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ABSTRACT

A blind MMSE multipath combining method for RAKE receiver
is proposed. The method make use of the data before and after
the onset of the desired user’s transmission. By performing gen-
eralized eigendecomposition of the autocorrelation matrices of the
post-RAKE signals in the two interval, an MMSE combiner for the
desired user signal can be obtained without the need of the chan-
nel state information. The method does not require precise model
nor assume whiteness of the interference. An adaptive algorithm
is also developed.

1. INTRODUCTION

Multiuser detection has been identified as a key technology to im-
prove the capacity of code division multiple access (CDMA) sys-
tems (see [1] and references therein). Past studies has focused
on short-code systems, in which the period of the spreading se-
quence is equal to the symbol duration, though most practical sys-
tems employs long-code schemes in which the code period is typi-
cally several orders of magnitude larger than the symbol duration.
The difficulty of long-code systems lies in that the user signature
is time-varying and thus lack of stationarity. For this reason, it is
customary in long code systems to pre-process the received sig-
nal with matched filters matched at the spreading sequences. The
processed data are afterwards combined in some ways. This is
what so-called RAKE receiver. The optimal combining method
requires the channel of the desired user and the correlation of the
interference. Suboptimal combining methods include equal power
combining which simply adds up the output of all matched filters
and maximal ratio combining where the combining coefficients
is proportional to the power of the corresponding RAKE finger.
To implement optimal combining, training symbols are needed.
Blind methods have also been proposed [2, 3, 4], mostly focused
on channel estimation.

In [5], the authors introduced a novel idea to construct mini-
mum mean-square error (MMSE) receiver by exploiting the data
before and after a new user enters the system. It is noted that the
autocorrelation matrices of the signals at these two intervals differ
by a rank-one matrix contributed by the new user’s signal. The
fact yields a useful property that the generalized eigenvectors cor-
responding to the maximum eigenvalue coincides with the MMSE
receiver corresponding to the new user signal. The proposal is
based on short-code schemes. Its applicability in long-code sys-
tems is also limited by the time-varying nature of the user signa-
ture. However, it is possible to convert the time-varying signature
to time-invariant one through a RAKE process. Then the proposed
method of [5] can be applied to obtain an MMSE combiner for the
RAKE output.
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2. SIGNAL MODEL

Let us consider a CDMA system in which a new user starts its
transmission at time ¢o. After passing through a frequency-selective
fading channel, the continuous-time baseband signal received be-
fore and after ¢o can be written as

r1 (t) = U(t) , t<to, (1)
ra(t) = ) Blilhi(t—iTy —to) +v(t), t>to, (2)
=0

where h;(t), b[¢] are the signature waveform and the ith informa-
tion symbol of the said user. v(¢) models the background interfer-
ence including other users’ signals and the noise. T5 is the symbol
period. The signature h;(t) can be expressed as

hi(t) = si(t) * ¢(t) ©)

where * denotes convolution, ¢(t) is the equivalent channel im-
pulse response and s; (¢) is the signature waveform of the sth sym-
bol, which, for long-code CDMA users can be written as

P—-1

si(t) =) ailil(t - iT.) 4)

Jj=0

where {c;[0], ¢;[1], ...c; [P — 1]} is the code sequence of the said
user at the 5th symbol. P is the processing gain and 7. = T}/ P is
the chip period. () is the chip pulse supported on [0, T¢]. Note
that the code is a function of symbol index i, a characterization of
long-code CDMA.

Combining (3) and (4), we have

P—-1

hi(t) = ) cililg(t — iTe) (5)

i=0
where g(t) = 1 (t) * ¢(t).

The chip-rate discrete-time form of (2) is obtained by sam-
pling it at time to + nT.

ra[n] = r2(t)|t=tg+nT.

> " blilhiln — iP] + vlno + n] (6)

i=0

where

hiln] = hi(®)le=nz. = Y _ cililgln — j] (7)
j=0
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is the discrete-time signature and g[n] is the equivalent discrete-
time channel impulse response. We assume the channel impulse
response has finite support, so g[n] isan FIR, i.e., g[0], g[1]...g[Q@—
1]. Thus we have P + @ — 1 samples for one whole symbol. We
further assume that Q < P, therefore we can discard the first and
last @ — 1 samples interfered by neighboring symbols of the same
user and only collect L = P — @ + 1 samples that are free of
intersymbol interference(1Sl).

