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Long-code wideband CDMA receivers are for computational rea-
sons usually based on simple matched-filter techniques, and hence
suffer from multiaccess interference. To mitigate this problem, we
propose computationally efficient decorrelating RAKE and MM SE
receivers for the uplink of long-code CDMA systems. The decor-
relating matched filter eliminates multiaccess interference by code
matrix inversion. Channel parameters and data symbols are then
estimated jointly via rank-one decompositions. The feasibility of
the proposed schemes hinges upon their efficient implementation
in terms of time-varying state space realizations, with a complex-
ity comparable to that of the conventional RAKE receiver.

1. INTRODUCTION

Current receivers for long-code (or aperiodic spreading code)
wideband CDMA are typically based on RAKE receivers, i.e.
banks of matched filters which correlate the received data with
the desired user’s code, followed by a combining of the outputs
(RAKE fingers). Since multiuser interference is not completely
cancelled, the performance degrades, especially when the network
is heavily loaded and power control imperfect.

In this paper, we consider the uplink and assume that the base
station knows all codes. We model multiuser interference explic-
itly and propose a blind decorrelating RAKE and MM SE receiver
to estimate the channel and user symbols, based on al samples
in aframe. The decorrelating RAKE was presented earlier by us
in[1, 2] with an emphasis on identifiability and performance; the
MM SE receiver issimilar. Here, we &l so take the noise covariance
into account and focusin particular on the efficient implementation
of these receivers.

The decorrelating matched filter asks for the inversion of a
code matrix whose long dimension is equal to the number of chips
over the complete frame. Thisisaformidabletask, but fortunately,
the sparse structure of this matrix admits computationally efficient
techniques. Asan application of thework in [3] ontheinversion of
infinite-size matrices, we derive efficient time-varying state-space
implementations of the various steps in the algorithm.

Blind channel estimation and multiuser detection for long code
CDMA has been considered by a number of other authors. In par-
ticular, second order moment techniques [4-8] rely on the conver-
genceof timeaverages, which often requires hundredsto thousands
of symbols. Weiss and Friedlander [9] focus on the down link,
where users can be considered synchronous.

2. DATA MODEL

We consider the uplink of a slotted system with | asynchronous
users. In aframe, the i-th user transmits a vector s consisting of
K;i symbols si. Each symbol is spread by an aperiodic code cjy of
length G;. After multipath propagation over a channel with length
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Figure 1. Structure of the code matrix T.

L; chips and relative delay D;, pulse shape matched filtering and
sampling at the chiprate?, the receiver stacks the received samples
in aframe in avector y. The contribution of s is alinear com-
bination of the transmitted signal cikS, plus delays of it, properly
scaled by the Lj channel coefficients collected in avector h;, or
Yik = Tikhisk, k=1,--,K;.
Tik is a Toeplitz matrix whose Lj columns consist of shifts of the
code cik. Including al users and the noise, we have
y = THs+w @
T =[TuTig, Tt Tig]
H:= diag(IKl Dh1,~-~,||(| Dh|).
wherematrix H isblock diagonal with | O h; astheith block, vector
sisastacking of al symbol vectors, and w is a vector representing
the additive Gaussian noise. The structure of the code matrix T is
illustrated in figure 1. Note that different spreading gains G; are
part of the model. Multiple antennas are a simple extension.
Wewill assumethat the code matrix T isknown, “tall” and has
full column rank. Thisimplies that the receiver knows the codes,
the delay offsets Dj, and the number of paths L; of all users.

3. BLIND RECEIVER ALGORITHMS

3.1. Conventional RAKE
The conventional RAKE receiver consists of abank of matched fil-
ters and projects the received signal into the code domains of the
individual users, by correlating with several shifts of the code vec-
tors, or r = THy. Since the codes are not exactly orthogonal (let
alone shift-orthogonal), THT # 1, and contributions of each user
enter into the projections of any other user. This makes the perfor-
mance interference-limited.
3.2. Decorrelating RAKE
The proposed decorrelating RAKE uses a decorrelating matched
filter, or TT = (THT)™XTH. This removes all multi-user interfer-
ence. The output of the decorrelating matched filter is given by

u=T'y=diag(I Ohy,---,1 Oh;)s+n, @)

loversamplingis equivalent to asystem with multiple receive antennas.
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wheren = Ttw is now acolored noise vector.

