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ABSTRACT

Low-complexity rapid timing acquisition constitutes a major chal-
lenge in realizing the high potential that ultra-wideband (UWB) wire-
less technology promises for indoor communications. We derive
and test two such timing acquisition algorithms which capitalize on
the cyclostationarity that is naturally present in UWB transmissions.
Our novel schemes are blind, they do not require multiple antennas
or oversampling, and rely on frame-rate sampling which reduces
complexity and acquisition delay, considerably.

1. INTRODUCTION

With the Ultra Wideband (UWB) spectral mask (in the range of
3.1-10.6GHz) released by FCC in February 2002, the interest for
commercial applications of UWB technology is growing fast, es-
pecially in the areas of indoor wireless for short-range communi-
cations. This interest stems from several attractive features UWB
comes with: low-power, impulse-like, baseband transmissions with
improved penetration capability; rich multipath diversity that can be
collected with low-complexity RAKE reception; a large number of
users allowed access with Time Hopping (TH) codes; and potential
to overlay existing narrowband systems, such as IEEE 801.11 and
Bluetooth, with reduced interference (noise-like) characteristics; see
e.g., [2, 5, 7] and references therein.

One of the most critical challenges (at least at the physical layer)
in enabling the unique benefits of UWB transmissions, is the clock
synchronization step (a.k.a. timing offset estimation), the difficulty
of which is accentuated in UWB due to the fact that the information
bearing waveforms are impulse-like, and have low amplitude [6].
Peak-picking the output of a sliding correlator between the received
signal and the transmit-waveform template is not only sub-optimum
in the presence of dense multipath, but also results in unacceptably
slow acquisition times, and has prohibitive complexity when one has
to perform exhaustive search over thousands of bins (chips). Recent
attempts to improve acquisition speed include a coarse bin reversal
search considered in [4] for the noiseless case, and the design of a
coded beacon sequence in conjunction with a bank of correlators in
the context of data-aided localization [1].

This paper develops low-complexity rapid acquisition schemes
for non-data aided (a.k.a. blind) timing acquisition of UWB trans-
missions. The novel approach exploits the cyclostationarity (CS)
that emerges as UWB pulses are periodically repeated (one per frame)
across the multiple frames comprising each symbol. Unique to UWB,
this is on top of the well known CS that arises (even in narrowband
systems) due to the repeated use of the symbol waveform [9]. For
narrow-band systems, CS-based timing acquisition was dealt with
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in [3]. Different from [3], the timing algorithms here neither re-
quire oversampling nor they rely on multiple antennas to induce CS,
simply because they capitalize on the CS that is naturally present
in UWB signaling. Because they rely on frame-rate (as opposed
to chip-rate) samples, they can reduce complexity and acquisition
speed by one or two orders of magnitude. Equally attractive is their
blind estimation capability that makes them particularly suitable for
“cold start-up” scenarios.

The ensuing Section 2 outlines our system model and operating
transceiver conditions. Section 3 derives two novel acquisition algo-
rithms: one based on the periodically time-varying correlation, and
the other based on the cyclic correlation. Section 4 presents prelimi-
nary simulations. For tracking issues, we refer the reader to [9]. Due
to lack of space, detailed derivations of our acquisition and tracking
algorithms are included in the journal version [8].

2. MODELING AND PROBLEM STATEMENT

In impulse radio multiple access, every information symbol is trans-
mitted by repeating over Nf frames (each of duration Tf ) an ultra
short pulse p(t) that has duration Tp � Tf . The pulse (a.k.a. mono-
cycle) can have rectangular, triangular, or, typically Gaussian shape
[7]. With Tp at the sub-nanosecond scale, p(t) is UWB with band-
width Bs ≈ 1/Tp. User separation is accomplished with pseudo-
random TH codes, a different one per user, which time-shift the
pulse positions at multiples of the chip duration (Tc) [7]. Here we fo-
cus on a single user link, and treat multi-user interference (MUI) as
noise. Although generalizations to pulse position modulation (PPM)
are possible, for convenience we will deal with UWB binary pulse
amplitude modulation (PAM), as in [5]. The information-bearing
PAM symbols s(k) have zero mean and variance 1, and the trans-
mitted waveform is given by:

u(t) =
√
P

+∞∑
k=−∞

s(k)ps(t − kNfTf − ckTc), (1)

where ck ∈ [0, Nc − 1] is the TH code during the kth symbol dura-
tion, and P stands for the power. Notice that the transmit filter here
refers to the symbol waveform which contains Nf monocyles:

ps(t) :=

Nf−1∑
n=0

p(t − nTf ). (2)

