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ABSTRACT

Rapidly fading channels provide Doppler-induced diversity,
but are also challenging to estimate. To by-pass channel
estimation, we derive a novel block differential codec. Re-
lying on a basis expansion model for time-varying chan-
nels, our block differential design is easy to implement, and
achieves the maximum possible Doppler diversity. Simula-
tion results corroborate our theoretical analysis.

1. INTRODUCTION

Modeling channel variations and coping with time-selective
fading are important and challenging tasks in mobile com-
munications. Pilot symbol assisted modulation (PSAM) of-
fers an effective means of estimating time-selective chan-
nels with bandlimited variations [2], but is not designed to
capitalize fully on Doppler diversity. As an alternative to
PSAM, we develop in this paper a block differential scheme
that obviates channel estimation, while enabling full diver-
sity gains. Scalar differential phase shift keying (DPSK) has
well documented merits; see also [3, 7] for recent results
on improving the decoder’s performance. Since diversity
is known to combat fading, differential schemes have been
designed to collect space-diversity [4, 5], and multipath di-
versity over frequency-selective channels using orthogonal
frequency division multiplexing [1]. Existing differential
schemes for time-selective channels, employ either multi-
ple symbol detection (MSD) [3, 8], or, decision-feedback
differential detection (DF-DD) [7, 8].

However, these approaches for time varying channels
are not designed to exploit Doppler diversity gains, and may
entail high decoding complexity. Based on an existing basis
expansion model (BEM) [9], a block differential (BD) de-
sign is derived here, which applies block differential modu-
altion along with DF-DD, or, Viterbi decoding.
Notation: Upper (lower) bold face letters will be used for
matrices (column vectors). Superscript H will denote Her-
mitian, and T transpose. We will reserve E[·] for expecta-
tion, ‖ · ‖ for Frobenius norm. We will use [A]k,m to de-
note the (k,m)th entry of a matrix A, and [x]m to denote
the mth entry of the column vector x; IN will denote the
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N × N identity matrix, 1N an N × 1 column vector of all-
one entries; diag[x] will stand for a diagonal matrix with x

on its main diagonal.

2. SYSTEM MODEL

Although extensions to multi-antenna systems are possible,
in this paper we focus on single-antenna block transmis-
sions over time-varying channels. The information bearing
symbols s(n) are drawn from a finite alphabet As with car-
dinality 2R, where R denotes the transmission rate. They
are parsed into blocks of size N × 1: [s(k)]n := s(kN +
n − 1). Each information block s(k) is encoded by a dif-
ferential encoder D(·), whose output is (see also Fig. 1):
u(k) := D(s(k)). Since in the following we will work on a
block-by-block basis, we will drop the block index k. Each
block u is interleaved by a block interleaver Π with depth
M . We take N to be an integer multiple of M . Later, we
will show the relationship between M and N . Define the
output of the interleaver Π as ū := Πu. After parallel-
to-serial (P/S) conversion, pulse shaping, and carrier mod-
ulation, the block ū is transmitted through a time-varying
channel, whose delay spread is smaller than the symbol pe-
riod Ts; hence, no frequency selectivity appears.

The nth sample at the receive-filter output (sampled
with period equal to the symbol period Ts) is:

x(n) =
√

ρ h(n) ū(n) + w(n), (1)

where ρ is the signal power per symbol, h(n) is the aggre-
gate time-selective impulse response that includes transmit-
receive filters at the nth time slot, and w(n) is additive
white Gaussian noise (AWGN) with mean zero, and vari-
ance N0/2. For the Doppler power spectrum of a mobile
radio channel, the Jakes’ model has been widely used [6].
As the number of parameters in the Jakes’ model can be
prohibitively large, we are motivated to consider the parsi-
monious BEM [9]. In its discrete-time baseband equivalent
form, the BEM describes h(n) as:

h(n) :=

Q
∑

q=0

hqe
jωqn, (2)

where ωq := 2π(q−Q/2)/N , and Q := 2dfmaxNTse, with
the parameter fmax denoting the maximum Doppler shift.
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Fig. 1. Discrete-time block model of transmit-receiver.

