate-high SNR [4, 5].

To take advantage of these benefits in e.g., ZP transmis-
sions, the number of padded-zeros should be longer than the
underlying FIR channel order. But in order to avoid severe
bandwidth efficiency loss with long channels, this calls for
longer block sizes, which in turn leads to higher decoding
delay and decoding complexity. In many protocols however,
such as the IEEE 802.11a, the fragment of a packet consti-
tutes the size-invariant transmission unit, that is fixed a pri-
ori, and is not allowed to change depending on the realiza-
tion of the random wireless fading channel. Selecting guard
sizes for the longest possible channel is one approach, but
it is certainly conservative. Instead, the approach pursued
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in this paper is to have fixed fragment size packet transmis-
sions with redundancy distributed across fragments.

The two transmissions we develop utilize zero-padded
information bearing fragments per packet, which enjoy ben-
efits of ZP block transmissions, if the number of zeros is
greater than the channel order. If not, we either transmit a
controllable number of null fragments, or, we re-transmit a
certain number of information bearing fragments. In other
words, we either zero pad fragments per packet, or we cyclic
prefix fragments per packet. Because either way the redun-
dancy is distributed across fragments, we term our schemes
distributed ZP (D-ZP) and distributed CP (D-CP), respec-
tively. Both maintain the fragment size, but D-CP maintains
also the fragment structure. They both guarantee symbol de-
tectability irrespective of the constellation and the channel
zero locations, which implies full multipath diversity. Simu-
lation examples illustrate their relative merits, and compare
them with competing alternatives.

2. MODELING AND PRELIMINARIES

We consider point-to-point wireless transmissions over
time-flat but frequency-selective fading channels. At the
transmitter, the information-bearing sequence {s(n)} is
parsed into blocks s(n) = [s(Mn), . . . , s(Mn + M)]T

of size M . To mitigate the effects of frequency selective
channels, we pad N0 zeros at the end of each block to ob-
tain zero-padded (ZP) transmitted fragments {u(n)} of size
N := M+N0, as in [3]. The ZP fragments can be described
in matrix form as

u(n) = T zps(n), (1)

where the (M +N0)×M zero-padding matrix T zp is given
by T zp := [IT

M ,0T
N0×M ]T with IM denoting the identity

matrix of size M , and 0N0×M the N0 × M zero matrix.
Our discrete-time baseband equivalent channel has or-

der L, and is considered linear time-invariant over a number
of fragments that comprise a packet. At the receiver, we as-
sume perfect timing and carrier synchronization. We collect
N(= M + N0) noisy samples in a N × 1 received vector
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x(n). If the number N0 of redundant zeros in each block is
greater than or equal to the channel order L, i.e., N 0 ≥ L,
interblock interference (IBI) is removed, and we obtain,

x(n) = Htrs(n) + v(n), (2)

where H tr is a tall N ×M (truncated) Toeplitz matrix with
first column [h(0), h(1), . . . , h(L),0T ]T [3].

Although redundant zeros reduce the bandwidth effi-
ciency to M/(M + N0), if N0 ≥ L, several benefits be-
come available with ZP: i) low-complexity block-by-block
processing with e.g., linear ZF or MMSE equalization, at
the receiver [3]; ii) irrespective of the constellation, sym-
bols can be detectable with linear equalizers regardless of
the channel zero locations in the absence noise (symbol de-
tectability) [4]; iii) full multipath diversity gain is enabled
to enhance system performance (maximum diversity advan-
tage) [4, 5]; iv) blind identification of the unknown channel
becomes possible [2]. However, as soon as the guard inter-
val is shorter than the channel order, i.e., N0 < L, these
properties may be lost. In a nutshell, the selection of M
and N0 affects: i) performance (by altering the diversity
advantage); ii) bandwidth efficiency (by changing the ra-
tio M/(M + N0); iii) blocking and decoding delay, as well
as decoding complexity (via the frame size N := M +N0).

