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ABSTRACT

second order statistics of the whitened data vector are then

In the uplink of a long-code CDMA system, base station used to estimate the multipath parameters. Then different
knows spreading codes of all serviced users. Given propa-linear detection techniques such as zero-forcing (ZF) and
gation delays, code-decorrelation can be performed to sep- minimum mean-square-error (MM SE) are applied.

arate users’ inputs in each symbol interval even in a mul-

Different from [8] which processes a block of data, our

tipath environment. To detect information symbols, we first method processes data symbol by symbol in much lower
apply the subspace technique to estimate multipath param-complexity. From channel estimation perspective, the iden-
eters for the user of interest based on the correlation ma- tifiability condition can be easily satisfied by disregarding
trix of whitened data. Then we construct different linear processing of some datavectorsthat giveriseto rank-deficient
receivers. The statistics of estimated channel vectors arecodematrices. On the other hand, correlation of pre-processed
analyzed and verified by our numerical examples. Perfor- datais able to provide an estimate of noise power to be used

mance of receivers is also studied in simulations.

1. INTRODUCTION

Direct sequence (DS) codedivision multiple access (CDMA)
technology has become an appealing solution to support

emerging multirate multiuser communications. Despite var-

ious advantages, adopted long spreading codes inevitably

destroy cyclostationarity of CDMA signals, making many

of the existing channel estimation and detection approaches

for short code CDMA systems not directly applicable.

Tremendous efforts have been focused on developing
solutions for downlink communications [3], [4], [7]. Up-
link communications incur new problems due to synchro-
nization and different code assignment strategies. Given pi-
lot symbolsof all users, least squares (L S) fitting or iterative
maximum likelihood (ML) approaches have been reported
[1], [2]. Blind methods have al so appeared using correlation
matching techniques [9], [12], or employing a space-time
2D RAKE receiver structure to maximize the output signal
to interference plus noiseratio (SINR) [5, 6], or LS[8].

In this paper, we investigate channel estimation and de-
tection methodsin uplink long-code CDMA systems. Since
the base station knows spreading codes of all serviced users,
code-decorrelation can be performed to separate users' in-
puts in each symbol interval even in a multipath environ-
ment. Then a small data vector is extracted corresponding
to the desired user. Considering that this data vector is cor-
rupted by colored noise after pre-processing, data whiten-
ing is performed based on the ensemble average of a code-
dependent matrix. Applying the subspace technique, the
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in the MM SE detection, which is impossible to be obtained
in correlation of directly received data.

2. CDMA UPLINK WITH LONG CODES

Consider a quasi-synchronous uplink CDMA system [9],
where J mobile stations are communicating with a base
station. The ith user's bit w;(n) is first spread by aperi-
odiccodesc; ,,(k) (k= 0, ..., P —1), and then transmitted
through a multipath channel g;(m). All channels are as-
sumed to have maximum order ¢ (¢ << P). Then the chip-
rate signal arriving at the base station is a superposition of
signals from J users corrupted by noise

J q
y(n) = Z Z gi(m)s;(n —m —d;) +v(n) (1)

i=1 m=0

where s;(n) = > o wi(k)cik(n — kP), v(n) is zero-
mean AWGN with variance 02 = E{|v(n)|?} and d; (0 <
d; << P)isthedelay of user i. With quasi-synchronization,
the intersymbol interference could be eliminated if we col-
lect only L = P — p samples in the nth bit interval into
avector y(n) = [y(nP + p),...,y(nP + P — 1)]T with
p = maz{q + d;}. Let C;(n) be the corresponding code
filtering matrix of user i. Then according to (1), a simple
matrix form follows

y(n) =C(n)Gw(n) + v(n) = H(n)w(n) + v(n) (2)

whereC(n) = [C1(n),...,C(n)],G = diag{g,,.-.,9;}
g, isthe channel vector, w(n) = [w1(n),...,ws(n)]’ and
v(n)=[v(nP +u),...,v(nP+P-1).
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Throughthis paper, we makethefoll owing assumptions:
AS1) All users' information sequences are mutually inde-
pendent and temporally i.i.d. with unit power. AS2) Each
user’s codes and delay are known. AS3) The number of ac-
tiveusersinthesystem satisfies J < (P —q)/(g+1). AS4)
The matrix H (n) has full column rank.