We now group the discrete samples into vector forms by defin-
ing r2[i] = [r[iP + Q — 1],7[iP + Q],...,r[iP + P]|", v[i] =
[v[iP], .v[iP + P — Q] withi > 0and g = [][0], ..., g[Q —
1]]# (the superscript H represents conjugate transpose), we end up
with a concise vector form

ro[i] = Cli]gb[i] + v[i] 8)
where
ailQ) ci[0]
clj=|: - ©)
cilP] alP-Ql 1, o

The discrete-time form of (1) is straight-forward: using similar
definition of ry[¢] as ra[é], we have

ri[i] = vJ[i] (10)

Note that we have not used specific models for the interfer-
ences either before or after time ¢o. This is because we assume
that the receiver has no knowledge of the interfering signals, so
that v(t) is just modeled as a stationary process[6]. Actually, as
we will see later, our algorithm does not rely on how the interfer-
ence is modeled. For example, the other users are not necessarily
to be synchronized to the new user, and the noise is not required
to be white. On the other hand, the desired user’s information bits
are uncorrelated to the interference.

3. BLIND MMSE RAKE COMBINING

If short-code system is considered, the autocorrelation matrices of
(8) and (10) are different by only a rank-one matrix. The gen-
eralized eigendecomposition of them gives an MMSE solution to
the new user. The procedure is well established in [5]. In long-
code system, however, the autocorrelation matrices are functions
of symbol index 7. In order to obviate the time-varying part intro-
duced by the codes, we project the received signals onto a lower-
dimensional subspace and deal with the outputs instead of the orig-
inal data (8) and (10). In our case, we use a branch of matched
filter outputs matched to the code of the said user directly. This is
equivalent to premultiply the received signals by C*[], i.e.

yilil = C"[ri[4]
= CUiv[] 11)

yoli] = C"[irs[i]
C"[i|Clilgbls] + C[i]" v[i] (12)

Note that the data before ¢ are still premultiplied by the code
matrices as if the new user were transmitting information at this
time. (12) is exactly what the conventional RAKE receiver does.
After that, the information bit is estimated by combining the out-
puts. The optimal combiner can be shown to be[7]

I;rake [Z] = gHY2 [1] (13)

Another approach is to obtain an MMSE solution at the same
level as RAKE receiver, which is:

bli] =

P—ooo

(Ry2 " '[iIC™ [i]Cli]g) " y2li]
(Ry2""[i]g) " yoli]
= (Ry1 '[ilg)"y2li] (14)

where the last step uses matrix inversion lemma[8] and the covari-
ance matrices appeared above are

Ry1[i] E{y:[ily1' [i]}

= CTEB{v[ivT[}Cl]

= CY[R.CJi] (15)
Rya[i] = E{ya[dlysli]}

= C"[i|Clilgg” C"li|C[i]
+C7 iR C[i] (16)

the expectation above is conditioned on the code matrix C[z] and

with respect to the information symbols and the interference.
However, these auto correlation matrices are not well-defined

in practise. Now we do the time-averaging of the instant samples

y1[i]y? [¢] and y2[i]yZ [4] respectively.
Ri = o > wilivli
=0
=+ O cUimiviic” i an

i=0
No—1
_ 1

Ry = A Z yz[i]yf[i]

No—1
1

- = > {c[i|Clilgg" c™[ilCi]
i=0

+CHi]Clilgv" [i]C[4]b[i]
+C iv[ig" ¢ [ Clipi]
+C iv[ivT [{)C[4]} (18)

where Ny and N> are the number of samples employed and the
information bits are normalized without loss of generality.

With little performance loss, the time-varying covariance ma-
trix Ry1[4] in (14) can be replaced by the time-averaged R

Bi] = (Ry 'g)" y2li] (19)

When N; and N> are large enough, the second and third terms
in (18) are negligible because the information bits and the interfer-
ence are assumed to be uncorrelated zero-mean random variables.
Since C* [i]C[i] = =577 I+R[n] where | is identity matrix(the
code sequence are normalized during one symbol) and diagonal el-
ements of R[i] are zero while the rest are zero-mean random vari-
ables.

Ry = lim Rl (20)
Ni—o00

R, = lim R2
Ng— 00
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. 1 . "
1 — 1
i (p_Q+ i +RM> ze

1 .
. (ml + Rm) + R
= agg” + R (21)
where & = 57y isascalar.

So far we have shown that R is different from R by only a
rank-one matrix agg®™, From Theorem 4 of [5], we know that
among the generalized eigenvectors of Ro with respect to R,
there is one, denoted by q = SR 'g which corresponds to the
largest generalized eigenvalue. Hence we can directly apply this
eigenvector as the combining coefficients without estimating the
channel coefficients first.