Because it can be measured experimentally in practice, we
assume that fmax, and thus Q, are known and bounded (N
and Ts are up to the designer’s disposal). Time variation in
the BEM (2) is captured by the discrete-time complex ex-
ponentials, while the coefficients {hq}Q

q=0 remain invariant
over each block containing N symbols. A fresh set of BEM
coefficients is considered every NTs seconds.

At the receiver, the samples x(n) are serial-to-parallel
(S/P) converted to form the N × 1 blocks with polyphase
components [x]i := x(i), i ∈ [0, N − 1]. The matrix-vector
counterpart of (1) can then be expressed as:

x =
√

ρ Dhū + w, (3)

where Dh := diag[h(0), . . . , h(N − 1)], and w is defined
similar to x. Defining [Ω]p+1,q+1 := exp(jωqp), and
[h]q+1 := hq, p ∈ [0, N − 1], q ∈ [0, Q], we can express
Dh as

Dh = diag[Ωh]. (4)

Each block x is deinterleaved by Π−1, to obtain y :=
Π−1x. Given the number of bases Q, we select N =
M(Q + 1). Recalling that M is the depth of the interleaver,
we obtain that interleaving and de-interleaving result in di-
viding the N × (Q + 1) Vandermonde matrix Ω into M
non-overlapping sub-matrices {Ωm}M−1

m=0 . Each sub-matrix
Ωm is also a (Q + 1) × (Q + 1) Vandermonde matrix with
(k + 1, q + 1)st entry [Ωm]k+1,q+1 = exp[jωq(m + kM)].
Since ΩH

mΩm = (Q+1)IQ+1, it follows that Ωm is unitary.
The equivalent channel matrix becomes

Π−1DhΠ = diag[hT
0 ,hT

1 , . . . ,hT
M−1], (5)

where hm := [h(m), h(m + M), . . . , h(m + QM)]T =
Ωmh, ∀m ∈ [0,M − 1].

Using ū = Πu and inserting (5) into (3), we can write
the input-output relationship in a per sub-block form as

ym =
√

ρ Dhm
um + wm, m ∈ [0,M − 1], (6)

where [ym]q+1 = y(mM + q), [um]q+1 = u(mM + q),
and wm is defined similar to hm. Although we will use the
BEM to quantify the diversity, our design (and (6)) applies
to any time-selective channel model.

The block ym is finally decoded by a differential de-
coder D̄(·) to obtain an estimate of sm: ŝm := D̄(ym).

3. BLOCK DIFFERENTIAL DESIGN

In this section, we will show how to design the differential
encoder D(·), and decoder D̄(·). These along with block

(de-)interleaving will allow us to bypass channel estima-
tion, and achieve the maximum possible Doppler diversity
provided by our time-selective channel.

The differential encoder starts by splitting the N × 1
vector s to obtain polyphase sub-blocks {sm}M−1

m=0 with
[sm]q+1 := s(m(Q + 1) + q), q ∈ [0, Q]. Mapping sm

to Vm, and generating um by using the unitary differential
modulation of [4, 5] between consecutive sub-blocks, we
obtain

um =

{

Vmum−1 if 1 ≤ m ≤ M − 1

1Q+1 if m = 0,
(7)

where the (Q + 1) × (Q + 1) diagonal matrix Vm ∈ V

conveys the information. As we have mentioned, each en-
try of sm is chosen from a finite alphabet with cardinal-
ity 2R; therefore, we need to design V with cardinality
|V | = 2R(Q+1). A simple design comprises a commuta-
tive group V of diagonal matrices with 2R(Q+1) elements
so as to make it cyclic, as in [4]; thus, Vm is unitary.