After multipath propagation, the received waveform is given by:
x(t) =

√P ∑+∞
k=−∞ s(k)

∑L
l=0 αlps(t − kNfTf − ckTc − τl) +

w(t), where L + 1 is the number of paths, each with amplitude αl,
and delay τl satisfying τl < τl+1, ∀l. We assume that the chan-
nel is quasi-static, which implies that {αl}L

l=0 and {τl}L
l=0 remain

invariant over one symbol period, but they are allowed to change in-
dependently from symbol to symbol. The multipath is sufficiently
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rich to ensure that τl+1 − τl < 2Tp, ∀l. This assumption is well
justified for indoor environments. It simplifies our development, but
even when it is violated, the basic approach herein carries over with
simple preprocessing [8]. The additive noise w(t) is independent of
s(k), {αl}L

l=0 and {τl}L
l=0, zero-mean, wide-sense stationary, but

not necessarily white and/or Gaussian, as it consists of both ambient
noise and MUI.

In a non-data aided mode, the receiver cannot distinguish be-
tween two time delays that are separated by an integer multiple
of the symbol duration, e.g., τ0 and τ0 + kNfTf . Thus, with-
out loss of generality, we can confine our timing offset acquisition
problem to within a symbol duration (Nf frames), and express the
first arrival time as: τ0 = NεTf + ε, where Nε ∈ [0, Nf − 1],
and ε ∈ [0, Tf ). Accordingly, other path delays will be described
uniquely by: τl,0 := τl − τ0. With these definitions, the received
waveform can be expressed as:

x(t) =
√
P

+∞∑
k=−∞

s(k)
L∑

l=0

αl

· ps(t − kNfTf − ckTc − τl,0 − NεTf − ε) + w(t).

(3)

Since the frame duration Tf is a design parameter, we choose it as
Tf = τL,0 + Tp, so as to avoid inter-frame interference.

Given frame-rate samples of x(t), our timing acquisition goal
in this paper amounts to estimating Nε. Due to lack of space, we
defer development of tracking algorithms (estimation of ε) to [8].

3. TIMING ACQUISITION

With ps(t) as a template, the correlator receiver yields the continuous-
time output y(t) =

∫ t

t−Nf Tf
ps(λ)x(λ)dλ. Sampling at frame-rate,

we obtain:

y(n) := y(t)|t=(n+Nf )Tf
=
√
P

+∞∑
k=−∞

s(k)rpp(n−kNf )+η(n), (4)

where η(n) denotes sampled noise, and rpp(n) is the discrete-time
impulse response of the overall channel, capturing the transmit fil-
ter, the multipath propagation channel, as well as the correlator at
the receiver. Substituting ps(t) from (2) and x(t) from (3), we can
express rpp(n − kNf ) as [c.f. (4)]:

rpp(n−kNf )=

Nf−1∑
m1=0

Nf−1∑
m2=0

L∑
l=0

αl

∫ Tp

0

p(λ)p(λ−∆−τl,0)dλ, (5)

where the delay ∆ := (m2 −m1 − kNf + Nε −n)Tf − ckTc − ε.
Due to the finite nonzero support of p(t), and depending on n and k,
only a few (m1, m2) pairs contribute nonzero summands to rpp(n−
kNf ). Because τL,0 < Tf , those (m1, m2) pairs that might yield
nonzero contributions must satisfy the condition: ∆ ∈ (−Tf , Tp).
Consequently, the integers m1 and m2 that contribute nonzero terms
in (5) must satisfy:

m2−m1 = n−kNf −Nε−q, q = 0, 1, 2. (6)

Complying to this constraint, (5) becomes:

rpp(n − kNf ) =

2∑
q=0

Aq(n − kNf )βq(k), (7)

where Aq(n) := Nf − |n−Nε − q|, ∀n ∈ [−Nf + Nε + q, Nf +
Nε + q], and

βq(k) :=
L∑

l=0

αl

∫ Tp

0

p(λ)p(λ + qTf − ckTc − ε − τl,0)dλ.

