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Long-code wideband CDMA receivers are for computational rea-
sons usually based on simple matched-filter techniques, and hence
suffer from multiaccess interference. To mitigate this problem, we
propose computationally efficient decorrelating RAKE and MMSE
receivers for the uplink of long-code CDMA systems. The decor-
relating matched filter eliminates multiaccess interference by code
matrix inversion. Channel parameters and data symbols are then
estimated jointly via rank-one decompositions. The feasibility of
the proposed schemes hinges upon their efficient implementation
in terms of time-varying state space realizations, with a complex-
ity comparable to that of the conventional RAKE receiver.

1. INTRODUCTION

Current receivers for long-code (or aperiodic spreading code)
wideband CDMA are typically based on RAKE receivers, i.e.
banks of matched filters which correlate the received data with
the desired user’s code, followed by a combining of the outputs
(RAKE fingers). Since multiuser interference is not completely
cancelled, the performance degrades, especially when the network
is heavily loaded and power control imperfect.

In this paper, we consider the uplink and assume that the base
station knows all codes. We model multiuser interference explic-
itly and propose a blind decorrelating RAKE and MMSE receiver
to estimate the channel and user symbols, based on all samples
in a frame. The decorrelating RAKE was presented earlier by us
in [1, 2] with an emphasis on identifiability and performance; the
MMSE receiver is similar. Here, we also take the noise covariance
into account and focus in particular on the efficient implementation
of these receivers.

The decorrelating matched filter asks for the inversion of a
code matrix whose long dimension is equal to the number of chips
over the complete frame. This is a formidable task, but fortunately,
the sparse structure of this matrix admits computationally efficient
techniques. As an application of the work in [3] on the inversion of
infinite-size matrices, we derive efficient time-varying state-space
implementations of the various steps in the algorithm.

Blind channel estimation and multiuser detection for long code
CDMA has been considered by a number of other authors. In par-
ticular, second order moment techniques [4–8] rely on the conver-
gence of time averages, which often requires hundreds to thousands
of symbols. Weiss and Friedlander [9] focus on the down link,
where users can be considered synchronous.

2. DATA MODEL

We consider the uplink of a slotted system with I asynchronous
users. In a frame, the i-th user transmits a vector si consisting of
Ki symbols sik. Each symbol is spread by an aperiodic code cik of
length Gi. After multipath propagation over a channel with length
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Figure 1. Structure of the code matrix T.

Li chips and relative delay Di, pulse shape matched filtering and
sampling at the chiprate1, the receiver stacks the received samples
in a frame in a vector y. The contribution of sik is a linear com-
bination of the transmitted signal ciksik, plus delays of it, properly
scaled by the Li channel coefficients collected in a vector hi, or

yik
� Tikhisik � k � 1 � · · · � Ki �

Tik is a Toeplitz matrix whose Li columns consist of shifts of the
code cik. Including all users and the noise, we have

y � THs
�

w (1)
T : ���T11 · · ·T1 �Gi

� · · · � TI1 · · ·TI �GI �
H : � diag 	 IK1 ⊗ h1 � · · · � IKI ⊗ hI 
 �

where matrix H is block diagonal with I⊗hi as the ith block, vector
s is a stacking of all symbol vectors, and w is a vector representing
the additive Gaussian noise. The structure of the code matrix T is
illustrated in figure 1. Note that different spreading gains Gi are
part of the model. Multiple antennas are a simple extension.

We will assume that the code matrix T is known, “tall” and has
full column rank. This implies that the receiver knows the codes,
the delay offsets Di, and the number of paths Li of all users.

3. BLIND RECEIVER ALGORITHMS
3.1. Conventional RAKE
The conventional RAKE receiver consists of a bank of matched fil-
ters and projects the received signal into the code domains of the
individual users, by correlating with several shifts of the code vec-
tors, or r � THy. Since the codes are not exactly orthogonal (let
alone shift-orthogonal), THT �� I, and contributions of each user
enter into the projections of any other user. This makes the perfor-
mance interference-limited.

