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ABSTRACT 
 
The multi-code CDMA problem, and the corresponding data 
and noise model is discussed.  The problem of “cross-talk”, 
which occurs when using an MMSE receiver in colored noise, 
is addressed.  A method to avoid “cross-talk”, by choosing the 
eigenvectors of the interference plus noise matrix as codes, is 
introduced.  This approach is shown to produce codes that are 
orthogonal not only in the conventional sense, but also with 
respect to the interference plus noise matrix.  The gain on the 
codes is shown to be inversely proportional to the 
corresponding eigenvalue.  Simulation results demonstrate that 
the codes corresponding to the smallest eigenvalues 
dramatically out-perform the MMSE receiver for Walsh-
Hadamard codes in terms of mean-square error (MSE). 
 
 
 
 

1. INTRODUCTION 
 
In multi-code CDMA, the user effects serial to parallel 
conversion on a bit stream.  Multiple information symbols are 
transmitted simultaneously, with each symbol stream carried 
by a different code.  By using multiple codes in a synchronous 
fashion, the user increases the data transfer rate. 
 
The data model for multi-code CDMA is: 
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where cl is the N×1 code vector carrying the lth symbol stream, 
sl[n] is the nth symbol of the lth information stream, x[n] is the 
N×1 block of received data, and v[n] is the N×1 block of 
interference plus noise.  The resultant N×N interference plus 
noise correlation matrix will be represented by: 
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Assuming the parallel symbol streams to be independent, i.e. 
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plus noise correlation matrix is: 
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The optimal MMSE weight vector employed at receiver to 
extract the kth information symbol at time n takes the form: 
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Where α k is chosen to be 11 k k

−c R c so that 1H
k k =w c . 

However, this presents an issue for conventional orthogonal 
codes, since applying the MMSE weight for the kth code to the 
nth data block yields: 
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When the code words are standard orthogonal codes, such as 
Walsh-Hadamard codes, and when R≠I, 1H

k l klδ− ≠c R c .  The 
MMSE receiver destroys the orthogonality and allows for 
cross-talk between the codes. 
 
We assume that the interference plus noise matrix Q that is fed 
back from the receiver to the transmitter is relatively constant 
for some small period of time.  Note that the interference at the 
receiver may be other spread spectrum users, other wireless 
users, jamming, etc.  In previous work, including [1], [2], [3], 
and [4], second-order statistics have been fed back from the 
receiver to the transmitter in order to select codes that attempt 
to reduce multi-user access interference.  However, all of these 
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approaches have restricted the codes to vectors consisting only 
of the values 1 or -1.  They also did not address the problem of 
multi-code transmission.   
 
The following approach shows that by allowing the codes to 
take on unconstrained values, we can completely eliminate 
crosstalk even in the colored noise environment.  In contrast to 
prior work, we are not trying to adjust the codes of different 
users; rather we are adjusting the codes or a single multi-code 
user. 
 
2. DESIGN OF R-CONJUGATE CODES: 
EIGENVECTOR CODES 
 
Remarkably, designing the codes such that: 
 

1H
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allows for an MMSE receiver while still eliminating “cross-
talk” amongst the codes.  Conventional Walsh-Hadamard 
codes do not satisfy this constraint, because they suffer from 
“cross-talk” amongst codes as well as from interference. 
 
One approach for choosing codes that satisfy (7) is to use 
eigenvectors of the interference plus noise correlation matrix 
Q as code words: 
 

k k kλ=Qc c    (8) 
 

Since Q is Hermitian symmetric, it follows that ck is also an 
eigenvector of Q-1: 
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Further, since Q and Q-1 are both Hermitian symmetric, their 
eigenvectors are orthonormal (conjugate in the conventional 
sense): 
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It follows from (9) and (10) that: 
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Thus, the eigenvectors of Q-1 (which are the same as the 
eigenvectors of Q) are conjugate in the conventional sense and 
are Q-1-conjugate as well: 
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Furthermore, selecting eigenvectors of Q as codes implies they 
are R-conjugate and R-1-conjugate, as well as Q-conjugate, Q-

1-conjugate, and I-conjugate (the last one meaning orthogonal 

in the conventional sense).  To prove this, recall the structure 
of R in (3): 
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This implies that ck is an eigenvector of R with an eigenvalue 
of ksk λσγ += 2 .  Furthermore, since R is Hermitian 
symmetric, ck is also an eigenvector of R-1: 
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This is crucial, since it implies if we select an eigenvector of Q 
as the kth code, the MMSE weight vector for extracting the kth 
symbol is equal to the code itself: 
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The denominator reduces to one, since ck is an eigenvector of 
R-1 with unit length.  This result is directly analogous to using 
Walsh-Hadamard codes in white noise: the MMSE receiver for 
the kth Walsh-Hadamard code is the code itself. 
 