The dependence of βq(k) on the symbol index k comes from the
TH code ck, and from the channel parameters, when they change
from symbol to symbol. Moreover, βq(k) also depends on ε implic-
itly, because the value of the latter affects the monocycle correla-
tion. Notice that since the paths picked up by βq(k)’s are far apart
for different q values, the gains of those paths are independent; i.e.,
βq(k)’s are independent across different q values. Substituting (7)
back into (4), we have:

y(n) =
√
P

+∞∑
k=−∞

s(k)

2∑
q=0

Aq(n − kNf )βq(k) + η(n). (8)

Recalling that each symbol is transmitted over Nf frames, we let
n := kfNf + nf with kf := �n/Nf�, and nf := n − kfNf .
Consequently, the Aq(n − kNf ) term in (8) becomes Aq((kf −
k)Nf + nf ). And the constraint associated with the definition of
Aq(n) implies that

(k − kf )Nf ∈ [−Nf + nf − Nε − q, Nf + nf − Nε − q].

In other words, for any given kf , we only need to consider k ∈
[kf − 2, kf + 1]. As a result, (8) becomes:

y(n) =
√
P

2∑
m=−1

s(kf −m)rpp(n − (kf − m)Nf )+η(n)

=
√
P

2∑
q=0

2∑
m=−1

s(kf −m)Aq(nf +mNf )βq(kf −m)+η(n).

(9)

Intuitively speaking, y(n) is regarded by the receiver as a frame-rate
sample resulting from the kf th symbol. Nevertheless, due to the
timing offset, y(n) could relate to any of s(kf − m), m ∈ [−1, 2],
or combinations of them. While the multiple m values include the
effect of Nε, it is ε and the TH delay that determines which paths
are picked up by the correlator, and thus determines the parameters
associated with q.

3.1. Periodically Time-Varying Correlation Approach

The inherent pulse repetition pattern of a UWB signal gives rise to
cyclostationarity at the frame level, which can be exploited for tim-
ing acquisition. Let the time-varying correlation of a general non-
stationary process y(n) be ryy(n; ν) := E[y(n)y(n + ν)], where
ν is integer. Skipping for brevity the noise in (9), and using the in-
dependence between the random channel and the symbol sequence,
we find

ryy(n; ν) = P
2∑

m1=−1

2∑
m2=−1

E[s(kf −m1)s(k
(ν)
f −m2)]

· E[rpp(n − (kf − m1)Nf )rpp(n + ν − (k
(ν)
f − m2)Nf )],

where k
(ν)
f := �(n+ ν)/Nf�. Notice that a nonzero contribution to

ryy(n; ν) results only when k
(ν)
f − m2 = kf − m1; hence,

ryy(n; ν) = P
2∑

m=−1

E[rpp(n−(kf −m)Nf )rpp(n+ν−(kf −m)Nf )]

= P
2∑

q=0

2∑
m=−1

Aq,m(nf ; ν)Bq, (10)

where Aq,m(nf ; ν) := Aq(nf + mNf )Aq(nf + ν + mNf ), and
Bq := E[β2

q (kf − m)]. For each q ∈ [0, 2] and m ∈ [−1, 2],
Aq,m(nf ; ν) �= 0 necessitates nf + ν ∈ [−(m + 1)Nf + Nε +
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q,−(m−1)Nf +Nε +q]. It is worth clarifying that the expectation
here is taken over not only all possible channel realizations, but also
over all possible TH codes. Therefore, although β2

q (kf − m) is
kf − m dependent, its expectation Bq is not. Adding kNf (with k
integer) to n in (10) does not change the correlation, simply because
n + kNf shares the same nf with n. Therefore, ryy(n; ν) is indeed
periodic in n with period Nf .

Next, we will show that ryy(n; ν) in (10) has a single peak ∀q,
whose position is related to Nε. Recalling the constraint associated
with the definition of Aq(n), we deduce that the range of nf and ν
values over which