3.2. Decorrelating RAKE
The proposed decorrelating RAKE uses a decorrelating matched
filter, or T† � 	 THT 
 −1TH . This removes all multi-user interfer-
ence. The output of the decorrelating matched filter is given by

u � T†y � diag 	 I ⊗ h1 � · · · � I ⊗ hI 
 s � n � (2)
1Oversampling is equivalent to a system with multiple receive antennas.
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where n � T†w is now a colored noise vector.
After computing u, we estimate the channel and the data sym-

bols, blindly and independently for each user. Partition u into seg-
ments uik of length Li. The structure of u in (2) implies that uik
corresponds to symbol k of user i,

uik
� hisik

�
nik � k � 1 � · · · � Ki � (3)

and is free from multiuser interference. Collecting all data for user
i gives Ui

��� ui1 � · · · � uiKi � � hisT
i
�

Ni � This is a rank-1 data model,
and estimates of hi and si (with an unknown scaling factor) are
found from a rank-one factorization of Ui. In other words, denoting

ΨΨΨ i : � 1
Ki

Ki

∑
k 
 1

uikuH
ik � (4)

we obtain the least squares estimates

ĥi
� arg max�

g
� 
 1

gH ΨΨΨ ig � ŝik
� ĥH

i uik � (5)

The solution ĥi is given as the dominant eigenvector of ΨΨΨ i. The
scaling ambiguity is resolved by a single pilot symbol. See [1, 2]
for further results and performance simulations.

3.3. Whitened Estimator
The channel and symbol estimator given in (5) did not take into ac-
count that the noise process nik is colored, both in k and in its com-
ponents. If we ignore the coloring in k, then a simple whitening ap-
proach can be applied. Specifically, since n � T†w, we have that
nik ∼ ��	 0 � σ2 ΣΣΣ ik 
 where ΣΣΣ ik is an Li ×Li submatrix on the diagonal
of T† 	 T† 
 H . We have

E 	 ΨΨΨi 
 ��� si � 2
Ki

hih
H
i
� σ2∆∆∆ i � ∆∆∆ i : � 1

Ki

Ki

∑
k 
 1

ΣΣΣ ik

where ∆∆∆ i is a known matrix. The channel can then be estimated
from the following modification which whitens the noise on ΨΨΨ i:

g∗
� arg max�

g
� 
 1

gH 	 ∆∆∆−1 � 2
i ΨΨΨ i∆∆∆

−H � 2
i 
 g � ĥi

� ∆∆∆1 � 2g∗ �
The symbol estimator given in (5) is replaced by ŝik

� ĥH
i ΣΣΣ−1

ik uik �
3.4. MMSE Receiver
Based on the data model (1), the estimated data sequence by a linear
minimum mean square error (MMSE) receiver is known to be

ŝ � 	 HHTHTH
� σ2I 
 −1HHTHy � (6)

This receiver can be implemented using the previously estimated
channel matrix H, and assuming that the noise power σ2 is known.
Compared to the decorrelating RAKE, the MMSE can have a sig-
nificantly improved performance.

4. EFFICIENT IMPLEMENTATIONS
The code matrix T can be very large. Without an efficient tech-
nique to compute and apply the left inverse T† � 	 THT 
 −1TH , the
proposed receiver structures would not be feasible. Fortunately,
T is sparse. Using the Matlab sparse toolbox, u � T†y can be
computed efficiently via a sparse QR factorization T � QR, and
u � R−1QHy, or, avoiding the storage of Q, as�

R v
0 ε � : � qr 	 � sparse 	 T 
 y � 


u : � R \ v

v � QHy, and R\v denotes R−1v, implemented efficiently via back-
substitution. This does not reveal how the sparse computations can
actually be implemented in a practical system. It is also unclear
how the noise whitening (computation of ΣΣΣ ik) can be implemented

y1

y3

y4

y2

y � T � u1
u2 � u1

•

T � u2

•

ynun

xn

xn � 1Dn
An

Cn

Bn

Figure 2. Computational network for T ���T � 1 � T � 2 � � .
efficiently. Explicit computation of ΣΣΣ � R−1R−H is to be avoided
because R−1 is not sparse even if R is. In this section, we show
how time-varying state space representations can be used for this
purpose. The theory behind it is available in [3].

4.1. State Space Representation of a Matrix
Consider an input signal u and output signal y, with arbitrary block-
partitioning u ��� uT

1
� · · · � uT

N � T � y ��� yT
1
� · · · � yT

N � T � The partition-
ing introduces the notion of “time”, or a stage in a computational
procedure. The blocks do not need to be of equal size, and some
dimensions can even be zero (such a block is denoted by “•”).

A time-varying state space realization has the form�
xn � 1
� Anxn

�
Bnun

yn
� Cnxn

�
Dnun

⇔
�
xn � 1
yn � � Tn

�
xn
un � � Tn

� � An Bn
Cn Dn �

The realization starts at time 1 with x1
�

• (or: no state), and ends
with xN � 1

�
•. Hence A1

�
•, AN
�

•, C1
�

•, BN
�

•.
A time-varying state-space realization specifies a linear map-

ping of u to y, hence a matrix T such that y � Tu � In particular, it
defines a factorization of T into factors Tn. The inherent causality
translates to T being block-lower triangular. However, by playing
with dimensions, any matrix can fit this model, as the next exam-
ples illustrate. Consider first an an arbitrary N × L matrix T, with
rows tH

