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ABSTRACT

For long code DS-CDMA systems, where the spreading codes
are aperiodic and extending over a large number of data symbols,
chip-rate sampled signals and MUIs (multiuser interferences) are
generally modeled as time-varying vector processes. This compli-
cates the application of traditional blind multiuser detectors, since
consistent estimation of the needed signal statistics can not be ob-
tained by time-averaging over received data record. In this paper,
we propose an equivalent time-invariant system model for long
code CDMA, in which the received signals and MUIs are mod-
eled as cyclostationary processes with modulation introduced cy-
clostationarity. Based on knowledge of the desired user’s code
sequences, channel estimation is carried out using a frequency do-
main subspace method.

1. INTRODUCTION

In DS-CDMA systems, each user is assigned a special signature
sequence or spreading code. If the spreading codes are periodic
and repeat every information symbol, the system is calledshort
code CDMA system. On the other hand, if the spreading codes
are aperiodic and extending over a large segment of the symbol
sequence, the system is known aslong code CDMA systemin lit-
erature. More recently, systems using periodic spreading sequence
which may span multiple symbols were proposed as“semi-long-
code” CDMA systems.
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Fig. 1. Block Diagram of a long code DS-CDMA System

In the current commercial WCDMA systems, each user’s sig-
nal is first spread using a code sequence spanning over just one
symbol or multiple symbols. The spread signal is then further
scrambled using a long-periodicity pseudo-random sequence (as
shown in Fig.1). In Fig.1, after scrambling at chip level, the chip-
rate sampled signal and MUIs are generally modeled as time-varying
vector processes. This is equivalent to the use of an aperiodic
(long) coding sequence as inlong code CDMA system. The time-
varying nature of the received signal model in the long code case
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severely complicates the equalizer development approaches, since
consistent estimation of the needed signal statistics can not be
achieved by time-averaging over the received data record. In con-
trast, forshort code CDMA system, where the spreading codes re-
peat every information symbol, time-invariant MIMO models al-
low consistent estimation of the needed signal statistics. For this
reason, the study for multiuser detectors has largely been limited
to short code DS-CDMA systems. More recently, it has been ex-
panded to systems with spreading codes whose period may span
multiple symbols [6]. Systems with these “semi-long” codes can
still be modeled as cyclostationary processes with period equals to
multiple symbol periods. But this approach does not work for long
code CDMA systems where the spreading code is aperiodic.

In this paper, we consider blind channel estimation for long-
code CDMA systems. Under the assumption that channels remain
stationary over each time slot, a time-variant model can be ob-
tained from scrambling. The underlying channel of a long code
CDMA system can actually be modeled as a time-invariant MIMO
system. Motivated by this observation, we first describe an equiva-
lent time-invariant model for long code CDMA systems. Secondly,
this effort allows us to model the received signals and MUIs as cy-
clostationary processes with modulation induced cyclostationarity,
thus providing a platform for development of blind channel estima-
tion and equalization approaches for long code CDMA signal de-
tection and separation. Finally, by applying periodic non-constant
modulus precoding techniques (with the spreading code sequences
serve as the precoding sequences in this case), multiuser detection
is made possible without excess bandwidth requirement.

2. SYSTEM MODEL

Consider a DS-CDMA system withM users (M transmit anten-
nas) andK receive antennas, as shown in Fig. 2. Assume the pro-
cessing gain isN , that is, there areN chips per symbol. Letuj(k)
(j = 1, · · · , M) denote User j’skth symbol. Assume that the code
sequence extends overLc symbols, in this paper, without loss of
generality, we chooseLc = 2, the results can be extended directly
to the cases whereLc > 2. Let cj = [cj(0), cj(1), · · · , cj(N −
1), cj(N), · · · , cj(2N − 1)] denotes User j’s spreading code se-
quence. For notations used for each individual user, please refer to
Fig. 1. Whenk is an even integer, the spread signal (at chip rate)
with respect touj(k) anduj(k + 1) is

[rj(kN), · · · , rj((k + 1)N + N − 1)]
= [uj(k)cj(0), · · · , uj(k)cj(N − 1),

uj(k + 1)cj(N), · · · , uj(k + 1)cj(2N − 1)].
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Fig. 2. A wireless communications system with multiple transmit
and receive antennas

The successive scrambling process is achieved by

[sj(kN), · · · , sj((k + 1)N + N − 1)]

= [rj(kN), · · · , rj((k + 1)N + N − 1)]. ∗ [dj(kN), · · · ,

dj(kN + N − 1), dj((k + 1)N), · · · , dj((k + 2)N − 1)] (1)

where “.*” stands for point-wise multiplication, and[dj(kN), dj(kN+

1), · · · , dj(kN + N − 1)] denotes the chip rate scrambling sequence
with respect to symboluj(k). Define