∑
m Aq,m(nf ; ν) might be nonzero is given by

nf +ν ∈ [−3Nf +Nε +q, 2Nf +Nε +q], ∀q. Let us partition this
range of nf + ν values into five segments {segi}4

i=0, each of which
defined as segi := [−(3− i)Nf + Nε + q,−(2− i)Nf + Nε + q].
We have studied the change of ryy(n; ν) with respect to ν (for any
nf , Nε, and q), and summarize our results in the next table:

seg0 seg1 seg2 seg3 seg4

Nε+q−nf < −Nf

2
↗ ↗ ↗ ↘ ↘

Nε+q−nf ∈ [−Nf

2
, 0) ↗ ↗ ↗ ↗ ↘

Nε+q−nf ∈ [0,
Nf

2
) ↗ ↗ ↗ ↘ ↘

Nε+q−nf >
Nf

2
↗ ↗ ↘ ↘ ↘

The table entries reveal that ryy(n; ν) is segment-wise mono-
tonic with respect to ν, ∀n, and peaks at either ν = Nε + q − n, or,
ν = Nε + q − n ± Nf . Due to lack of space, please refer to [8] for
the detailed proof. Based on this observation, we can recover Nε as

Nε := round{[arg max
ν

ryy(n; ν) + n]Nf }, (11)

where [·]N performs the modulo operation with respect to integer
N , and round{·} performs the rounding operation.

In a nutshell, we have established that:

Proposition 1 (Acquisition by periodic correlation) Timing offset
can be acquired by picking the peak of the periodically time-varying
correlation of the frame-rate sampled correlator outputs. An esti-
mate can be obtained based on (11) for each nf ∈ [0, Nf − 1],
followed by averaging across nf .

Due to the aggregate effect of q = 0, 1, 2, for any n, the maxi-
mum of the periodic correlation ryy(n; ν) will be determined by the
q associated with the strongest Bq . In other words, by observing the
ν corresponding to the maximum value of ryy(n; ν), the estimate of
Nε comes with an ambiguity since we do not have sufficient infor-
mation to distinguish among q = 0, 1, 2. As a matter of fact, this
ambiguity is induced by ε as well as by the TH delay ckTc. Nev-
ertheless, the mismatching induced by this ambiguity is at most 2
frames, the effect of which on decoding performance is negligible,
with Nf in the order of hundreds.

Estimation of ryy(n; ν) necessitates taking into account the noise
correlation. Let us temporarily assume that w(t) is white with vari-
ance σ2

w. Then the correlation of η(n) in (9) is:

rηη(ν) =

{
(Nf − |ν|)σ2

w , if ν ∈ [−Nf , Nf ]
0 , otherwise.

. (12)

Collecting noisy frame-rate samples of the correlator output over N
symbols, we can estimate ryy(n; ν) as follows:

r̂yy(n; ν) =
1

N

N−1∑
k=0

y(kNf + n)y(kNf + n + ν) − rηη(ν),

∀n ∈ [0, Nf ], and ν ∈ [−3Nf , 3Nf ]. The performance of N̂ε

based on r̂yy heavily depends on the signal-to-noise ratio (SNR).
Our objective in the ensuing section will be to suppress stationary
noise effects by going to the cyclic correlation domain. This is par-
ticularly important because the noise is generally colored.

3.2. Cyclic Correlation Approach

Being periodic in n, ryy(n; ν) accepts a Fourier Series expansion,
with so-termed cyclic correlation coefficients given by:

Ryy(l; ν) :=
1

Nf

Nf−1∑
n=0

ryy(n; ν)e
−j 2π

Nf
ln

=
P
Nf

2∑
q=0

BqRq(l; ν) +
1

Nf

Nf−1∑
n=0

rηη(ν)e
−j 2π

Nf
ln

=
P
Nf

2∑
q=0

BqRq(l; ν) + rηη(ν)δ(l), (13)

where Rq(l; ν) is introduced for notational brevity, and is given by:

Rq(l; ν) :=
2∑

m=−1

Nf−1∑
n=0

Aq,m(n; ν)e
−j 2π

Nf
ln

=
2∑

m=−1

Nf−1∑
n=0

Aq(n + mNf )Aq(n + ν + mNf )e
−j 2π

Nf
ln

.

Changing variables and noticing that integer multiples of Nf have
no effect on the exponential term, we find:

Rq(l; ν) =
2∑

m=−1

(1−m)Nf−1∑
n=−mNf

Aq(n)Aq(n + ν)e
−j 2π

Nf
l(n−mNf )

=

2Nf−1∑
n=−2Nf

Aq(n)Aq(n + ν)e
−j 2π

Nf
ln

.

