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ABSTRACT

When transmitting a sampled signal digitally, data and error cor-
rection bits must be transmitted at least as fast as the sampling rate.
Typically, each bit is allocated the same transmission time interval,
which means the optimal detector yields the same error probabil-
ity for each bit. An alternative is to vary the bit interval dura-
tion according to the bit’s contribution to the reconstructed sam-
ple. The optimal solution yields significant gains in mean-squared
error (several dB) over that provided by equal-duration bit inter-
vals. These gains occurred over a wide range of signal-to-noise
ratios. When block error correction is performed, we derive the
optimal decoder from a Bayesian viewpoint and show that gains
obtain here as well.

1. INTRODUCTION

In any communication system, like telephone systems, computer
networks, or cellular networks, error detection and correction has
been an important issue. Many different strategies have been de-
veloped for achieving the best performance of the system while
using the least amount of resources. In many applications, an error
in the most significant bit is far more critical than an error in the
least significant bit. An error in the most significant bit greatly in-
fluences the mean-squared error of the reconstructed sample while
an error in the least-significant bit has little effect. When the digital
data are �-bit quantized signal amplitudes, the transmitted ampli-
tude � is related to the individual bits as
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The mean-squared distortion between the transmitted and received
amplitude is, when no error correction is used, given by

mse �
����
���

� ���
� ��� (2)

where � ���
� is the probability the �th bit is received in error. Thus,

if the error probabilities were all equal, the most significant bit
contributes ������� more to the mean-squared error than the least
significant bit. A smaller mean-squared error could result if the
error probability for the most significant bit were reduced and the
error probability for the least significant bit were increased accord-
ing to some kind of tradeoff.
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Fig. 1. Normally, bit interval durations are equal. In our proposed
scheme, they differ, with much more transmission time allocated
to the most significant bit (here � � �) than the least significant
bit (� � �). In this way, mean-squared error can be dramatically
reduced. The total time to transmit each sampled signal is con-
strained to be no more than the sampling interval ��.

To achieve a smaller mean-square error, one could envisage
changing the error correcting code to reflect this importance, pro-
tecting more the most important bits. Our approach is along this
line; but rather than a digital error correction code, we use what
essentially is an analog repetition code. As shown in figure 1, we
use variable-duration bit intervals to represent the various bits in
the sample. Because we assume a white Gaussian noise channel
and a matched filter receiver, each bit has an error probability dif-
ferent from that of other bits that have different transmission inter-
val durations. Assuming a BPSK signal set, the error probability

is � ���
� � �

��
������	�

�
where � is the amplitude of the re-

ceived sinusoidal signal and �� the duration of the �th bit interval.
Longer bit intervals, which yield a smaller � ���

� , should be used
for the most significant bits. The bit-interval durations are con-
strained since the time taken to transmit each sample must be less
than or equal to the sampling interval ��. Conseqently, as shown
in figure 1, the sum of the transmission intervals must be no more
than �� in either the equal or unequal bit interval case. Because of
the nonlinear nature of����, how the optimal bit-interval durations
should be chosen subject to this constraint is not apparent.

When digital error correction is used, it could be advantageous
to allow the transmission interval durations for all bits both data
and error correction bits to be optimized for minimum distortion.
Because this would result in unequal bit error probabilities, code
design and how to optimally decode need to be rethought. We take
a detection theory approach here to derive an optimal decoding
rule that applies whether coding is used or not. This approach
yields an objective function that we seek to optimize with respect
to bit interval durations constrained to sum to the sampling interval
and with respect to decoding rules.
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2. RESULTS

We let the index 
 denote a value for the transmitted sampled am-
plitude, which we take here to be an integer in the range ��� �����
(see equation 1). The decoded amplitude is indexed by �, and lies
in the same interval. We take the distortion
 between the received
and transmitted amplitudes to be represented by


 �
�
���

������ �	���
� � (3)

where �	���
� is the probability that amplitude � is received given
that amplitude 
 was transmitted and �� is the a priori probabil-
ity that that amplitude was sent. The key quantity is the so-called
Bayes’ cost ���� , the impact of receiving amplitude � when am-
plitude 
 was indeed sent. Many choices for the Bayes’ cost can
be made. For example, if ���� � � and ���� � 
, then the na-
ture of the amplitude error doesn’t matter. On the other hand, if
���� � �� � 
��, then mean-squared error defines the distortion.
We focus on this choice here.