[vj(kN), · · · , vj((k + 1)N + N − 1)]
∆
= [uj(k)dj(kN), · · · , uj(k)dj(kN + N − 1),

uj(k + 1)dj((k + 1)N), · · · , uj(k + 1)dj((k + 1)N + N − 1)],

we get

[sj(kN), sj(kN + 1), · · · , sj((k + 1)N + N − 1)]

= [vj(kN), vj(kN + 1), · · · , vj((k + 1)N + N − 1)]

. ∗ [cj(0), cj(1), · · · , cj(2N − 1)]. (2)

If we regard the chip ratevj(n) as the input signal of User j, then
sj(n) is the precoded transmit signal corresponding to thejth user
and

sj(n) = vj(n)cj(n), n ∈ Z, j = 1, 2, · · ·M. (3)

Obviously,cj(n) = cj(n + 2N) is a periodic precoding sequence
with period 2N . We note that this form of periodic precoding
has been suggested by Serpedin and Giannakis in [1] to intro-
duce cyclostationarity in the transmit signal, thereby making blind
channel identification based on second-order statistics in symbol-
rate sampled single carrier system possible. More general idea
of transmitter-induced cyclostationarity has been suggested previ-
ously in [2, 3]. In [4], non-constant precoding technique has been
applied to blind channel identification and equalization in OFDM-
based multiantenna systems.

Based on Fig. 1 and Fig. 2, the received chip-rate signal at the
pth antenna (p = 1, 2, · · · , K) can be expressed as

yp(n) =

MX
j=1

L−1X

l=0

g
(p)
j (l)sj(n− l) + wp(n). (4)

wherewp(n) is thepth antenna additive white noise. Lets(n) =
[s1(n), s2(n), · · · , sM (n)]T be the precoded signal vector. Col-
lect the samples at each receiver antenna and stack them into a
K × 1 vector, we get the followingtime-invariantMIMO system
model

y(n) = [y1(n), y2(n), · · · , yK(n)]T =

L−1X

l=0

H(l)s(n−l)+w(n),

(5)

where

H(l) =

2
66664

g
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1 (l) g
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2 (l) · · · g
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M (l)

g
(2)
1 (l) g

(2)
2 (l) · · · g

(2)
M (l)

...
...

. . .
...

g
(K)
1 (l) g

(K)
2 (l) · · · g

(K)
M (l)

3
77775

K×M

(6)

andw(n) = [w1(n), w2(n), · · ·wK(n)]T .
In the following section, channels are estimated based on the

desired user’s code sequence and the following assumptions:

(A1) The multiuser sequences{uj(k)}M
j=1 are zero mean, mu-

tually independent and i.i.d. TakeE{|uj(k)|2} = 1 by
absorbing any non-identity variance ofuj(k) into the chan-
nel.

(A2) The scrambling sequences{dj(k)}M
j=1 are mutually inde-

pendent i.i.d. BPSK sequences, independent of the infor-
mation sequences.

(A3) The noise is zero mean Gaussian, independent of the infor-
mation sequences, withE{w(k + l)wH(k)} = σ2

wIKδ(l)
whereIK is theK ×K identity matrix.

3. BLIND CHANNEL IDENTIFICATION BASED ON
MODULATION-INDUCED CYCLOSTATIONARITY

From the previous section, it can be seen that the scrambled se-
quencesj(n) is obtained by multiplying the individual streamvj(n)
by a periodic precoding sequencecj(n) (see (3)), wherecj(n) is
User j’s channelization code. In this section, it will be seen that by
applying periodic non-constant modulus precoding in the trans-
mitter, the cyclostationarity induced by precoding enables channel
identification of each individual channelg

(p)
j (l) from jth user to

pth antenna,p = 1, 2, · · · , K andj = 1, 2, · · · , M . Precoding
sequences need to be distinct for each transmit antenna, and they
are chosen in such a way that for a given cycle, all but one antennas
are nulled out. It is therefore possible to identify each individual
channel based on the cyclostationary statistics.

Consider theK ×K auto-correlation matrix

Ry(n, k)
∆
= E{y(n)yH(n− k)}

= E{
L−1X

l=0

L−1X
m=0

H(l)[s(n− l)sH(n− k −m)]HHH(m)}

+Rw(k)

∆
= Rys(n, k) + σ2

nIKδ(k). (7)

Consider

Rs(n, k)
∆
= E{s(n)sH(n− k)}
= diag[|c1(n)|2δ(k), · · · , |cM (n)|2δ(k)], (8)

it follows thatRs(n, k) is periodic with respect ton

Rs(n, k) = Rs(n + 2N, k)

(whereN is the processing gain) sincecj(n) = cj(n + 2N) for
j = 1, 2, · · · , M . Note thatRs(n, k) = 0 for anyk 6= 0, define