Plugging in the definition of Aq(n), and recalling the associated
constraint, we have:

Rq (l; ν)=

Nf +Nε+q∑
n=−Nf +Nε+q

(Nf−|n−Nε−q|)(Nf−|n+ν−Nε−q|)e−j 2π
Nf

ln

= e
−j 2π

Nf
l(Nε+q)

Nf∑
n=−Nf

(Nf −|n|)(Nf −|n+ν|)e−j 2π
Nf

ln
, (14)

where change of variables was used in establishing (14). Fourier
Transforming the finite sequence Nf − |n| yields

G(f) :=
∑

n

(Nf − |n|)exp(−j2πfn) =
sin2(πfNf )

sin2(πf)
. (15)

Notice that G(f) is real and symmetric in f ; i.e., G(f) = G(−f).
Using Parseval’s relation, we can rewrite the sum in (14) as

S :=

Nf∑
n=−Nf

(Nf −|n|)(Nf −|n+ν|)e−j 2π
Nf

ln

=

∫ 1/2

−1/2

G

(
λ − l

Nf

)
G(λ)ej2πλνdλ

= e
j π

Nf
lν

∫ 1/2−l/(2Nf )

−1/2−l/(2Nf )

G

(
λ− l

2Nf

)
G

(
λ+

l

2Nf

)
ej2πλνdλ.
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Since G(f) is symmetric, we deduce that the product G
(
λ − l

2Nf

)
G

(
λ + l

2Nf

)
is also symmetric. Further noticing that changing the

integral limits to ±0.5 does not alter the result, we find

S = e
j π

Nf
lν

∫ 1/2

−1/2

G

(
λ − l

2Nf

)
G

(
λ +

l

2Nf

)
ej2πλνdλ

= e
j π

Nf
lν

∫ 1/2

0

2G

(
λ− l

2Nf

)
G

(
λ+

l

2Nf

)
cos(2πλν)dλ

= Sr(ν)e
j π

Nf
lν

, (16)

in which Sr(ν) contains no imaginary part, and thus is guaranteed
to be real. Substituting (16) and (14) into (13), we obtain:

Ryy(l; ν) =
PSr(ν)

Nf

2∑
q=0

Bqe
−j π

Nf
l(2Nε+2q−ν)

+ rηη(ν)δ(l). (17)

When l �= 0, the noise term vanishes, and we can recover Nε based
on the phase of our cyclic correlation as

Nε := round

{[
1

2
(ν − θ(l; ν)

Nf

lπ

]
Nf

}
, (18)

where θ(l; ν) := ∠Ryy(l; ν). As in the preceding section, Nε is
actually the estimate of Nε +q, where q corresponds to the strongest
Bq . Summarizing, we have established:

Proposition 2 (Acquisition by cyclic correlation) Timing can be
acquired from the phase of the cyclic correlation of the frame-rate
sampled correlator outputs. An estimate can be obtained using (18)
for each ν ∈ (−Nf , Nf ), followed by averaging over ν. To avoid
phase wrapping, l should be set to ±1.

In practice, Ryy(l; ν) can be estimated via

R̂yy(l; ν) =
1

N

N−ν−1∑
n=0

y(n)y(n + ν)e
−j 2π

Nf
ln

. (19)

Random channel effects on the estimator (18) can be further allevi-
ated by averaging (18) over l ∈ {±1}.

4. SIMULATIONS

We choose p(t) as the second derivative of the Gaussian pulse, nor-
malized to have unit energy, and pulse width Tp = 0.7ns. The
system parameters are as follows: binary PAM, Nf = 101, Tf =
100ns [7], which is also the maximum delay spread.

The channel we simulated has 400 paths equally spaced in time
within the maximum delay spread; {αl}L

l=0 are generated as Gaus-
sian variables, linearly weighted with weights decreasing to zero at
the maximum delay spread. We used a random TH code uniformly
distributed over [0, Nc − 1], with Nc = 90 and Tc = 1ns.

To verify our timing acquisition methods, we test the perfor-
mance of the two timing acquisition methods detailed in Proposi-
tions 1 and 2. In our simulations, ε is randomly taken in the range
[0, Tf ), and Nε = 89 and an SNR of 20dB is used. The normalized
mean square error (MSE) versus the number of symbols N used for
estimation is plotted in Fig. 4 for both estimators.

The performance of both estimators improves when averaging
over more symbols, while the estimator based on Proposition 1 yields
a consistently lower MSE.
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Fig. 1. Normalized MSE of N̂ε vs. number of symbols.
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