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Abstract — An on-line Bayesian based multiple hy-

potheses detection algorithm is used in the detec-

tion/isolation of a new user in a multiuser CDMA

environment. The algorithm makes use of user ar-

rival rate information available at the system admis-

sion controller. Comparison by simulation between

this algorithm and the Matrix CUSUM shows that,

when such information is available, the new algorithm

that incorporates this information can achieve better

performance than the non-Bayesian approach.

I. Introduction

Multiuser detection (MUD) has been shown to be an
important demodulation technique for use in direct se-
quence code division multiple access (DS/CDMA) sys-
tems. Though many MUD schemes have been proposed,
their performance depends significantly on the assump-
tions made about the availability of other interferer pa-
rameters (for example, signature sequences and ampli-
tudes) and on the complexity of the signal processors. For
example, a change in user population in a mobile com-
munication environment will degrade the performance of
MUD if it cannot adapt quickly to take into account the
new set of interferer parameters [5] (see also [2] for a good
numerical example, where MUD suffers from catastrophic
error after the entrance of a new user).

The acquisition of new user parameters in such situa-
tions has been studied in [1] using off-line methods. The
authors in [5] have recently proposed a new on-line algo-
rithm (the Matrix CUSUM) which is based on Nikiforov’s
generalized change detection algorithm in [4]. This new
algorithm has the obvious on-line advantages over the off-
line ones of [1] and its asymptotic optimality for the worst
mean detection/isolation delay has been proven, These al-
gorithms are designed to operate without prior knowledge
of the change time in the network. However, in many ap-
plications some prior statistical information about entries
and exits from the network is available at the system ad-
mission controller.

In this paper, we use a new on-line Bayesian admission
control based detection algorithm that allows us to take
into account the a priori probability of the change time
given by the system admission controller. The algorithm

is based on the generalized Shiryayev sequential proba-
bility ratio test (SSPRT) proposed by Durga and Speyer
in [3]. Focusing on the detection of the entrace of a new
user into the network, we also show how knowledge of the
distribution of new user amplitude can be exploited in
the SSPRT. Simulations for the case in which the ampli-
tude of new user is known exactly and the case in which
the amplitude is random with a known distribution, show
that the SSPRT achieves superior performance to the Ma-
trix CUSUM (in terms of fewer numbers of false alarms
and misses, and shorter detection delay), especially in the
latter case).

The paper is organized as follows. In Section II, a brief
description of the signal model and the problem state-
ment are presented. Section III summarizes the Matrix
CUSUM algorithm. The SSPRT algorithm and its ap-
plication in the cases of known new user amplitude and
random amplitude with known distribution are presented
in Section IV. Numerical results are given in Section V.

II. DS/CDMA Signal Model

Consider a synchronous binary DS/CDMA communica-
tion system with K active users transmitting through an
additive white Gaussian noise channel. The received base-
band signal during one symbol interval is passed through a
chip-matched filter followed by a chip-rate sampler and is
converted to an N vector of samples, where N denotes the
processing gain (spreading factor). At the i-th received
symbol we have:

r(i) = SAb(i) + σn(i) i = 1, 2, ... (1)

where S = [s1s2...sK ] is the matrix whose columns are
the users normalized signature sequences (i.e., sT

k sk = 1),
b(i) = [b1b2...bK ] is a vector of user data symbols (bk =
±1), A = diag(A1, A2, ..., AK) is the diagonal matrix of
user received amplitudes, σ is the standard deviation of
the noise samples, and n(i) is a white Gaussian vector
with mean zero and covariance matrix IN (where IN de-
notes the N×N identity matrix). It is assumed that there
is a total of N linear independent signature sequences and
K < N . Here and elsewhere xT denotes the transpose of
the matrix or vector x.
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A. Problem statement

We adopt the basic formulation of [5]. Let M = N −K
and Z = {zj}M

j=1 denote the set of remaining signa-
ture sequences to be assigned to new users. The detec-
tion/isolation problem is formulated as detecting the ap-
pearance of a new users (detection) and deciding which
element of Z has been assigned to that new user (isola-
tion). Denote the unknown change time as α, Let Hα

j

be the hypothesis that the spreading code zj is assigned
to a new user at the change time α. Hence under Hα

j ,
j = 1, 2, . . . , M , we have

r(i) =
{

SAb(i) + σn(i), i = 1, 2, ..., α − 1
SAb(i) + AK+1bK+1(i)zj + σn(i) i = α, α + 1, ...

(2)
Define the composite hypothesis Hj = ∪∞

α=1Hα
j for j =

1, . . . , M each corresponding to a different change type.
Then we have a total of M hypotheses about the type of
change, plus the null hypothesis H0 which represents the
no change situation α = ∞.