Rs(n)
∆
= Rs(n, 0), then

Rs(n) = Rs(n + 2N), (9)
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and its Fourier series coeffient matrice are therefore given by

Cs(k) =

2N−1X
n=0

Rs(n)e−i π
N

kn, k = 0, 1, · · · , N − 1. (10)

From (7)-(9), it follows that

Ry(n, k) =

L−1X

l=0

H(l)Rs(n− l)HH(l − k) + Rw(k)

∆
= Rys(n, k) + Rw(k) (11)

andRy(n, k) is also periodic inn

Ry(n, k) = Ry(n + 2N, k). (12)

The Fourier series coefficient matrices of{Ry(n, k)} for a
fixedk are then given by

Cy(m, k) =

2N−1X
n=0

Rys(n, k)e−i πmn
N + Rw(k) · δ(m),

for m = 0, 1, · · · , 2N − 1. Let H(z)
∆
=

L−1P
l=0

H(l)z−l be the

Z-transform of the channel coefficient matrice{H(l)}L−1
l=1 , the

Z-transform ofCy(m, k) w.r.t. k is

Sy(m, z) =

∞X

k=−∞
Cy(m, k)z−k

=

∞X

k=−∞

2N−1X
n=0

L−1X

l=0

H(l)Rs(n− l)HH(l − k)e−i πmn
N z−k

+Sw(z)δ(m)

= H(zei πm
N )Cs(m)[H(

1

z∗
)]H + Sw(z)δ(m) (13)

where

Cs(m) = diag

(
2N−1X
n=0

|c1(n)|2e−i πmn
N , · · · ,

2N−1X
n=0

|cM (n)|2e−i πmn
N

)

∆
= diag{cs1(m), cs2(m), · · · , csM (m)}.

Clearly, whenm 6= 0, the noise effect disappears and

Sy(m, z) = H(zei πm
N )Cs(m)[H(

1

z∗
)]H . (14)

Similar to [1], the basic idea of this channel estimation algo-
rithm is to design precoding code sequences{cj(n)}2N−1

n=0 (j =
1, 2, · · · , M ) such that for a given cyclem = mj , csj (mj) 6= 0
andcsk (mj) = 0 for all k 6= j. That is, all but one entry inCs(m)
are zero. Choose a different cyclemj for each user(obviously,
we need2N > M ), blind identification of each individual chan-
nel can then be achieved by applying the subspace method in fre-
quency domain[1].

In fact, suppose that for a given cyclem = mj , mj 6= 0, the
codes are designed such thatcsj (mj) 6= 0 andcsk (mj) = 0 for
all k 6= j, then

Sy(mj , z) = H(zei
πmj

N ) diag{0, · · · , csj (mj), · · · , 0}[H(
1

z∗
)]H

(15)

Defineαj
∆
=

πmj

N
and

G
(p)
j (z)

∆
=

L−1X

l=0

g
(p)
j (l)z−l, (16)

it follows that

Sy(mj , z) = csj
(mj)

2
6664

G
(1)
j (zeiαj )G

(1)
j ( 1

z∗ )∗ · · · G
(1)
j (zeiαj )G

(K)
j ( 1

z∗ )∗

.

.

.
.
.
.

G
(K)
j (zeiαj )G

(1)
j ( 1

z∗ )∗ · · · G
(K)
j (zeiαj )G

(K)
j ( 1

z∗ )∗

3
7775 (17)

whereG
(p)
j ( 1

z∗ )∗ = [G
(p)
j ( 1

z∗ )]∗.
In (17), considering the diagonal entries of both sides, it fol-

lows that

Sy(mj , z)(p,p) = csj (mj)G
(p)
j (zeiαj )[G

(p)
j (

1

z∗
)]∗, (18)

wherej = 1, · · · , M, p = 1, · · · , K. Change variablesz ↔
e−iαj z, z ↔ e−i2αj /z∗ in (18), we get

Sy(mj , e
−iαj z)(p,p) = csj

(mj)G
(p)
j (z)[G

(p)
j (

e−iαj

z∗
)]
∗
, (19)

S
∗
y(mj ,

e−i2αj

z∗
)(p,p) = c

∗
sj

(mj)[G
(p)
j (

e−iαj

z∗
)]
∗
G

(p)
j (e

−i2αj z).

(20)

It then follows that

Sy(mj , e
−iαj z)(p,p) c∗sj

(mj) G
(p)
j (e−i2αj z) z−(L−1)

= S∗y(mj ,
e−i2αj

z∗
)(p,p) csj (mj) G

(p)
j (z) z−(L−1), (21)

wherez−(L−1) was introduced to ensure the polynomials on both
sides causal.