n . A (trivial) realization that models y � Tu is obtained by
setting u1

� u, u2
� · · · � uN

�
• (i.e., the complete input vector is

entered at time 1), and�
A1 B1
C1 D1 � � � • I

• tH
1 � � � An Bn

Cn Dn � � � I •

tH
n • � � � AN BN

CN DN � � � • •

tH
N • �

n � 2 � · · · � N − 1

As a second example, let T ���T � 1 � T � 2 � � be an arbitrary block-

partitioned matrix, where T � 1 � has realization {A � 1 �n � B � 1 �n � C � 1 �n � D � 1 �n }
and T � 2 � has realization {A � 2 �n � B � 2 �n � C � 2 �n � D � 2 �n }. Then

Tn
� �!" A � 1 �n 0 B � 1 �n 0

0 A � 2 �n 0 B � 2 �n

C � 1 �n C � 2 �n D � 1 �n D � 2 �n

# $%
is a realization of T. Its structure is shown in Fig. 2.

The code matrix T in our case has a block structure as shown
in Fig. 1. By combining the two examples, we can represent any
code matrix T. The number of state space time points is equal to
the number of rows of T. The input vector is partitioned in blocks
of Li entries which enter the system at appropriate time points, de-
termined by the starting points of the individual code blocks. The
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state dimension at each time point is the number of nonzero entries
in the corresponding row of T.

4.2. QR Factorization and Inversion in State Space
To compute the left inverse T†, our aim is to first compute a QR
factorization T � QR where QHQ � I and R is square and lower
triangular, and then to invert each of the factors: T† � R−1QH . The
computation of the QR factorization can be done in state space, as
is demonstrated by the following theorem.

Theorem 1. (cf. [3], p.156) Let T be full column rank and have
realization {An � Bn � Cn � Dn}n 
 1 � ··· �N . Let YN � 1

�
• and consider

the sequence of (economy-size) QR factorizations�
Yn � 1An Yn � 1Bn

Cn Dn � � : & AQ
n BQ

n

CQ
n DQ

n '( )+* ,
Qn

�
Yn 0
CR

n DR
n � � n � N � N − 1 � · · · � 1

(7)
where Qn is isometric (QH

n Qn
� I), and the right factor is lower

triangular (possibly staircase) and partitioned such that Yn has
the same number of columns as An, DR

n has the same number of
columns as Dn, and both Yn and DR

n are full row rank. Then all
DR

n are square, lower triangular and invertible. Further define the
realizations

Qn
� & AQ

n BQ
n

CQ
n DQ

n ' � Rn
� � An Bn

CR
n DR

n � �
Then T � QR, where Q is specified by Qn and is isometric (QHQ �
I), and R is specified by Rn and is lower triangular and invertible.
The structure of the factorization is shown in Fig. 3(a). Note that
in our application, An and Bn are trivial: embeddings of identity
matrices of appropriate sizes. Hence the multiplication by Yn � 1 is
trivial and the only actual work in (7) is the QR factorization.

Theorem 2. Suppose that R is a square invertible lower trian-
gular matrix. Then its inverse is lower triangular too. If R has state
space realization

Rn
� � AR

n BR
n

CR
n DR

n � � n � 1 � · · · � N
then S : � R−1 has state space realization

Sn
� & AR

n − BR
n DR

n
−1

CR
n BR

n DR
n

−1

−DR
n

−1
CR

n DR
n

−1 ' � n � 1 � · · · � N
PROOF Note that Ru � y ⇔ Sy � u, hence S maps y to u. Since
S is lower triangular (causal),

yn
� CR

n xn
�

DR
n un ⇔ un

� −DR
n

−1
CR

n xn
�

DR
n

−1
yn

Backsubstitution in xn � 1
� AR

n xn
�

BR
n un gives the result. -

The left-inverse of the isometric factor Q is QH , with anti-
causal state space realization (backward recursion).

xn
� AQ

n
H

xn � 1
�

CQ
n

H
un

yn
� BQ

n
H

xn � 1
�

DQ
n

H
un

n � N � N − 1 � · · · � 1 �
The preceding theorems can be used to invert more general ma-

trices, in particular the code matrix T. We obtain an implementa-
tion of T† � SQH in factored form, where T†, R and Q are never
explicitly evaluated. The structure of the computational network is
shown in Fig. 3(b). As is seen from this structure, the “complexity”
of T and T† is the same, even if T† is a full matrix without visible
sparse structure.