We assume that 	 bits are used to transmit the � data bits
(	 � �). The additional 	 � � bits provide some measure
of error correction. We denote by ���� the transmitted 	 -bit se-
quence corresponding to amplitude 
 and by ���� the decoded bit
sequence derived from �

��� that equals to transmitted bit-sequence
corresponding to amplitude �. The data bits constituting the sample
amplitude are derived from these. The probability that the decoder
yields the bit sequence���� when ���� was transmitted equals

�	���
� �
�

�������

����
���

�� ���
� �	

���
� �	

���
� �
� � ���

� ���	
���
� �	

���
�

Here, ��
�� denotes the �th bit in the transmitted sequence that corre-
sponds to the �th 	 -bit sequence and ����� the same bit in the trans-
mitted amplitude 
. The notation ��
�� � �

���
� means the modulo-2

sum of the bits, which equals zero when the bits agree and one

when they differ. �
���
� � �

��
������	�

�
denotes the prob-

ability the �th bit is received in error. �� denotes the duration
assigned to the �th bit. The product denotes the probability that
a given bit sequence ��
� is received. To find the amplitude, the
decoder defines decoding regions �� which includes all possible
bit sequences that correspond to amplitude �.

To minimize the distortion, we want to chose the bit-interval
durations�� and the decoding regions�� that jointly minimize (3)
to yield the optimal distortion 
�.
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Here, ��� denotes the set of all 	 -bit sequences and � means
the empty set. The latter conditions mean that the decoding re-
gions must include every possible received bit sequence and each
received sequence can belong to only one decoding region. Nor-
mally, error correcting codes and the decoders are not designed
with the ultimate interpretation of the bit sequences in mind. Math-
ematically, the probability �	���
� would be optimized separately,
then distortion considered. We take the approach here of deter-
mining how the entire physical layer should be structured so that
distortion is minimized.

2.1. Uncoded case

Expression (2) for mean-squared error can be derived when no er-
ror correcting code is used (	 � �) by explicitly using (1) that
associates bits with amplitude values. Noting that �� �	���
� �
�	��� 
�, the sum in (3) is the expected value of ���� . Assuming
the Bayes’ cost function is ��� 
��, the mean-squared error can be
written as

mse � 	
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Upon expanding the square, the only nonzero term occurs when
the �th bit in what is transmitted and received disagree. The cross-
terms between differing bits disappear because we assume a white
Gaussian noise channel, which means that the optimal receiver op-
erates on each bit interval independently of the others, and pro-
duces statistically independent bit estimates. We are left with

mse �
�
�

�	
�
�
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� 
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�
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The probability in this expression is simply the probability the bit
is received in error, and (2) results. In this way, a somewhat sim-
pler expression for the distortion can be obtained from (3).

Analytically, a solution to minimizing the mean-squared error
can be derived using Lagrange multipliers. The solution must sat-
isfy the set of � equations found by differentiating expression (2)
plus the Lagrange penalty term ��



�
������ with respect to the

bit-interval durations and setting each of the derivatives to zero.

���
��� �

������

��
� � � �� � � � �� � 
 (5)

The constant � equals ����	�. In our computations, we take
the total time allocated to transmitting the � bits, ��, to equal

. Consequently, � is numerically equal to �
�	�, the ratio of
the signal energy received during a word interval, the time taken
to transmit the data, and the white noise spectral height. Because
of the variable-duration bit intervals, the usual signal-to-noise ra-
tio �	�	� defined over a bit interval is not a constant; our SNR
defined over the word interval is constant, and provides a way for
comparing results. Because the left side of the equation is a mono-
tonic function of the bit-interval durations, a unique solution ex-
ists.

Rather than solve (5) directly, we opted to solve the original
optimization problem stated in (4). Optimization over the decision
regions is not necessary as only data bits are sent. We numeri-
cally solved the optimization problem using Matlab’s optimization
program fmincon, which uses the Nelder-Mead direct search al-
gorithm. Figure 2 shows the results for bit-interval durations and
mean-squared error gain for �-bit data. For small SNRs, trans-
mitting only the most-significant bit minimizes the mean-squared
error. The mean-squared error decreased by a few decibels for
equal-duration bit intervals in this SNR range. As SNR increases,
the next most significant bits are used, and the mean-squared er-
ror continues to decrease, becoming about 13 dB at its maximum.
Maximum gain occurs when all bits are transmitted, but not when
they alloted the same duration. Further SNR increases result in
equal-duration bit intervals, which means that ultimately no gain
(0 dB) occurs.

This variation of bit-interval durations and mean-squared error
gain with SNR typified the behavior when smaller number of bits
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Fig. 2. The top panel shows as a stacked bar histogram the bit
intervals that optimize the mean-squared error of the reconstructed
data. The most-significant bit occurs at the bottom of a stack and
the least-significant at the top. The horizontal axis is the signal-
to-noise parameter � found in equation (5), which is equivalent to
�
�	�. The bottom panel shows the resulting gain (decrease) in
mean-squared error relative to that of equal-duration bit intervals
expressed in decibels. Here, positive gains correspond to smaller
mean-squared errors.

