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ABSTRACT

The multi-code CDMA problem, and the corresponding data
and noise model is discussed. The problem of “cross-talk”,
which occurs when using an MMSE receiver in colored noise,
is addressed. A method to avoid “cross-talk”, by choosing the
eigenvectors of the interference plus noise matrix as codes, is
introduced. This approach is shown to produce codes that are
orthogonal not only in the conventional sense, but also with
respect to the interference plus noise matrix. The gain on the
codes is shown to be inversely proportional to the
corresponding eigenvalue. Simulation results demonstrate that
the codes corresponding to the smallest -eigenvalues
dramatically out-perform the MMSE receiver for Walsh-
Hadamard codes in terms of mean-square error (MSE).

1. INTRODUCTION

In multi-code CDMA, the user effects serial to parallel
conversion on a bit stream. Multiple information symbols are
transmitted simultaneously, with each symbol stream carried
by a different code. By using multiple codes in a synchronous
fashion, the user increases the data transfer rate.

The data model for multi-code CDMA is:
K

x[n]=>_s[nle, + v[n]

I=1

(M

where ¢, is the Nx1 code vector carrying the 1" symbol stream,
si[n] is the n™ symbol of the 1™ information stream, x[n] is the
Nx1 block of received data, and v[n] is the Nx1 block of
interference plus noise. The resultant NxN interference plus
noise correlation matrix will be represented by:

Q=¢ {v[n]vH [n]} )
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Assuming the parallel symbol streams to be independent, i.e.
8{5k [n]s,* [n]} = O'fé'k, the NxN signal, plus interference,

plus noise correlation matrix is:
K
R=c{x[n]x"[i]} =Y oec/ +Q O
i=1

The optimal MMSE weight vector employed at receiver to
extract the £™ information symbol at time » takes the form:

w,=a,Rc, “

Where o, is chosen to be l/ckR’lck so that wkHck =1.

However, this presents an issue for conventional orthogonal
codes, since applying the MMSE weight for the £™ code to the
n' data block yields:

K
wix[n]=> s [n]w/ec,+w/v[n] ®)
I=1
K
=Y a5 [n]e" R e, R[] ©
=)

When the code words are standard orthogonal codes, such as
Walsh-Hadamard codes, and when R#I, ckH R'c , 20, - The

MMSE receiver destroys the orthogonality and allows for
cross-talk between the codes.

We assume that the interference plus noise matrix Q that is fed
back from the receiver to the transmitter is relatively constant
for some small period of time. Note that the interference at the
receiver may be other spread spectrum users, other wireless
users, jamming, etc. In previous work, including [1], [2], [3],
and [4], second-order statistics have been fed back from the
receiver to the transmitter in order to select codes that attempt
to reduce multi-user access interference. However, all of these
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approaches have restricted the codes to vectors consisting only
of the values 1 or -1. They also did not address the problem of
multi-code transmission.

The following approach shows that by allowing the codes to
take on unconstrained values, we can completely eliminate
crosstalk even in the colored noise environment. In contrast to
prior work, we are not trying to adjust the codes of different
users; rather we are adjusting the codes or a single multi-code
user.

2. DESIGN OF R-CONJUGATE CODES:
EIGENVECTOR CODES
Remarkably, designing the codes such that:
Hyp -1
¢, R ¢, xo, (7

allows for an MMSE receiver while still eliminating “cross-
talk” amongst the codes. Conventional Walsh-Hadamard
codes do not satisfy this constraint, because they suffer from
“cross-talk” amongst codes as well as from interference.

One approach for choosing codes that satisfy (7) is to use
eigenvectors of the interference plus noise correlation matrix
Q as code words:

Qc, =4, (®)
Since Q is Hermitian symmetric, it follows that ¢, is also an
eigenvector of Q'

©

Further, since Q and Q™! are both Hermitian symmetric, their
eigenvectors are orthonormal (conjugate in the conventional
sense):

H
¢, ¢ =0, (10)
It follows from (9) and (10) that:
Hey-l 1 u
¢, Q¢ =/1—ck c, (1)

k

Thus, the eigenvectors of Q! (which are the same as the
eigenvectors of Q) are conjugate in the conventional sense and
are Q'-conjugate as well:

¢, Q'c, x &, (12)

Furthermore, selecting eigenvectors of Q as codes implies they
are R-conjugate and R'-conjugate, as well as Q-conjugate, Q°
!_conjugate, and I-conjugate (the last one meaning orthogonal
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in the conventional sense). To prove this, recall the structure
of Rin (3):
& 2
H
Re, =1) olee] +Qte, (13)
1=1
& 2
H
=Y olc,(c/'c,)+Qc, (14)
I=1
=ole, + ¢, (15)
=1 (16