The maximum order, call it Lmax, of a wireless propaga-
tion channel can be estimated experimentally. One may then
select the number of redundant symbols N0 ≥ Lmax to re-
move IBI of possible channel realizations. But this is a con-
servative approach, because it reduces bandwidth efficiency
for channel realizations having order L � Lmax. This ob-
servation prompted us to consider transmissions with con-
trolled redundancy, that can be added in a distributed fash-
ion. The need for distributing the guard intervals, is well
motivated for random fading channels since Lmax varies
with the propagation environment, which suggests adapt-
ing the amount of redundancy depending on the channel.
At the same time, adhering to the standards calls for fixing
the fragment structure: fragment size, number of informa-
tion bearing symbols, and number of zeros per fragment.
Notice that a priori fixed-size fragments, bound the selec-
tion of modulation and codeword sizes, but facilitate hard-
ware implementation of communication protocols beyond
the physical layer.

Our goal in this paper, is to develop fixed fragment size
packet transmissions with redundancy distributed across
fragments, capable of handling channels with long impulse
response, while enjoying the performance benefits of ZP
transmissions with low decoding complexity.

3. PACKETS WITH DISTRIBUTED REDUNDANCY

With an upper bound of the channel order available both
at the transmitter and at the receiver, we consider packet

transmissions with the short (N ≤ 10) ZP fragments de-
scribed in the previous section. Each packet consists of
Nf information-bearing fragments, and Nr redundant frag-
ments (packet guard intervals). Depending on the type of
the packet guard interval (ZP or CP), we will develop two
schemes in this section.
3.1 Packet transmissions with Distributed ZP (D-ZP)
Here the packet guard time comprises Nr null fragments,
where NrN ≥ L. Each packet ū(n) has size N̄ := (Nf +
Nr)N , and can be expressed as

ū(n) = [uT (Nfn + 1), uT (Nfn + 2), . . . ,
uT (Nfn + Nf ),0T

N×1, . . . ,0
T
N×1

︸ ︷︷ ︸

Nr fragments

]T . (3)

It should be noted that although we express a set of frag-
ments as a packet, the transmitter simply sends fragments
successively, without being necessary to form ū(n); i.e., no
blocking delay or buffering is required at the transmitter.

At the receiver, we collect Nf +Nr fragments in a N̄×1
vector x̄(n) that can be expressed as

x̄(n) = H̄0ū(n) + H̄1ū(n − 1) + v̄(n), (4)

where H̄0 and H̄1 are N̄ × N̄ square Toeplitz channel con-
volution matrices with first column [h(0), . . . , h(L),0T ]T

first row [h(0),0T ], and with first row [0T , h(L), . . . , h(1)]
last column [h(1), . . . , h(L),0T ]T , respectively; and v̄(n)
is a zero-mean additive noise.

Since the last N0 + NrN entries of ū(n) are zero, IBI
caused by channels up to order Lmax = N0 + NrN is re-
moved. With the IBI removed, (4) reduces to a form similar
to (2), but with the packet dimensionality N̄ replacing the
fragment size N . The channel mixing matrix H tr is also re-
placed by H̄0. But similar to Htr, the matrix H̄0 is always
full rank for any channel up to order Lmax = N0 + NrN ,
thanks to the N0 +NrN padded zeros. It thus follows read-
ily that this D-ZP scheme inherits the symbol detectability
and performance properties (maximum multipath diversity
and coding gains) that have been established in [2, 5].

With regards to its bandwidth efficiency, Edzp, it suffices
to observe that each N̄×1 packet ū(n) in (3) contains NfM
information-bearing symbols. Hence,

Edzp := [M/(M + N0)][Nf/(Nf + Nr)]. (5)

The first factor M/(M + N0) is the bandwidth efficiency
without sending null fragments; i.e., the bandwidth effi-
ciency of the original ZP fragment, while the second factor
arises due to the transmission of the null fragments.

Like any ZP block transmission, depending on com-
plexity versus performance tradeoffs, D-ZP can be decoded
using: linear zero-forcing (ZF) or minimum mean-square
error (MMSE) equalization; nonlinear decision-feedback
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equalization (DFE) [1]; or, maximum-likelihood (ML) de-
modulation. Instead of exhaustive search, ML optimum de-
coding of D-ZP transmissions can be implemented using the
Viterbi Algorithm (VA) [4]. In all cases, decoding complex-
ity depends on the block size N̄ , but unlike the VA whose
complexity is constellation dependent, ZF and MMSE alter-
natives have relatively low complexity, O(N̄2) per block,
irrespective of the underlying constellation. In summary,
for D-ZP transmissions we have established:
Proposition 1: If the aggregate redundancy satisfies
NrN ≥ L, then D-ZP packet transmissions enable the max-
imum multipath diversity and guarantee symbol detectabil-
ity. By decoding D-ZP packets (as opposed to ZP fragments)
we can accommodate channels of order greater than the
fragment guard time, at the expense of increased decoding
delay and complexity, and reduced bandwidth efficiency by
a factor Nf/(Nf + Nr).