3. CHANNEL ESTIMATION AND MULTIUSER
DETECTION IN CDMA UPLINK

3.1. Subspace Based Channel Estimation

Itis clear from (2) that due to time varying codes C(n), the
signature matrix H (n) at different time spansthe whole op-
erational space of the correlation matrix E{y(n)y(n)}.
Consequently, the subspace method is not directly applica-
bleto E{y(n)y(n)"}. In this paper, we propose to decor-
relate the datavector y(n) using the pseudo-inverse of code
matrix C(n) at each symbol to obtain an approximately sta-
tionary sequence

a(n) = C(n)'y(n) = Gw(n) +C(n)'v(n).  (3)
The covariance of the decorrelated sequence becomes
R=GG" +s24 (4)

where A = E{C(n)}(C(n)1)"} = E{(C(n)"C(n))'}.
If we partition R and A diagonally into .J matrices and de-
note the ith diagonal matrices as R; and A; respectively,
then by (2) and (4), it follows that

Ri=g,97 +0,A;, where i=1,...,J. (5

The correlation matrix R; after decorrelation now contains
the desired space spanned by the ith user’s channel vec-
tor. However it is corrupted by colored noise. Therefore,
whitening is necessary, which yields

R2ATRA T =A g g"A 1021 (§)

(3

Since the matrix A; is a constant matrix, its combination

with the jth user’s channel vector A;% g, constitutes the
unique signal space of R;. Applying the subspace tech-
nique immediately yields the following channel estimation
method for user
X; = arg max hYR;h, g, = %
|AZ x|

7
lIh/|=1 0

3.2. Multiuser Detection

Once the channel vectors of all users are estimated by (7),
symbol level ZF and MMSE receivers can be constructed
respectively to detect each user’s symbols. The ZF receiver
for user 7 at time instant n is defined as

Fopin) = Hn)'e;

where H(n) = [C1(n)g,,...,Cs(n)g,] and e; is auni-
tary vector with the ith element as 1. Correspondingly, the
estimated symbol is given by @.;;(n) = £ ;(n)y(n).
The ZF receiver is not an optimal one in the presence of
noise, sinceit might enhance noise effect if H (n) isill con-
ditioned. In that case, an MM SE receiver is desirable,

Frumses(n) = [HHn)T +7,°1]71C,g;.

The noise power 52 can be estimated from the minimum
eigenvalue of R; in (6). Similarly, the detected ith user’s

Symb0| is I/U\mmse,i(n) = fgmse,i(n)y(n)'

4. CHANNEL ESTIMATION PERFORMANCE

In thissection, wewill study both channel identifiability and
channel estimation mean-square-error (M SE).

4.1. Identifiability

Proposition Let only those data vectors y(n) with corre-
sponding full-rank code matrices C(n) are processed as in
(3). If the number of such vectorsis sufficiently large, then
the subspace based channel estimation method in (7) guar-
antees identification of each user’s channel vector within a
scalar ambiguity.

Proof: The full column rank condition on the matrix
C(n) impliesthe existence of C(n)t and A~! for each sym-
bol interval of interest. This condition, together with the
sufficiently large number of data vectors, in turn guarantee
al equations from (3) to (7) hold. Asaresult, identification
of channel vector for each user within a scalar ambiguity is
ensured. m|

In practice, the rank condition holdsfor most symbol in-
tervals under (AS3). Moreover, under (AS2) those unsatis-
fied datavectorscan be easily identified and discarded in es-
timating R for channel estimation. Therefore, the identifi-
cation of each user’s channel isensured for the proposed ap-
proach. On the other hand, under (A$4) symbol detectionis
also guaranteed for the proposed ZF and MM SE receivers.
It is worth to note that (AS4) is much weaker than the full
column rank condition of the matrix C(n) asrequired by [8]
for symbol detection, since the latter might not be satisfied
for some symbol intervals, while the former isalmost surely
ensured dueto the diversity of users’ channelsin the uplink.
Although rank deficiency of C(n) for some symbol intervals
does not affect channel estimation, it inevitably impairs the
detection of associated information symbolsin [8].