This implies that ¢, is an eigenvector of R with an eigenvalue
of y, = O'S2 + A, . Furthermore, since R is Hermitian

. . . -1
symmetric, ¢y is also an eigenvector of R™:

Vi

R'c, = (17)

This is crucial, since it implies if we select an eigenvector of Q
as the k™ code, the MMSE weight vector for extracting the k™
symbol is equal to the code itself:

1
7ck

(18)

w - Rc, e
k= . T oH., %
¢R7c, Jelc,

The denominator reduces to one, since ¢ is an eigenvector of

R with unit length. This result is directly analogous to using

Walsh-Hadamard codes in white noise: the MMSE receiver for
the k™ Walsh-Hadamard code is the code itself.

Applying the ¢ receiver weight to the n' data block gives,
recalling (10):

w,x[n]=¢/x[n] (19)
K

=5, [n]efe, +¢v[n] (20)
1=1

=5, [n]+¢v[n] @1

In summary, if we select eigenvectors of Q, the interference
plus noise correlation matrix, as codes, we find that ¢, k =
1..N, are orthogonal in all of the following ways:

I-conjugate = ¢/¢, =0,

Q-conjugate = ¢;Qc, x5,
Q"' -conjugate = ¢,/Q’'c,  J,,
R-conjugate = ¢/Re, o« J,,

H

R -conjugate = ¢,/R’c, < J,,




By selecting code ¢, as an eigenvector of interference plus
noise correlation matrix Q, the MMSE weight for extracting
symbol carried by k™ code becomes equal to the code itself.
Because the codes are I-conjugate, this guarantees no “cross-
talk” amongst codes when applying the MMSE weight vector
to extract the symbol carried by k" code.

In contrast, the MMSE weight for extracting the k™ Walsh-
Hadamard code in “colored noise” (interference), where Q#I,
lacks orthogonality and therefore causes “cross-talk” between
the codes.

3. SINR PERFORMANCE OF EIGENVECTOR CODES

Since the use of eigenvector codes eliminates “cross-talk”
between the codes, calculating the theoretical SINR for the kh
received code is relatively simple. Recalling (10), (11), and

(18):

2

2
H H
|W (o | |C C | 1
kCr kY
SINR, =+ - =F

w,Qw, ¢ Qc, 4
This result reveals that the SINR of each received code is

inversely proportional to that code’s corresponding eigenvalue
of Q. The preceding analysis presumes that the codes are of

unit length; if we scale the codes by a factor of A/ N , so that

they match the power of standard Walsh-Hadamard codes,
then the received SINR will have a corresponding gain of

N

Equation (21) suggests that the best codes to use for multi-
code transmission are the codes corresponding to the smallest
eigenvalues of Q. Higher-order constellations could also be
used for the codes corresponding to the smallest eigenvalues,
while lower order constellations are used for transmission of
the codes corresponding to the larger eigenvalues. Such a
scheme takes advantage of their higher SINR to further
increase the data transmission rate.

2]

4. SIMULATION RESULTS

For the simulation, the case of length 16 codes was examined,
with 9 parallel symbol streams being used by the transmitter.
16-QAM symbols were used to transmit the data. Two types
of codes were used: standard Walsh-Hadamard codes, and
codes consisting of the eigenvectors corresponding to the 9
smallest eigenvalues of the interference plus noise matrix Q.
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In the case of the Walsh-Hadamard codes, an MMSE receiver
was constructed by formulating R™¢,.

The colored noise or interference environment consisted of 16
random frequency sinusoidal interferers, each with power
equal to one tenth the signal power. There was also a
relatively small white noise component (power = .01 times
signal power).

Figure 1 shows received constellations with Walsh Hadamard
codes and an MMSE receiver. Most of the codes have errors
so large that the bit error rate approaches 50%. This large
spread is due to cross-talk as well as interference. Note that a
couple codes (codes 2 and 9 in this case) achieve fairly
accurate reconstruction. Previous research in this area has
centered on finding binary spreading codes such as these, that
minimize multi-user access interference on the output of the
MMSE receiver.

The final plot shows the performance of the eigenvector codes.
The first seven of nine codes, which correspond to the smallest
eigenvalues of Q, have error rates dramatically lower than the
MMSE Walsh-Hadamard receiver, suggesting the use of a
higher-order constellation. The performance of the
eigenvector codes associated with the larger eigenvalues of Q
approaches that of the MMSE receiver with Walsh-Hadamard
Codes.
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Figure 1: Mean-Square Error (MSE) of Walsh-Hadamard codes with MMSE receiver
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Figure 2: Mean-Square Error (MSE) of Eigenvector codes
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