At this point, one may wonder how for the same band-
width efficiency, D-ZP compares with a non-distributed ZP
packet transmission, which pads all N0 + NrN0 zeros at
the end of the packet. Although we do not currently have a
rigorous proof, our simulations will indicate that D-ZP out-
performs its non-distributed counterpart.
3.2 Packet Transmissions with Distributed CP
Instead of padding Nr null fragments as in the previous
subsection, following the Nf ZP information bearing frag-
ments, we pad in a circular fashion the first Nr (of the Nf )
fragments. Specifically, the nth packet now has the form:

ū(n) = [uT (Nfn + 1), . . . , uT (Nfn + Nf ),
uT (Nfn + 1), . . . , uT (Nfn + Nr)
︸ ︷︷ ︸

Nr fragments

]T . (6)

Every Nf fragments in this scheme, that we naturally term
D-CP, we simply re-transmit Nr of them. Different from
D-ZP, and similar to the CP removal that takes place at an
OFDM receiver, we remove the first NrN entries from each
received packet. This operation removes IBI from (4), pro-
vided that we select N, Nr to satisfy: NrN ≥ L [3].

As far as transmission rate, it is clear that D-CP has
bandwidth efficiency identical to that of D-ZP; i.e., Edcp =
Edzp. A nice feature of D-CP, not available in D-ZP, is that
D-CP transmits fragments of the same structure. This in
turn allows for easy adaptation of the transmitter to possible
changes in Nf , Nr.

With regards to performance, thinking along uncoded
OFDM lines, one would be tempted to infer that D-CP does
not guarantee constellation and channel irrespective symbol
detectability, and thus it does not enable the full multipath
diversity. Interestingly, we can establish (but omit the proof)
that D-CP enjoys these nice features as well, provided that
our fragment and packet parameters are chosen to satisfy:

NfN0 ≥ L, NrN ≥ L. (7)

Proposition 2: Under (7), D-CP guarantees constella-
tion and channel irrespective symbol detectability (and thus
full multipath diversity) for any FIR channel up to order
min(NfN0, NrN).

Comparing D-CP with D-ZP for the same (Nf , Nr),
we observe that D-ZP guarantees symbol detectability for
longer channel orders (by N0). In addition, D-CP is not as
energy efficient as D-ZP, since we allocate Nr/(Nf + Nr)
percent of the transmit-power per packet to re-transmitting
Nr fragments. This is the price we pay in D-CP for main-
taining the fragment structure. The decoding options we
outlined for D-ZP, apply also for D-CP, and their delay and
complexity increase as (Nf , Nr) increase. The packet size
(and thus bandwidth efficiency) depends not only on the
maximum channel order L, but also on the channel coher-
ence time. For D-CP to satisfy (7) for channels with rela-
tively short coherence time, increasing N0 also reduces the
bandwidth efficiency.

Two remarks are now in order:
Remark 1: When a feedback channel is available from the
receiver to the transmitter, or during a time-division duplex
session, both D-ZP and D-CP can adapt their (Nf , Nr) val-
ues, depending on the channel state information (channel
order and/or SNR) in order to strike desirable performance-
rate tradeoffs. This is an interesting future direction, but
goes beyond the scope of this paper.
Remark 2: A related transmission with ZP sub-blocks was
considered in a vector OFDM context in [6]. Different from
our D-CP scheme, ZP sub-blocks in [6] are grouped into
a super-block, and are modulated by IFFT before transmis-
sion. The received super-blocks are FFT processed, but they
are decoded on a sub-block basis, which reduces decoding
complexity. Although not mentioned in [6], this is nothing
but the single user counterpart of the generalized multicar-
rier CDMA scheme introduced earlier in [3] for multiuser
communications. Unlike [3] and D-CP though, the single
user scheme in [6], neither leads to constant modulus trans-
missions, nor it ensures symbol detectability (and thus max-
imum multipath diversity).