By interchanging Dhm
with um in (6), we have

Dhm
um = Dum

Ωmh. Because the BEM coefficient vec-
tor h remains unchanged across sub-blocks of the same
block, and Dum

, Ωm are unitary, considering two consecu-
tive sub-blocks, we obtain [c.f. (6)]

ym = Dum
ΥDH

um−1
ym−1 + w′

m,∀m ∈ [1,M − 1], (8)

where Υ := ΩmΩH
m−1/(Q + 1) is independent of m,

and w′
m := wm −Dum

ΥDH
um−1

wm−1 is AWGN because
Dum

ΥDH
um−1

is a unitary matrix. Because wm and wm−1

are independent, the covariance matrix of w′
m is N0IQ+1.

Note that because V is a cyclic group, Dum
=

∏m
l=1Vl ∈ V .

Based on (8), detecting Dum
will depend not only on

the received vectors ym and ym−1, but also on the symbols
transmitted in earlier intervals. This is because the equiv-
alent channels vary across sub-blocks. To cope with the
multi-symbol dependence in (8), we will develop two de-
tectors: one utilizing block DF-DD, and the other relying
on the Viterbi algorithm (VA).

Letting D̂um−1
denote the estimate of Dum−1

, our block
DF-DD is defined as

D̂um
= arg min

D̃∈V

‖ym − D̃ΥD̂H
um−1

ym−1‖. (9)

To mitigate error propagation, one can resort to multi-
symbol detection (MSD), which in our case detects multiple
sub-blocks, but also increases decoding complexity expo-
nentially. Instead, we recommend the VA which uses ML
sequence detector as:

{D̂um
}M−1

m=1= arg min
∀D̃um∈V

M−1
∑

m=1

‖ym−D̃um
ΥD̃

H

um−1
ym−1‖2. (10)
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Because the decision on D̂um
depends only on a single

previous sub-block Dum−1
, we design a VA with |V | =

2R(Q+1) states at one stage. Using VA searching through a
trellis with M − 1 stages, we can estimate {Dum

}M−1
m=1 .

Based on either DF-DD or VA, we can obtain V̂m =
D̂H

um−1
D̂um

. The estimate of sm can be found by demap-

ping V̂m to ŝm. Notice that the block DF-DD has complex-
ity of O(2R(Q+1)), while the VA has slightly higher com-
plexity of O(22R(Q+1)).

4. PERFORMANCE ANALYSIS

In Sections 2 and 3, we developed a block differential (BD)
scheme for time-selective channels. In this section, we will
show that our design guarantees maximum Doppler diver-
sity at least for high SNR. Our derivations are based on the
following operating conditions:
AS1) BEM coefficients {hq}Q

q=0 are zero-mean, complex
Gaussian random variables;
AS2) High SNR is considered only for deriving the diversity
order.

If we consider each sub-channel in hm (5) as a transmit-
antenna, our single-antenna setup can be viewed as a sys-
tem with Q + 1 transmit- and one receive-antennae, simi-
lar to that considered in e.g., [4]. Employing (8) at the re-
ceiver, we will analyze the pairwise error probability (PEP),
Pr[Vm → V′

m], that Vm is incorrectly decoded as V′
m 6=

Vm [4, 5]. Based on AS2), we ignore the noise term in (8).
Plugging (7) into (8), and relating ym−1 to h, we obtain the
conditional PEP by using the Chernoff bound:

Pr[Vm → V′
m|h]

≤ exp

[

−‖√ρ [V′
m − Vm]Dum−1

ΥΩm−1h‖2

8N0

]

.(11)

It is worth mentioning that the variance of w′
m in (8) is N0

which is twice that of wm, consistent with the well known
3dB loss in SNR that differential detectors exhibit relative
to coherent ones.

Although the channel is unknown at the receiver, based
on AS1), (11) allows us to average the conditional PEP
over the Rayleigh distributed channel parameters. Defin-
ing Rh := E[hhH], and eigen-decomposing Rh, we find
Rh = UhΛhU

H
h , where Λh = diag[λ0, . . . , λrh−1] con-

tains the non-zero eigenvalues of Rh, and rh is the rank of
Rh. The average PEP Pr[Vm → V′

m] depends on the rank
of the matrix Am := (Vm−V′

m)Dum−1
ΥΩm−1UhΛ

1/2
h .