After computing u, we estimate the channel and the data sym-
bols, blindly and independently for each user. Partition u into seg-
ments uj, of length L;. The structure of u in (2) implies that ujy
corresponds to symbol k of user i,

Uik = hisk+nik, k=1,---Ki, ©)
and is free from multiuser interference. Collecting all datafor user
i givesU; = [ujg, -+, Uik, ] = his1T+Ni . Thisisarank-1datamodel,
and estimates of h; and 5 (with an unknown scaling factor) are
found from arank-onefactorization of U;. In other words, denoting

1K H
Y= < 2. VikUik 4
I K=1
we obtain the least squares estimates
hi = argnr;;”eylg“ Wig, Sk=h"u. ®)

The solution hj is given as the dominant eigenvector of ¥;. The
scaling ambiguity is resolved by asingle pilot symbol. See[1,2]
for further results and performance simulations.

3.3. Whitened Estimator

The channel and symbol estimator givenin (5) did not take into ac-
count that the noise process nj is colored, bothink and in its com-
ponents. If weignorethe coloring ink, then asimplewhitening ap-
proach can be applied. Specifically, since n = T Tw, we have that
nik 0NV (0, 0%Z;) where Z; isan L; xL; submatrix on the diagonal
of TH(THH. We have

sl o h, 2 18
E(Wi) = Tihihi +0°4;, A= E Z Zik
k=1

where A; is a known matrix. The channel can then be estimated

from the following modification which whitens the noise on ¥;:
0u=ag max o (8P W8 g, =7,

The symbol estimator given in (5) is replaced by §x = hH 5 ujy.

3.4. MM SE Receiver

Based on thedatamodel (1), the estimated data sequenceby alinear
minimum mean square error (MM SE) receiver is known to be

= (HMTHTH + 021 AT Y. (6)
This receiver can be implemented using the previoudly estimated
channel matrix H, and assuming that the noise power a2 is known.

Compared to the decorrelating RAKE, the MM SE can have asig-
nificantly improved performance.

4. EFFICIENT IMPLEMENTATIONS

The code matrix T can be very large. Without an efficient tech-
nique to compute and apply theleft inverse TT = (THT)1TH  the
proposed receiver structures would not be feasible. Fortunately,
T is sparse. Using the Matlab sparse toolbox, u = Ty can be
computed efficiently via a sparse QR factorization T = QR, and
u= R™1Q"y, or, avoiding the storage of Q, as
Rv

54| =artisparse(r) v)

u:=R\v

v=QMy, andR\v denotesR v, implemented efficiently viaback-
substitution. This does not reveal how the sparse computations can
actually be implemented in a practical system. It is also unclear
how the noise whitening (computation of Z;)) can be implemented
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Figure 2. Computational network for T = [T(1) T(2)],

Ya

efficiently. Explicit computation of £ = R™IR™ isto be avoided
because R™1 is not sparse even if R is. In this section, we show
how time-varying state space representations can be used for this
purpose. Thetheory behind itisavailablein [3].

4.1. State Space Representation of a Matrix

Consider aninput signal u and output signal y, with arbitrary block-
partitioningu = [u], ---, ul]", y=[yl, -+, y{|". Thepartition-
ing introduces the notion of “time”, or a stage in a computational
procedure. The blocks do not need to be of equal size, and some
dimensions can even be zero (such ablock is denoted by “.”).

A time-varying state space realization has the form

Xn+1 = AnXn + BnUn o X1 =T Xn T = An Bn
Yn = CnXn+Dnun Yn = Mun)” " [ CnDn
The redlization starts at time 1 with x; = . (or: no state), and ends

with X1 =-. HenceA1=.,Ay=-,C1=.,By=".