Applying the ck receiver weight to the nth data block gives, 
recalling (10): 
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In summary, if we select eigenvectors of Q, the interference 
plus noise correlation matrix, as codes, we find that ck, k = 
1..N, are orthogonal in all of the following ways: 
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By selecting code ck as an eigenvector of interference plus 
noise correlation matrix Q, the MMSE weight for extracting 
symbol carried by kth code becomes equal to the code itself.  
Because the codes are I-conjugate, this guarantees no “cross-
talk” amongst codes when applying the MMSE weight vector 
to extract the symbol carried by kth code. 
 
In contrast, the MMSE weight for extracting the kth Walsh-
Hadamard code in “colored noise” (interference), where Q≠I, 
lacks orthogonality and therefore causes “cross-talk” between 
the codes. 
 
3. SINR PERFORMANCE OF EIGENVECTOR CODES 
 
Since the use of eigenvector codes eliminates “cross-talk” 
between the codes, calculating the theoretical SINR for the kth 
received code is relatively simple.  Recalling (10), (11), and 
(18): 
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This result reveals that the SINR of each received code is 
inversely proportional to that code’s corresponding eigenvalue 
of Q.  The preceding analysis presumes that the codes are of 
unit length; if we scale the codes by a factor of N , so that 
they match the power of standard Walsh-Hadamard codes, 
then the received SINR will have a corresponding gain of 

N . 
 
Equation (21) suggests that the best codes to use for multi-
code transmission are the codes corresponding to the smallest 
eigenvalues of Q.  Higher-order constellations could also be 
used for the codes corresponding to the smallest eigenvalues, 
while lower order constellations are used for transmission of 
the codes corresponding to the larger eigenvalues.  Such a 
scheme takes advantage of their higher SINR to further 
increase the data transmission rate. 
 
4. SIMULATION RESULTS 
 
For the simulation, the case of length 16 codes was examined, 
with 9 parallel symbol streams being used by the transmitter.  
16-QAM symbols were used to transmit the data.  Two types 
of codes were used: standard Walsh-Hadamard codes, and 
codes consisting of the eigenvectors corresponding to the 9 
smallest eigenvalues of the interference plus noise matrix Q.  

In the case of the Walsh-Hadamard codes, an MMSE receiver 
was constructed by formulating R-1ck. 
 
The colored noise or interference environment consisted of 16 
random frequency sinusoidal interferers, each with power 
equal to one tenth the signal power.  There was also a 
relatively small white noise component (power = .01 times 
signal power). 
 
Figure 1 shows received constellations with Walsh Hadamard 
codes and an MMSE receiver.  Most of the codes have errors 
so large that the bit error rate approaches 50%.  This large 
spread is due to cross-talk as well as interference.  Note that a 
couple codes (codes 2 and 9 in this case) achieve fairly 
accurate reconstruction.  Previous research in this area has 
centered on finding binary spreading codes such as these, that 
minimize multi-user access interference on the output of the 
MMSE receiver. 
 
The final plot shows the performance of the eigenvector codes.  
The first seven of nine codes, which correspond to the smallest 
eigenvalues of Q, have error rates dramatically lower than the 
MMSE Walsh-Hadamard receiver, suggesting the use of a 
higher-order constellation.  The performance of the 
eigenvector codes associated with the larger eigenvalues of Q 
approaches that of the MMSE receiver with Walsh-Hadamard 
Codes. 
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Figure 1: Mean-Square Error (MSE) of Walsh-Hadamard codes with MMSE receiver 

 

-1 0 1

-1

0

1

Code 9; MSE = 0.04
-1 0 1

-1

0

1

Code 6; MSE = 4.4×10-5
-1 0 1

-1

0

1

Code 3; MSE = 1.1×10-5

-1 0 1

-1

0

1

Code 8; MSE = 0.0066
-1 0 1

-1

0

1

Code 5; MSE = 2.7×10-5
-1 0 1

-1

0

1

Code 2; MSE = 5.9×10-6

-1 0 1

-1

0

1

Code 7; MSE = 4.9×10-4
-1 0 1

-1

0

1

Code 4; MSE = 1.8×10-5
-1 0 1

-1

0

1

Code 1; MSE = 2.6×10-6

 
Figure 2: Mean-Square Error (MSE) of Eigenvector codes 
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