Since the multiplication of two polynomials is essentially the
convolution of two coefficient sequences, and convolution can be
represented in matrix form using Toeplitz matrix. For an arbitrary
polynomialA(z) =

PLa−1
i=0 a(i)z−i, and an integereL > 0, we

associate withA(z) the(eL+La)×(eL+1) Toeplitz matrixTa(eL)
with the first column as[a(0), a(1), a(La − 1), 0, · · · , 0]′ and the
first row as[a(0), 0, · · · , 0].

Let Ts1(L − 1) andTs2(L − 1) denote the(3L − 2) × L
Toeplitz matrix associated with the2(L− 1)th-order polynomials
c∗sj

(mj)z
−(L−1)Sy(mj , e

−iαj z)(p,p) andcsj (mj)z
−(L−1)∗

S∗y(mj ,
e
−i2αj

z∗ )(p,p) respectively. Define

Dαj (
eL) =

2
6664

1
ei2αj

. . .

ei2αj
eL

3
7775 ,

and letg(p)
j = [g

(p)
j (0), · · · , g

(p)
j (L − 1)] denote the coefficient

vector ofG(p)
j (z), actuallyg

(p)
j is the channel impulse response
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from userj to thepth receive antenna. Letg(p)
αj be the coefficient

vector ofG(p)
j (e−i2αj z), then

g(p)
αj

= Dαj (L− 1)g
(p)
j . (22)

From (21) it follows that

Ts1(L− 1)g(p)
αj

= Ts2(L− 1)g
(p)
j . (23)

Combine (22) and (23), we have

(Ts1(L−1)Dαj (L−1)−Ts2(L−1))g
(p)
j

∆
= Tαj (L−1)g

(p)
j = 0.

(24)
From (24), it can be seen thatg

(p)
j is uniquely identifiable if the

null space ofTαj (L− 1) is of rank one, i.e.

dim{Null(Tαj (L− 1))} = 1.

In [1], it was shown that dim{Null(Tαj (L−1))} = 1 if and only
if

ei2αj l 6= 1 for l = 1, · · · , L− 1. (25)

It was also pointed out that a necessary condition forαj to satisfy
(25) is the period of the code sequencecj(n) is greater or equal to
the channel length. In our case, the period is2N , thus2N ≥ L is
a necessary condition for channel identifiability. Under this condi-
tion, chooseαj = πj/N with gcd(j, N) = 1, then condition (25)
is fulfilled.

Similarly, if equation (18) holds for two-cyclesmj1 , mj2(j1 6=
j2), then we have

Sy(mj1 , z)(p,p)

Sy(mj2 , z)(p,p)
=

csj1
(mj1), G

(p)
j (zeiαj1 )

csj2
(mj2)G

(p)
j (zeiαj2 )

(26)

In this case,g(p)
j is uniquely identifiable if and only ifei(αj1−αj2 ) 6=

1 for l = 1, · · · , L− 1.
After the channel estimation, equalization/desired user extrac-

tion can be carried out using a MMSE cyclic Wiener filter. There-
fore, periodic non-constant-modulus precoding makes multiuser
detection possible without excess bandwidth requirement.

4. SIMULATION EXAMPLE

We consider the case of two users (i.e. two transmit antennas)
and two receive antennas. Each user transmit QPSK signals with
a processing gain ofN = 8, The channelization code sequences
spread over two symbols, chosen to be

c1 = [0.6935, 0.4449, 0.6247, 0.4273, 0.5549, 0.2370, 0.47490.2021,

0.3671, 0.2021, 0.4749, 0.2370, 0.5549, 0.4273, 0.6247, 0.4449]

c2 = [0.6828, 0.4558, 0.2234, 0.4495, 0.6051, 0.4989, 0.34590.4932,

0.5159, 0.4932, 0.3459, 0.4989, 0.6051, 0.4495, 0.2234, 0.4558]

The multipath channels have 3 rays, the multipath amplitudes
are Gaussian with zero mean and identical variance, the tranmis-
sion delays uniformly spread over 4 chip intervals, andp(t) is the
raised-cosine pulse with roll-off factorβ = 0.22. That is,

g
(p)
j (t) =

2X

k=0

a
(p)
j (k)p(t− τk) (27)

wherej = 1, 2 andp = 1, 2. Complex zero mean white Gaussian
noise was added to the received signals. Assumed that User 1 is the
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Fig. 3. Normalized MSE of channel estimation versus SNR

desired user. The normalized mean-square-error (MSE)of channel
estimates for the desired user is defines as

MSE =
1

2IL

IX
i=1

2X
p=1

‖ĝ(p)
1 − g

(p)
1 ‖2

‖g(p)
1 ‖2

(28)

whereI stands for the number of Monto Carlo runs. And SNR
refers to the signal-to-noise ratio with respect to the desired user
and is chosen to be the same at both receivers. The result is av-
eraged overI = 100 Monto Carlo runs, the channel is randomly
generated in each run and the system is simulated for a block size
( i.e. the number of symbols users per run) of 256 and 512 respec-
tively.
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