4. NUMERICAL EXAMPLES

We generated 103 Rayleigh distributed channels of order
L = 9, having complex zero-mean Gaussian taps with
exponential power profile: E{|h(l)|2} = exp(−l), for
l ∈ [0, L + 1]. For BPSK, we computed the BER ana-
lytically when hard-decoding was used at the ZF equalizer
output, and then we averaged BER over the randomly gener-
ated channels. As a benchmark, we also implemented ML
decoding of ZP block transmissions using Viterbi’s Algo-
rithm (VA), and computed the resulting BER via Monte-
Carlo simulations.
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complexity(ZF) delay bandwidth eff.
D-ZP 63 63 2/3
C-CP 63 63 2/3
ZP (a) 27 27 2/3
ZP (b) 63 63 6/7

[6] 9 63×2 2/3

Table 1. Comparison of simulated systems

We first considered D-ZP and D-CP transmissions with
(M, N0) = (7, 2), which can accommodate symbol code-
words of length M = 7, and can handle IBI for channels
up to order 2. As our channels had order L = 9, the guard
time in this case has insufficient length to remove the IBI.
We thus selected (Nf , Nr) = (6, 1), which imply band-
width efficiency (7/9)(6/7) = 2/3, and a packet size of
(Nf +Nr)(M +N0) = 7 ·9 = 63. We compared our D-ZP
and D-CP transmissions with the vector precoded OFDM
scheme in [6], for identical frame size, and bandwidth effi-
ciency. We also tested two more ZP-based block transmis-
sions that ensure channel-irrespective symbol-detectability
using linear ZF equalization for channels up to order 9:
(a) one having (M, N0) = (18, 9), packet size M + N0 =
27, and bandwidth efficiency M/(M + 9) = 2/3, identical
to those of D-ZP and D-CP transmissions; and
(b) one having (M, N0) = (54, 9), and packet size M +
N0 = 63, which causes decoding delay equal to a packet in
the D-ZP and D-CP transmissions, but enjoys higher band-
width efficiency 54/63 = 6/7.

Table 1 compares simulated systems in terms of: ap-
proximate ZF equalizer complexity per symbol, blocking
delay at the transmitter, decoding delay at the receiver, and
bandwidth efficiency. We underscore, that [6] requires ex-
tra FFTs to implement OFDM that are not needed in the
other systems. Fig. 1 depicts BER as a function of Eb/N0.
Among all schemes using low-complexity ZF equalization,
D-ZP exhibits the best performance. A slight performance
loss of D-CP and vector OFDM is due to the energy loss
corresponding to the CP (recall that for a fixed energy per
packet, the energy saved from ZP guards implies increased
energy of the information bearing symbols).

Clearly, the D-ZP and D-CP schemes exhibit better per-
formance than ZP (b) at the expense of rate reduction. How-
ever, it is interesting to note that with a low-complexity ZF
equalizer, they outperform ZP (a) that has identical band-
width efficiency. We believe that the reason behind this im-
provement, is the fact that D-ZP transmissions offer a better
conditioned channel matrix than ZP (a), and this leads to a
larger coding gain (recall that they both enable the max-
imum multipath diversity gain since they both guarantee
symbol detectability [4]).

Equally interesting is the fact that D-ZP with ZF equal-
ization comes close (less than 2dB in the practical SNR
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Fig. 1. BER comparisons

range) to the benchmark ML performance of ZP (a) with
VA decoding. The latter requires about 210 ≈ 103 compu-
tations per symbol, while D-ZP with ZF equalization only
63. We expect this gap to narrow with channel coding.
But even without coding, the potential of D-ZP can be ap-
preciated further if one considers channels with long im-
pulse response: indeed, for channels with, say L > 5, one
does not need to collect the maximum diversity gain (here
Gmax

d = L + 1 = 6), simply because this gain will show up
in the BER for SNR values (> 30dB) well beyond the prac-
tical range. Thus, low-complexity high-performance linear
equalizers (ZF or MMSE) are well motivated in such cases.
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