Unlike the situation in [5], we further assume that users
arrive independently according to a Bernoulli process with
probability p that a new user arrives at any time instant,
where p is specified by the system admission controller.
Therefore the mean time between arrivals is E[α] = 1/p.
We do not treat the case in which users exit the network,
although this situation can be treated in a straightforward
modification of the approach developed here.

III. Matrix CUSUM

This section summarizes the likelihood based and mini-
mum mean square error (MMSE) based Matrix CUSUM
algorithms developed in [5]. These will be used for com-
parison with our Bayesian detection algorithm.

A. Matrix CUSUM

This algorithm compute the CUSUM statistic in a recur-
sive fashion as follows. First, the score function is com-
puted for each vector observation x(i)

gi(j, 0) = ln
fj(x(i))
f0(x(i))

, 1 ≤ j ≤ M (3)

where fj is the probability density function

(pdf) under Hj . Secondly, we define gi
�
=

[gi(1, 0), gi(2, 0), ..., gi(M, 0)]T and update the CUSUM
matrix Ti as

Ti = (Ti−1 + Gi)+, T0 = 0 (4)

where Gi
�
= gi1T −1gT

i +diag(gi) and 1 is an M×1 vector

of all ones. The operation (.)+
�
= max(., 0) is applied

element-wise. After that, the vector Qi containing the
minimal element of each row of Ti is calculated. The
algorithm stops as soon as any element of Qi exceeds a
threshold h and declares a change of type Hj where j is
the index of the first element of qi to exceed h.

B. Known amplitude case

The first step is to compute the noise column subspace
U so that UT U = IM and UT S = 0. Then, the vector
observation x(i) is defined as x(i)

�
= UT r(i). Also define

m(i) �= UT n(i) and wj
�= UT zj . With the above defini-

tions, we have the following change detection problem:

x(i) =
{

σm(i) i = 1, 2, ..., α − 1
AK+1bK+1(i)wj + σm(i) i = α, α + 1, ...

(5)
Since the sequence x(1), x(2), ..., x(α − 1) are i.i.d
with Gaussian pdf f0 ∼ N (0, σ2IM ) and x(α), x(α +
1), ... are i.i.d with Gaussian mixture pdf fj ∼
1
2N (AK+1wj , σ

2IM ) + 1
2N (−AK+1wj , σ

2IM ), the score
function and thus CUSUM matrix in (3) and (4) can be
readily obtained.

C. MMSE-based Matrix CUSUM

Because of the unavailability of exact knowledge about
amplitude of new user AK+1 in practice, authors in [5]
replaced the score function in (3) by the following

gi(j, 0) = (vT
j r(i))2 − vT

j Cvj , 1 ≤ j ≤ M (6)

where C is the autocorrelation matrix of the received sig-
nal before change and given b

C
�
= E{r(i)r(i)T } = SA2ST + σ2IN (7)

and vj is MMSE detector for the new user

vj =
C−1zj

zT
j C−1zj

(8)

The CUSUM matrix can be now computed using (4).

IV. Admission control based activity detection

In this section, we present the SSPRT algorithm which
uses apriori knowlege of the arrival rate of new users from
the admission controller. We present two detection algo-
rithms: The first is for the detection of a new user for the
case when the amplitude is known. The second algorithm
considers the case when the amplitude is a random vari-
able with known Rayleigh distribution. We use Rayleigh
distribution as it is a commonly used model for a mo-
bile environment, the extension to other distributions is
straight forward.
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A. SSPRT in known amplitude case

By showing that the posterior probabilities of hypotheses
Hl where l = 0, 1, 2..., M can be computed recursively, the
authors in [3] have formulated the optimal decision algo-
rithm as a dynamic programming problem and derived
the explicit method for interpreting the threshold selec-
tion. Firstly, the posterior probabilities of hypotheses Hl

are updated iteratively by

Fi+1,l =
φi,l.fl(x(i + 1))∑M
l=0 φi,l.fl(x(i + 1))

0 ≤ l ≤ M

F0,l = πl

φi,j = Fi,j + pj(1 − Fi,j) 1 ≤ j ≤ M

φi,0 =
∏
j

(1 − φi,j)

(9)

where πl is initial probability of Hl, pj is a priori proba-
bility of occurrence of Hj (note that

∑
j pj = p). After

putting (9) in a dynamic programming formulation, the
optimal decision rule, that minimizes total expected cost,
becomes

• Announce a change Hj if Fi,j ≥ FTi,j

• Take another observation otherwise

where FTi,j is the optimal threshold at time i. Due to
the complexity in evaluating the optimal thresholds, it
was shown in [3] that the limiting stationary threshold
Fj can be used as the following has been proved FT0,j ≤
FT1,j ≤ ... ≤ Fj = Rj

Rj+Dj
where Rj and Dj are the cost

of false decision and the cost of delay by taking another
measurement respectively. Thus the choice of threshold
becomes the setting the costs Rj , Dj which depends on
the specific applications.