4. ADAPTIVE APPROACH

Now let’s look at the computation complexity of the proposed
method. Notice that the dimensions of the matrices R; and R
are just @ which is much less than the processing gain. This
means that the generalized eigendecomposition can be easily im-
plemented. Furthermore it can be shown that an adaptive solution
can be applied to solve the generalized eigendecomposition part,
which again reduces the complexity.

The key part of the algorithm is to find the maximum general-
ized eigenvector of R with respect to R1. It is well known[9] that
this is equivalent to finding a vector f that maximize the Rayleigh
quotient
f7Rof
fAR,f
This can be achieved by maximizing the numerator while keeping
the denominator constant(this constant is set to 1 in the following
without any loss of generality), which is

f=arg max (22)

f=arg max 7 Rof, subject to £ R.f =1, (23)

Since the constraint above is in a quadratic form, which leads to
some inconvenience. Notice that R.; is a symmetric positive defi-
nite matrix, it can be expressed in the form: R; = F x FH where
F is a lower triangular matrix[10]. Hence,(23) is equivalent to

f=arg max f9Rof, st. Fif =q and ||q||=1, (24)

The adaptive solutions are well studied in [11]. Here we only in-
troduce one of its LMS methods.
Set up the Langrangian cost function as following

J=f"Rof + \Y(FPf —q) + \EPF - q") (25

where X is the Lagrange multiplier. The update forms of f and g
are

for1 = futprved
= £, +pr(Rof, +FN,) (26)
H
An9n
an = qn — I- J
+1 P aan ) Va

H
= I F ) e =) @)
(28)

Step 1:  Obtain R and do the Cholesky Factorization: Ry =
FF?
Step2:  Define uy, p, and initialize qo = [1,0,0...0]7, fo =
N~

Q-1
(F™)qo
Step 3:  Pre-compute [ = I — F(F¥F)~!'F#
Step4: Forn=0,12,...

e Update £, 1 = [T [an + pay2[nlys [nlan] +

F(F'F) 'q,
° Update qn+1 = qn + Z'_;(I —
H _
:gll:i )(FHF)il[l‘fFHRan —qn + Fan]
R — 8Bn+41
and normalize qn+1 by qn4+1 = Tewsal
Table 1. Adaptive Algorithm
By using the constraint F7 £, ; = q,, we can solve \,
1 _ _
A= —F"F) (g, — F7f, — pusFPRo1,) (29)
33
Another constraint ||q|| = 1 is guaranteed by normalizing q,, at

each iteration. Combining (26) (27) and (29), we have the recur-
sions

frr = ][] lan +peRoan] + FFTF)q, (30)

H
Ant1 an + Z—j(l — Doy (@HP) [ P Rk, —

afan
H
qn +F fn] (31)

where [ = I — F(FF)~'F¥ can be pre-computed.

In practise R is always ready to use before the adaptive re-
cursion starts and R, is replaced by instant samples ya[n]y3 [n].
The algorithm is summarized in Table 1.

5. NUMERICAL RESULTS

A CDMA system is simulated to test the proposed method. We
compare it’s bit error rate with that of the optimal conventional
RAKE receiver exploiting perfect channel estimation.

Fig. 1 shows the bit error rate(BER) versus the signal to noise
ratio(SNR). There are K = 3 equal-power asynchronous users ex-
ploiting random selected codes in the system which is corrupted
by white Gaussian noise at the level o2. The SNR is defined
as SNR = 10logio(Ey/a?) where E, is the bit energy of the
said user. Each of the delays are generated randomly from a uni-
form distribution over the whole symbol period. The processing
gain P and the discrete channel length @ is set to be 30 and 3
for all users and the channel coefficients are independent Gaus-
sian random variables. The number of samples used in the startup
algorithm(N; and N-) are both 500.

The convergence property is observed by changing N; and
N, while fixing the other conditions. We have Ny = N, = N in
every simulation in Fig. 2. We can see that the startup algorithm
begins to converge only after around 50 symbols. The adaptive
result is also shown in the graph.

The performance of adaptive method is illustrated in Fig. 3.
N is set to 500 in each experiment while N> = N is the iteration.
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6. CONCLUSION

In this paper, a startup receiver without estimating the channel co-
efficients is studied. This is obtained by exploiting the statistical
information before and after the onset of the new user while the
other users’ information are required the least. Simulations show
that the proposed method has almost the same performance as the
RAKE receiver.
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