Assume for simplicity that all I users have the same code length
G, number of RAKE fingers L, and number of symbols in the frame
K. The complexity of computing the state-space representation
of T† is in the order of GK 	 IL 
 2 operations, which is linear in K
and comparable to the complexity of a decorrelating receiver in the
short code case. The storage requirement of T† in state-space fac-
tored form is about 2 times the number of non-zero entries in T,
or order GKIL. The complexity of applying T† to the observation
vector is also order GKIL. This is the same as the complexity of
applying the matched filter TH . In contrast, note that T† is a full
matrix, with GK2IL entries. Computing T† directly requires order
GK3I2L2 operations, and applying it to a vector requires GK2IL op-
erations. The benefit in complexity of using state space represen-
tations is thus in the order of K2 and K, respectively.

4.3. Computation of ΣΣΣ ik

In the computation of the noise covariance, expressions for ΣΣΣ ik are
needed. We can apply the following theorem:

Theorem 3. Let T have state space realization {An � Bn � Cn � Dn}.
A realization for the lower triangular part of N : � TTH is given by

Nn
� � An An ΛΛΛnCH

n
�

BnDH
n

Cn Cn ΛΛΛnCH
n
�

DnDH
n �

where ΛΛΛn is specified by the forward recursion
ΛΛΛ1
�

• ; ΛΛΛn � 1
� AnΛΛΛnAH

n
�

BnBH
n � n � 1 � 2 � · · · � N �

PROOF By inspection of Fig. 3 	 c 
 and following the mapping of
xn � un to xn � 1 � yn. The causal part of the state is xn, the non-causal
part is x /n, and ΛΛΛn represents the transfer of x /n to xn. (A formal
proof appears in [3, p.366].) -

The preceding recursions are useful in the computation of the
noise covariance after the decorrelating matched filter. If w is a
white noise vector with power normalized to σ2 � 1, and n �
T†w � 	 THT 
 −1THw, then the covariance of n is given by

ΣΣΣ : � E 	 nnH 
 � 	 THT 
 −1 � SSH

where T � QR and S � R−1. A state space realization of S was
derived before. Thus, theorem 3 (applied to S) gives a recursion to
compute a realization for the lower part of SSH . The upper part is
simply the transpose.

In the identification algorithm in section 3.3, we are only inter-
ested in the main (block)-diagonal of E 	 nnH 
 (the auto-covariances
of size Li × Li). In this case, it suffices to compute

E 	 nnnH
n 
 � CS

nΛΛΛnCS
n

H �
DS

nDS
n

H � ΛΛΛn � 1
� AS

nΛΛΛnAS
n

H �
BS

nBS
n

H

4.4. Computation of the MMSE Receiver in State Space
Recall the MMSE receiver (6). It is known that equations of this
form can be efficiently computed via a QR factorization. Indeed,
note that

ŝ � 	 HHTHTH
� σ2I 
 −1HHTHy (8)� 	 HHTHTH
� σ2I 
 −1 0 HHTH σI 1 � y0 � � � TH

σI � †( )+* ,
M

�
y
0 �

Thus, if M � : QMRM is an economy-size QR factorization for M
(where RM is square triangular, and QM is tall and isometric), then

ŝ � 	 RM 
 −1 	 QM 
 H � y0 � �
The QR factorization and factor inversion can be done in state
space as before. Thus, ŝ is the output of a computational struc-
ture similar to the one in Fig. 3(b). The only new aspect is the
derivation of a realization for M.
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Figure 3. 	 a 
 Structure of the QR factorization, 	 b 
 structure of the inverse. Note that the inverse is not causal. 	 c 
 Structure of TTH .
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Figure 4. Realization of TH: 	 a 
 direct realization, 	 b 
 reduced
state dimensions.

A realization {An � Bn � Cn � Dn} for T is already known. H is
block-diagonal, with blocks hi matching the inputs of T. Define

Hn : � �!" βββ1 � n
. . .

βββ I � n
# $% � βββ i � n : � � hi � T has an input for user i at n

• � otherwise.

A realization for TH is then given by	 TH 
 n � � An BnHn
Cn DnHn � � n � 1 � · · · � N �

This is illustrated in Fig. 4(a). Finally, a realization for M is simply
obtained by extending the D-matrix by σI:

Mn
� �" An BnHn

Cn DnHn
0 σI

#% � n � 1 � · · · � N �
A few remarks are in order. Since we have already performed a

QR-factorization T � QR, with R having smaller dimensions than
T, we can exploit this. Recall (8). Since THT � RHR, we can write

ŝ � 	 HHRHRH
� σ2I 
 −1HHRHQHy � � RH

σI � † � QHy
0 � �

Thus define v � QHy (it was already computed for the channel es-
timation step), and use the realization for R in place of that of T,
and v in place of y.

Secondly, the shown realization for TH (or RH) is not mini-
mal. We can reduce the state dimensions from Li per user-input to
1. This is illustrated in figure 4(b).
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