4.2. Mean-Square-Error

The M SE depends on finite data size IV and will be derived
using perturbation techniques. It is observed from (7) that
channel estimation dependson R; and finally R. It is per-
turbed when R is estimated from NV decorrelated data sam-
plesas R = L S0 a(n)a(n)?. After extracting its ith
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diagonal block and whitening the block using A; which is
theith diagonal block of A £ L 5™V [c(n)HC(n)] !, we

have R, = L SN [e(n)+A; ¢,(n)][z(n)+A; *C(m)",

where z(n) = A; g wi(n) and ¢;(n) is the ith subvec-
tor of C(n)Tw(n) with ¢ + 1 elements. Direct perturbation
analysis based on R; is formidable due to the time vary-
ing product term of C(n)fwv(n). Noticing C(n)* isindepen-
dent of white noise v(n), the time-averaging covariance of

A; *¢;(n) iso2T when N is sufficiently large. Therefore,

we approximate 21; % ¢, (n) by awhite noise v(n), and R;
reducesto

N
Ry = S olal) + vlle() + v} (@)

where E{||v(n)||?} = o21. Based on (8) the perturbation
analysis can be readily conducted by directly applying some
resultsin [10]. In the sequel, let’'s denote the perturbation
by preceding the corresponding quantity by &, and the per-
turbed quantity with 7, i.e, dR; = R; — R;. By (7), x; IS
the signal space of R;, thusits perturbation, when estimated
from (8), is given by [10]

ox; = (1/77) U UL SR;x; 9)

where 1> = g#A; g, and U, is the null space of R;.
The perturbation of x; will cause that of g,. By (7), the

~ ~ 1
perturbed channel estimationis §; = (X1 A;X;)~ % A7 X;-
Substituting x;, expanding the power term using Taylor se-
ries and keeping only the first order terms, we have

~ 71/\1
og; ~ (xPA;x;) 2A]dx;
1 .~ s . S
- S0 ) (0xi Aix + X" Aidxa) A7 X

(10)

Sincein-space error is approximately the square of orthogo-

nal spaceerror by [10], and noticingg; = (x 7 A;x,)* A7 x;,
we further ssimply (10) to the following by keeping only the
orthogonal space error

=

0g; ~ HL(X{{;L'X@')?%:‘@' X (11)

where IT+ £ (I — %). Sinceboth A; *
the unique eigenvectors of R;, we have (x A;x;) = o
Then applying the above results and (9), the covariance of

dg,; becomes

g; and x; are

i

~ 1
AU, U E{6Rix;x{0R;}

(3

1

v
~ L1

U UYATT .

E{g;0gl} =~

(12)

Itisshown [11] that for agiven data model, statistical prop-
erties of the inputs and additive noise, E{0R;x;x 6 R;}
can always be evaluated. Applying resultsin [11] and notic-
ingx?Rix;, =+? + o2, xU,, = 0, (12) reducesto

Vi +03)

H ax( 153 H3 5l

N~2 ¢
(13)
The mean squared channel estimation error is then given by
the trace of (13).

5. MULTIUSER DETECTION PERFORMANCE

The proposed ZF and MM SE receivers are built upon esti-
mated channel vectors. Their performance depends on the
channel estimation performance. The output signal to in-
terference plus noise ratio (SINR) and bit error rate (BER)
can beinvestigated. Dueto lack of space, the corresponding
results will be presented in the future. Instead, we turn our
attention to numerical studies next.

6. SSMULATION EXAMPLES

We consider an uplink CDMA system, where each user trans-
mits BPSK signals with equal power through a respective
multipath channel of length 3. In the first experiment, we

set P = 16, J = 4 and randomly generate 15 channels. For

each channel, we obtain the normalized mean-square-errors

(NMSEsS) of channel estimation over 100 independent runs.

Then all NMSEs are averaged. The experimental results
over different N are compared with their analytical values
in Fig. 1. As expected, the experimental and analytical

curves are highly consistent for all examined N's. Then we

compare our method with the least square method [8] and

PC-MMSE method [5]. We adopt P = 32, J = 5 as[8§].

The channel isfixed for totally 100 runs. 100 data symbols
are used for channel estimation and symbol detection for

al three approaches. The NM SEs over various input signal

to noise ratios (SNRs) are plotted in Fig. 2. The proposed

method shows a very similar MSE level to the LS method,

and is much better than the PC-MM SE method at moderate
to high SNRs. The BERs of different receiversare plottedin

Fig. 3. Both proposed receivers exhibit lowest BER levels
when SNR is over 8dB, while the PC-MMSE receiver has
the worst performance due to lack of spatial diversity.
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Fig. 1. NMSEv.s. N, P=16, J=4, SNR=20dB.
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Fig. 2. NMSE v.s. SNR, P=32, J=5, N=100.
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Fig. 3. BERv.s. SNR, P=32, J=5, N=100.