� were transmitted. Figure 3 shows the mean-squared error gains
that resulted. The maximal gains decrease as the number of bits
decreases, and the SNR at which equal-duration bit intervals are
optimal decreases. We did not consider more than eight bits.

2.2. Coded case

When error correction is incorporated into the communication sce-
nario, the time taken for the coding bits can also be allowed to
vary. We solved the optimization problem stated in (4) for a (7,4)
Hamming code. The bit-interval durations of both data and error-
correction bits were allowed to vary independently while imposing
the constraint that the sum of the durations must equal the sam-
pling interval ��. With this constraint, the data rate equals that
when no coding is used. Note that this approach means that when
error correction is used, less time is available to transmit the data
bits, which leads to larger bit error probabilities. This effect is
countered by the ability to correct errors (1 error in the case of the
(7,4) code). However, it could well be that when the quality of
the communications system is judged on the basis of signal dis-
tortion (mean-squared error), error correction may not be the best
solution.

Figure 4 shows the result of our optimization. As expected, the
durations of the most significant bits are longer than those of the
least significant bits until large SNRs are reached. Interestingly, no
error correction is optimal for SNRs smaller than a threshold (here
about SNR � ��). Once this threshold is exceeded, all error-
correction bits appear and their durations are comparable to that of
the least-significant bits. Well above this threshold, equi-duration
intervals are optimal. Below threshold, the gain in mean-squared
error relative to the equal-duration, no-error-correction case is a
few decibels larger than the gain when no error correction is used
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Fig. 3. The mean-squared error gain is shown for three values of
� , the number of bits used to represent the sample’s value. The
mean-squared error gains decrease as fewer data bits are used. The
SNR at which equal-duration bit intervals occurs decreases as the
number of data bits used in the sampling decreases.
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Fig. 4. The top plot shows the optimal (minimum mean-squared
errror) bit-interval durations as a function of �
�	� for a ��� ��
Hamming code. The most significant bit lies at the botttom of each
column and the least significant bit the fourth interval from the bot-
tom. The three error-correction bit intervals are shown at the top of
the columns, and only occur in the last five columns. The bottom
plot shows the gains in mean-squared error that accrue in compar-
ison to two reference values. The solid line shows the gain that
results when the reference is the mean-squared error incurred by
assigning equal-duration bit intervals to data and error correction
bits (equal to ���� in this case). The dashed line shows the gain
when the reference is equal duration bit-intervals for the no error
correction case.
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(figure 3, � � �). The dashed line in figure 4 shows the mean-
squared error achieved in comparison to the case when no error-
correction code is used. When this gain is less than the gain over
the coded case, that indicates that imposing the (7,4) code actu-
ally worsens mean-squared error when bit-interval durations are
equal. When the gain is higher, error-correction improves mean-
squared error. Error-correction improves the mean-squared er-
ror only for SNRs greater than about 40 in our example. When
optimal-duration error correction is present at higher SNRs, large
gains become apparent.

3. CONCLUSIONS

The optimality of unequal bit-interval durations for minimizing
mean-squared error is not surprising. What is surprising is that the
improvement in mean-squared error is so large (figure 3). Maximal
gain (reduction) of mean-squared error occurs in a signal-to-noise
ratio range typical of wireline communication systems (greater
than 10 dB SNR for each bit). In this range, unequal bit-interval
durations for all the data bits provides the smallest mean-squared
error. For smaller SNRs more typical of wireless systems, unequal
bit-interval durations and not transmitting some of the less signif-
icant bits is optimal.

The unequal bit-interval durations may be difficult to coordi-
nate between transmitter and receiver, especially in a wireless mul-
ticast situation. That said, our results can be interpreted as how
to allocate power on a bit-by-bit basis and how many bits to use
to represent data. Thus, in addition to power control, additional
gains can be achieved by carefully allocating transmitter power at
the level of single bits.

For the single-bit block error correction considered here, fold-
ing it into the optimization was only effective at very large signal-
to-noise ratios. At smaller ratios, the power consumed by trans-
mitting error correction bits is better spent on the data. The error-
correction afforded by the code did not compensate for the in-
creased error probability.

In summary, our results suggest that considering signal distor-
tion at the physical as well as higher layers can be a fruitful. Our
results are not tied to mean-squared error as any sample-to-sample
distortion measure can be used in equation (4).
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