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ABSTRACT

Optimal estimation of multi-input multi-output correlated chan-
nels using pilot signals is considered in this paper, assuming knowl-
edge of the second order channel statistics at the transmitter. As-
suming a block fading channel model and minimum mean square
error (MMSE) estimation at the receiver, we design the transmit-
ted signal to optimize two criteria: MMSE and the conditional
mutual information between the MIMO channel and the received
signal. Our analysis is based on the recently proposed virtual chan-
nel representation for uniform linear arrays, which corresponds to
beamforming in fixed virtual directions and exposes the structure
and the true degrees of freedom in correlated channels. However,
the analysis can be generalized to other known channel models.
We show that optimal signaling is in block form corresponding to
beams transmitted in successive time intervals along the transmit
virtual angles, with powers determined by water filling arguments
based on the optimization criteria. The block length depends on
the channel correlation and decreases with SNR. Consequently,
from a channel estimation viewpoint, a faster fading rate can be
tolerated at low SNRs relative to higher SNRs.

1. INTRODUCTION

Multi-antennae communications systems are gaining prominence
due to the higher capacity and reliability they can afford [1],[2].
Often, an implicit assumption in the analysis is the accurate knowl-
edge of the channel at the receiver. However, in practice the chan-
nel has to be estimated, typically using pilot symbols. In a rich
scattering environment, the assumption of i.i.d. channels is valid
and multi-input multi-output (MIMO) channel estimation can be
done straightforwardly using for example least squares or MMSE
techniques [3]. However, this idealized assumption does not nec-
essarily hold and hence a study of correlated channels is of inter-
est. In this work, we investigate transmit signal design for optimal
estimation of correlated MIMO Rayleigh flat fading channels, as-
suming that the receiver and transmitter1 have knowledge of the
second order statistics of the MIMO channel2. This feedback in-
formation is exploited by the transmitter to optimize channel esti-
mation errors at the receiver, where MMSE channel estimates are
obtained. We design the transmit signal to satisfy one of two cri-
teria : minimization of the MMSE at the receiver or maximization
of the conditional mutual information between the channel and the
received signal.

In [4], the virtual channel representation is proposed assum-
ing uniform linear arrays (ULA) at the transmitter and receiver.

This research is supported in part by NSF Grant Nos. CCR-9875805
and CCR-0113385 and ONR Grant No. N00014-01-1-0825.

1This is often called covariance feedback.
2The assumption is reasonable, since the second order statistics are

much less dynamic than the channel itself. Thus, they can be estimated
more reliably and need to be updated less frequently.

The virtual representation characterizes the channel in the spatial
domain by beamforming in the direction of fixed virtual angles
determined by the spatial resolution of the arrays, which is anal-
ogous to representing the channel in beamspace or wavenumber
domain. A MIMO channel with P transmit and Q receive anten-
nae has a maximum of PQ unknowns to be estimated. However,
correlated MIMO channels possess fewer degrees of freedom and
hence fewer than PQ parameters need to be estimated. The non-
vanishing and approximately uncorrelated elements of the virtual
channel matrix represent the degrees of freedom in the channel.
We develop our signal design based on the virtual representation.
The techniques developed here however can be applied to more
general channel representations like the one in [5].

We show that the optimal transmit signal is a block signal con-
sisting of beams transmitted in succession along the active fixed
transmit virtual angles, corresponding to directions in which scat-
terers are present. Equivalently, the (scattering) environment is
scanned along the transmit virtual angles one by one to determine
the presence of scattering clusters, by measuring the signals along
the receive virtual angles for each transmitted beam. The power
transmitted along the beams is determined by water filling argu-
ments resulting from the two criteria under a finite power con-
straint. Power is possibly assigned to a beam only if the second or-
der statistics indicate the presence of significant scattering in that
direction. However, the power assigned to the transmit beams de-
pends on the signal to noise ratio (SNR) as well. Specifically, at
low SNR the strongest beam is assigned all the power. As SNR
increases, the power is assigned to increasing number of beams
depending on the channel covariance matrix3.

2. MIMO CHANNEL MODEL

Consider a narrowband frequency non-selective MIMO channel
with P transmit and Q receive antennae. With k indicating discrete
time, if s(k) is the transmit vector of dimension P , then the Q
dimensional received signal x(k) can be written as

x(k) = H(k)s(k) + n(k) (1)

where H(k) is the Q × P channel gain matrix. n(k) is the Q di-
mensional zero mean, complex white Gaussian noise vector, with
covariance matrix σ2IQ. The channel gain between the n − th
receive and m − th transmit antenna is denoted by H[m, n].