The application of SSPRT in the case of known new
user amplitude is straight forward, using the same vector
observation x and pdf as in the subsection III.B. and (9)

B. SSPRT in random amplitude case

Here we assume that the new user amplitude is not
known but its a priori Rayleigh distribution is known.
For this case, we also use the statistic x in (5) and pdf
f0 ∼ N (0, σ2IM ). The other pdf fj can be derived using

fj(x) =
∫ ∞

0

fj(x | a)fA(a)da 1 ≤ j ≤ M (10)

where fj(x | a) ∼ 1
2N (awj , σ

2IM ) + 1
2N (−awj , σ

2IM ) is
the conditional pdf given the amplitude of new user is
a ≥ 0 and fA(a) is pdf of new user amplitude.

The pdf fA(a) of the Rayleigh distribution is

fA(a) =
a

σ2
a

exp(− a2

2σ2
a

) (11)

Placing (11) into (10) we obtain fj ∼ 1
2L(w, σ, σa) +

1
2L(−w, σ, σa) where L distribution has the pdf f(x) as

Y1 =
σ

(2π)M/2σs

Y2(x) = exp(−xT x

2σ2
)

Y3(x) = exp(
xT wxT wσ2

a

2σ2σ2
s

)
xT wσa

σσs
erfc(−xT wσa√

2σσs

)

f(x) = Y1Y2(x)
[
Y3(x)

√
π

2
+ 1

]
(12)

where erfc(y) = 2√
π

∫ ∞
y

exp(−t2)dt is the complementary
error function and σ2

s = σ2 + σ2
awT w.

V. Numerical Examples

We use the same system configuration for simulation as in
[5] with processing gain N = 31, K = 10 active users so
that S = [s1, s2, ..., s10], the remaining M = 21 signature
sequences form Z = [z1, z2, ..., z21], equal amplitudes A1 =
A2 = ... = A10 = 3, noise variance σ2 = 1, new user
amplitude A11 = 3. We assume that only one user enters
the system at a time with equal a priori probability pj =
p/M . The SSPRT starts with initial probabilities π0 =
0.99, π1 = π2 = ... = πM = 0.01/M .

Since the Matrix CUSUM algorithm does not take into
account the a priori probability of the change time, we can
not use the same simulation setup in [5] to compare it with
SSPRT. Furthermore, the problem of detection/isolation
here is not simply a multiple hypotheses testing prob-
lem but more complicated due to the change in number
of hypotheses and dependence of that number on the cor-
rectness of the previous detection/isolation. Therefore we
design our simulation scheme as follows
Step1: generate T change points α0 = 0, α1, α2, ..., αT

with E[αt+1 − αt] = 1/p. Initialize NumFalse =
NumMiss = NumDetect = T imeDelay = t = 0
Step2: generate statistic x in (5) for the period from αt

to αt+1 − 1 under H0 and from αt+1 to αt+2 under Hj

Step3: there are 3 possibilities

1. 1. if there is a false alarm or isolation, then
NumFalse = NumFalse + 1

2. 2. if there is a true detection with delay d, then
NumDetect = NumDetect + 1, T imeDelay =
T imeDelay + d

3. 3. if there is no alarm, then NumMiss =
NumMiss + 1

Step4: t = t + 1 and if t ≤ T − 2, then go to Step2.
Step5: The mean detection delay is defined as Td =
TimeDelay
NumDetect Because a false alarm or a false isolation in
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the past decision will cause the miss in the future deci-
sions (the set of actual hypotheses will be different from
the set of testing hypotheses), it makes sense to take the
sum of NumFalse+ NumMiss and use it and the mean
detection delay Td as the performance indexes in compar-
ison between the two algorithms.

We use T = 10000, p = 0.01 in all simulations below.
The second simulation compare MMSE-Based CUSUM

and SSPRT in the case where amplitude of new user has
Rayleigh pdf and SSPRT with known mean amplitude
only for a set of different thresholds. The Rayleigh distri-
bution is specified by σ2

a = 2E[a]2/π where mean ampli-
tude E[a] = 3. The performance comparison is shown in
Fig. 1 where SSPRTs (even SSPRT with known mean am-
plitude only)give much lower number of false and misses
at a considerably shorter mean detection delay (16 versus
120 and 6 versus 12 respectively). It can also be noted
that SSPRT with known distribution achieves better per-
formance than SSPRT with known mean amplitude only.

VI. Conclusion

In this paper, we have shown by simulation that an algo-
rithm (SSPRT) taking into account available knowledge
about the system parameters can outperform those ignore
that information. The venue for further work is to prove
the performances of SSPRT analytically.
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(a) MMSE CUSUM
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(b) SSPRT, ’o’ - known distribution, ’x’ - known mean
amplitude

Figure 1: Random new user amplitude with Rayleigh dis-
tribution case
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