A time-varying state-space realization specifies a linear map-
ping of u toy, hence amatrix T such that y = Tu. In particular, it
defines a factorization of T into factors Ty,. The inherent causality
trandatesto T being block-lower triangular. However, by playing
with dimensions, any matrix can fit this model, as the next exam-
plesillustrate. Consider first an an arbitrary N x L matrix T, with
rowstH. A (trivial) realization that modelsy = Tu is obtained by
settingu; = u, U, = --- = uy = - (i.e.,, the completeinput vector is
entered at time 1), and

=Ll [es]-led [l

As a second example, let T = [T(M) T(@] be an arbitrary block-
partitioned matrix, where T(D) hasrealization{ ALY, B{Y, c(P, p{y

and T® hasredization {A?,BP,c? D@} . Then

isarealization of T. Its structureis shown in Fig. 2.

The code matrix T in our case has a block structure as shown
in Fig. 1. By combining the two examples, we can represent any
code matrix T. The number of state space time points is equal to
the number of rows of T. Theinput vector is partitioned in blocks
of L; entries which enter the system at appropriate time points, de-
termined by the starting points of the individual code blocks. The
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state dimension at each time point is the number of nonzero entries
in the corresponding row of T.

4.2. QR Factorization and Inversion in State Space

To compute the left inverse TT, our aim is to first compute a QR
factorization T = QR where Q"Q = | and R is square and lower
triangular, and then toinvert each of thefactors: T =R™1QM. The
computation of the QR factorization can be done in state space, as
is demonstrated by the following theorem.

Theorem 1. (cf. [3], p.156) Let T befull columnrank and have
realization { An,Bn,Cn,Dn}n=1,..N. L€t Yny1 = - and consider
the sequence of (economy-size) QR factorizations

Yn+1AnYn+1Bn . AS BS Yn 0 — -1 ...
{ Cn Dn |~ [c9D8|[cRoR[s MEMNThnt
| —
Qn

@)

where Qp, is isometric (QﬁQn = 1), and the right factor is lower
triangular (possibly staircase) and partitioned such that Y has
the same number of columns as Ap, Dﬁ has the same number of
columns as Dy, and both YR and Dﬁ are full row rank. Then all
DR are square, lower triangular and invertible. Further define the
realizations

Qn:

AR BY
CRDR|’
Then T = QR, where Q isspecified by Q, and isisometric (QHQ =
1), and R is specified by Ry and islower triangular and invertible.
The structure of the factorization is shown in Fig. 3(a). Note that
in our application, A and By, are trivial: embeddings of identity
matrices of appropriate sizes. Hence the multiplication by Yy,,1 is
trivial and the only actual work in (7) isthe QR factorization.

Theorem 2.  Suppose that R is a square invertible lower trian-
gular matrix. Thenitsinverseislower triangular too. If R hasstate
space realization

R pR
Rn:|:Aan:|, n:l’...’N

then S:= R™1 has state space realization
-1 -1
s, |AR-BiDR'ch Bfoff
off'cf  of
PROOF Notethat Ru=y = Sy =u, hence Smapsy to u. Since
Sislower triangular (causal),

] ,  n=1-N

-1 -1
yn = CEXn “r DEUn And Un = _Dﬁ CEXn + Dﬁ yn
Backsubstitution in X,y 1 = ARx, +BRup givesthe result. O

The left-inverse of the isometric factor Q is QH, with anti-
causal state space realization (backward recursion)

{ Xn = ASHan + CSH Un
_ gt QH
Yn=Bf{ Xnt1+Dr Un

The preceding theorems can be used to invert moregeneral ma-
trices, in particular the code matrix T. We obtain an implementa-
tion of TT = SQH in factored form, where TT, R and Q are never
explicitly evaluated. The structure of the computational network is
showninFig. 3(b). Asisseenfrom thisstructure, the*complexity”
of T and TT isthe same, even if TT isafull matrix without visible
Sparse structure.

n=N,N-1,---,1.