In [4], the virtual channel representation is proposed where the
transmit and receive antennae are uniform linear arrays (ULA). If

3Notation: For an integer Q, IQ is a Q × Q identity matrix. If X is a
Q×K matrix, then it’s lower case letter x = vec(X) denotes the QK×1
vector obtained by stacking columns of X. ⊗ denotes the Kronecker prod-
uct. X∗, XT , XH denote the complex conjugate, transpose and hermitian
of X. The inverse and pseudo-inverse of X are denoted by X−1 and X†.
tr(X) denotes the trace of the square matrix X. diag([a1, . . . , aQ]) is a
Q×Q diagonal matrix with diagonal elements a1, . . . , aQ. E(·) denotes
the expectation operator. (x)+ = max(0, x).
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dT and dR are the transmit and receive array spacings, then H can
be related to the physical propagation environment via the array
steering and response vectors
aT (θT ) = 1√

P
[1, exp (−j2πθT ), . . . , exp (−j2π(P − 1)θT )]T ,

aR(θR) = 1√
Q

[1, exp (−j2πθR), . . . , exp (−j2π(Q − 1)θR)]T ,
where the θ is the delay between the signals received at adjacent
elements in the array due to a point source at angle φ (relative
to a horizontal axis). If λ is the wavelength of propagation, then
θ = d

λ
sin φ. We will interpret θ as a normalized angle. The

linear virtual channel representation in [4] exploits the finite di-
mensionality of the spatial signal space arising from finite number
of array elements and finite array apertures. Without loss of gen-
erality, assume P and Q to be odd and define Q̃ = (Q− 1)/2 and
P̃ = (P − 1)/2. The virtual channel representation is given by

H =

Q̃∑
q=−Q̃

P̃∑
p=−P̃

HV [p, q]aR(θ̃R,q)a
H
T (θ̃T,p) = ÃRHV Ã

H
T

where ÃR = [aR(θ̃R,−Q̃), . . . , aR(θ̃R,+Q̃)] (Q × Q) and ÃT =

[aT (θ̃T,−Q̃), . . . , aT (θ̃T,+Q̃)] (P × P ) are defined by the fixed

virtual angles θ̃R,q and θ̃T,p and are full rank. We assume that the
spatial virtual angles are uniformly spaced [4] and hence ÃT and
ÃR are discrete Fourier transform matrices (and hence unitary).
Note that the virtual model is linear in the gains and spatial angles,
since these angles are fixed a priori. Note that we can write h =

vec(H) = (Ã
∗
T ⊗ ÃR)hV . The resulting channel correlation has

a Kronecker structure given by

R = E(hhH) = (Ã
∗
T ⊗ ÃR)RV (Ã

∗
T ⊗ ÃR)H . (2)

An important consequence of the virtual modelling is that, the el-
ements of HV are approximately uncorrelated and hence RV is
approximately diagonal regardless of the correlation structure of
R [4]. The structure obtained by the virtual model allows simpli-
fication in signal design and provides interesting interpretations as
shall be seen.

The techniques developed in this paper can be straightforwardly
generalized to channels where the channel matrix can be expressed
as

H = URHV UH
T (3)

where UT and UR are the transmit and receive unitary matrices
and the elements of HV are uncorrelated but not necessarily iden-
tically distributed. The resulting channel correlation has a Kro-
necker structure similar to (2). Such channel models may arise as
a consequence of the array geometry as was seen above in the case
of ULAs. An example is the channel model, where it is assumed
that the transmitter and receiver antennae arrays have correlated
elements [5]. The channel matrix can be written as

H = Σ
1/2
R HwΣ

1/2
T = URHV UH

T (4)

where the elements of Hw are i.i.d. The matrices ΣT and ΣT

are the transmit and receive array correlation matrices with eigen
value decompositions (EVD) UT ΛT UH

T and URΛRUH
R respec-

tively. The elements of HV are uncorrelated with diagonal co-
variance matrix given by RV = ΛT ⊗ ΛR [6].