Thus, the maximum Doppler diversity is defined as

Gd = min
∀Vm 6=V′

m

rank(Am). (12)

If the correlation matrix Rh has full rank, i.e., rh = Q + 1,
and no error propagation occurs, then the maximum diver-

sity Q + 1 is achieved by our differential scheme with V

designed as in [4, 5].
Note that in our BD scheme, we fix the sub-block length

to Q + 1. If the length of each sub-block is smaller than
Q+1, then Ωm is not unitary; i.e., ΩH

mΩm 6= (Q+1)IQ+1,
and the differential detectors in (9) and (10) are no longer
applicable. When the sub-block size is greater than Q + 1,
the code design and decoding both become more complex,
while the performance may not improve.

Since one sub-block is used to initialize the differential
recursion (7), the bandwidth efficiency (defined as the ra-
tio of the number of information-bearing symbols over the
block size) is given by:

η :=
N − (Q + 1)

N
= 1 − Q + 1

N
. (13)

Accounting for the pilot symbols per PSAM block (which
is an alternative to coping with time-varying channels), the
bandwidth efficiency is ηpsam = 1 − (Q + 1)/N , which is
identical to (13). Note that scalar DPSK affords bandwidth
efficiency ηdpsk = 1 − 1/N , which is higher than (13).

5. SIMULATED PERFORMANCE

For all test cases QPSK modulation is selected, leading to a
transmission rate R = 2. The cardinality of V is 2R(Q+1)

for different Qs. The signal-to-noise ratio (SNR) is defined
as Eb/N0, where Eb is the signal power per information bit.
Test case 1 (Error propagation effects and performance
comparisons): The Q + 1 BEM coefficients are generated
as complex Gaussian distributed with zero-mean. We select
Q = 2, 4 corresponding to fmaxTs = 0.02, 0.04, and decide
the block length as N = 48, 50, respectively. The bit-error-
rate (BER) performance is plotted in Fig. 2. We notice that
the error propagation effect on the performance of our DF-
DD is small (less than 0.3 dB), or, even negligible. This is
because the initial sub-block is known, and the decision of
the current sub-block only depends on a single previous sub-
block. In addition, Viterbi decoding is considered for Q =
2, and we can see that both DF-DD and Viterbi decoding
provide almost identical boost in performance.

In this case, we also plot the benchmark performance of
coherent receivers when Q = 2, assuming that the channel
is perfectly known at the receiver. Note that the “3 dB dif-
ference” complies with our analysis in Section 4. Relying
on the BEM, we also compare here the BER performance of
our differential design with PSAM [2]. From these curves,
we observe that: i) as Q increases, the performance of our
BD scheme improves, because faster varying channels in-
troduce more Doppler diversity; whereas for PSAM, the di-
versity order is always about one, irrespective of Q; and ii)
for medium to large SNR values, the performance gain in
our design with Q = 4 outperforms PSAM as much as 10
dB at BER= 10−3.
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Test case 2 (Performance comparison with [8]): The
channel is generated based on the Jakes’ model [6, p.68]
with fmaxTs = 0.02, and the block length is chosen to be
N = 100. The BER performance is depicted in Fig. 3.
Note that although our BD scheme is not designed based on
Jakes’ model, it still enjoys Doppler diversity gains. How-
ever, the scheme in [8] can only achieve diversity one. Com-
pared with [8], the price we pay is longer decoding delays
because of the block interleaver.
Test case 3 (Performance comparison with [3]): Select
N = 180, and fmaxTs = 0.01. Again, Jakes’ model is
used to generate the channels. We select the design in [3]
as an MSD representative. Different MSD sizes (NMSD =
1, 3, 5) are tested. Fig. 4 depicts the simulated performance.
Thanks to the block differential design at the transmitter,
our scheme achieves higher diversity than [3] with compa-
rable decoding complexity when NMSD = 5. The MSD
in [3] though, exhibits diversity order one. However, our
BD has relatively longer decoding delays, higher decoding
complexity, and lower bandwidth efficiency.
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