Assumefor simplicity that al | usershavethe same codelength
G, number of RAKE fingersL, and number of symbolsin theframe
K. The complexity of computing the state-space representation
of TTisin the order of GK(IL)? operations, which is linear in K
and comparabl e to the complexity of adecorrelating receiver in the
short code case. The storage requirement of TT in state-space fac-
tored form is about 2 times the number of non-zero entriesin T,
or order GKIL. The complexity of applying TT to the observation
vector is also order GKIL. This is the same as the complexity of
applying the matched filter TH. In contrast, note that TT is a full
matrix, with GK2IL entries. Computing T directly requires order
GK312L2 operations, and applyingit to avector requires GK 2| L op-
erations. The benefit in complexity of using state space represen-
tationsisthusin the order of K2 and K, respectively.
4.3. Computation of Zj,
In the computation of the noise covariance, expressionsfor Zjy are
needed. We can apply the following theorem:
Theorem 3.  Let T havestatespacerealization{An, Bn,Cn,Dn}.
Arealization for thelower triangular part of N := TTH isgiven by
_ [An AWALCH +BLDH
~ [Cn ChACH +DnDH
where A, is specified by the forward recursion

A= Ap1=AAAl+BBH, n=12- N,
PROOF By inspection of Fig. 3(c) and following the mapping of
Xn, Un t0 Xny1,Yn. Thecausal part of the state is Xy, the non-causal
part is x},, and Ay, represents the transfer of x|, to xn. (A formal
proof appearsin [3, p.366].) O

Nn

The preceding recursions are useful in the computation of the
noise covariance after the decorrelating matched filter. If w isa
white noise vector with power normalized to 02=1andn =
Ttw = (THT) 1THw, then the covariance of n is given by

2 :=E(nnt) = (THT)? = 55
where T = QR and S= R™L. A state space realization of Swas
derived before. Thus, theorem 3 (applied to S) givesarecursion to
compute arealization for the lower part of SSH. The upper part is
simply the transpose.

In theidentification algorithm in section 3.3, we are only inter-
ested inthemain (bl ock)-diagonal of E(nn™) (the auto-covariances
of sizeL; xL;). Inthis case, it sufficesto compute

H H H H
E(nanf) = CRARCY +DiD5 |, Ani1=ARAAY +BRBY
4.4. Computation of the MM SE Receiver in State Space

= (HHTHTH+.02) 2 [HHTH ol

Recall the MM SE receiver (6). It is known that equations of this
form can be efficiently computed via a QR factorization. Indeed,
8= (H'THTH +0?1)THHTHY ®)

y] _[TH]"[y

0| 0

N——
M
(where RM issquare triangular, and QM istall and isometric), then
SGORCUMH

space as before. Thus, §is the output of a computational struc-
ture similar to the one in Fig. 3(b). The only new aspect is the

note that

ol
Thus, if M =: QVYRM is an economy-size QR factorization for M
The QR factorization and factor inversion can be done in state
derivation of arealization for M.
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Figure 3. (a) Structure of the QR factorization, (b) structure of the inverse. Note that the inverseis not causal. (c) Structure of TTH.
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Figure4. Redlization of TH: (a) direct realization, (b) reduced
state dimensions.

A realization {An,Bn,Cn,Dn} for T is adready known. H is
block-diagonal, with blocks h; matching the inputs of T. Define

Bin _ :
Hy N 8 ::{hi,Thasa_nlnputforuserlatn
: > Fin ., otherwise.
Bin
A realization for TH isthen given by
An BpH
(TH)n:{CE D:H:}, n=1.N.

Thisisillustrated in Fig. 4(a). Finally, arealizationfor M issimply
obtained by extending the D-matrix by ol:

An|BnHn
Mn = Cn Dan
0| ol

A few remarksareinorder. Sincewe haveaready performed a
QR-factorization T = QR, with R having smaller dimensions than
T, wecanexploit this. Recall (8). SinceTHT =R"R, wecanwrite

froH
8= (H'R"RH +0?1)tHHRHQMy = [Féﬂ {Qoy} :

, n=1-N.

Thus definev = QHy (it was already computed for the channel es-
timation step), and use the redlization for R in place of that of T,
andv inplaceof y.

Secondly, the shown realization for TH (or RH) is not mini-
mal. We can reduce the state dimensions from L; per user-input to
1. Thisisillustrated in figure 4(b).
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