Since H and HV are unitarily equivalent, estimation of the
MIMO channel can be equivalently performed by obtaining esti-
mates of HV . From (1) and (3), we can write the received signal
as

x(k) = ÃRHV (k)Ã
H
T s(k) + n(k). (5)

In the eigen or virtual domain,

xV (k) = HV (k)sV (k) + nV (k) (6)

where xV = Ã
H
R x and sV = Ã

H
T s are the projections of the re-

ceived and transmitted signals onto the fixed receive and transmit
response vectors respectively. Equation (6) provides an interesting
interpretation of transmission in the virtual domain. Each element
of xV (sV ) corresponds to a signal received (transmitted) from (to)
the fixed virtual angles θ̃T,p (θ̃R,q) and the corresponding element
in HV indicates the coupling gain between these angles [4]. Note
that since ÃR is unitary, nV = ÃRn is zero mean, white Gaussian
with covariance σ2Iq .

In the following development, we assume the MIMO channel
to be block fading, i.e. H(k) = H for k = 1, . . . , K and the
channel is independent between different blocks of K symbols.
Assuming that training symbols s(k), k = 1, . . . , K are sent in a
block mode and denoting S = [s(1), . . . , s(K)], the block fading
model is given by

XV = HV SV + NV ,

where XV = [xV (1), . . . ,xV (K)], SV = [sV (1), . . . , sV (K)]
and NV = [nV (1), . . . , nV (K)]. Stacking the columns of XV , we
obtain

x̃V = vec(XV ) = (ST
V ⊗IQ)vec(HV )+vec(NV ) = S̃V hV +ñV

(7)
where we denote S̃V = (ST

V ⊗ IQ). Using (7), we proceed with
the estimation of hV , which is a PQ vector. Clearly, since the
maximum number of unknowns in hV

4 is PQ, we need to transmit
a block of K ≤ P symbols [7]. Hence, we need the quasi-static
channel to be constant for only K ≤ P time periods.

3. MMSE AND MAP ESTIMATION

The model (7) is linear in hV and Gaussian. Hence, it can be
shown that the linear MMSE estimate, the MMSE estimate and
the MAP estimate are identical. In this paper, we assume that
the covariance matrix RV = E(hV hH

V ) (or equivalently R =
E(hhH)) is known. The linear MMSE estimator minimizes the
error MSE = E[‖hV − ĥV ‖2]. The resulting linear estimate is

ĥV = Goptx̃V (8)

where Gopt is a PQ × PQ matrix given by

Gopt = arg min
G

E[‖hV −Gx̃V ‖2] = RV S̃
H
V (S̃V RV S̃

H
V +σ2I)−1.

(9)
Using the orthogonality principle, the error covariance matrix and
the minimum MSE are

Ce = RV − RV S̃
H
V (S̃V RV S̃

H
V + σ2I)−1S̃V RV

= (R†
V +

1

σ2
S̃

H
V S̃V )−1, (10)

MMSE = tr(Ce(S̃V )). (11)

respectively. The conditional mutual information (CMI) between
the received signal and the channel hV is given by

CMI(S̃V ) = log det(I +
1

σ2
S̃V RV S̃

H
V ). (12)

4The number of unknowns in hV would be smaller in correlated chan-
nels. If the prior variance of a given element of hV is zero, then it implies
that the element is itself zero.
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4. OPTIMUM SIGNAL DESIGN

We consider the design of the optimum transmit block signal S̃V

(or equivalently SV ) with respect to two criteria: minimization
of the MMSE (11) and maximization of the mutual information
(12) between the channel and received signal conditioned on the
transmitted block signal. We state the two optimization problems
as follows:

min
˜SV

tr(R†
V +

1

σ2
S̃

H
V S̃V )−1 s.t. tr(S̃

H
V S̃V ) ≤ Pβ, (13)

max
˜SV

log det(I +
1

σ2
S̃V RV S̃

H
V ) s.t. tr(S̃

H
V S̃V ) ≤ Pβ, (14)

where β is the total transmitted power and P is the number of

transmit antennae. Note that the constraint tr(S̃
H
V S̃V ) ≤ Pβ is

equivalent to the finite power constraint tr(SH
V SV ) = tr(SHS) ≤

β. We develop the signal design using the SVD of the transmitted
block matrix. Denote the SVDs of ST

V = USΛSVH
S and S̃V =

US̃ΛS̃VH
S̃

, where US ,VS ,US̃ and VS̃ are unitary matrices and

ΛS and ΛS̃ are diagonal matrices. Since S̃V = (ST
V ⊗ IQ), it

follows that US̃ = US⊗IQ, ΛS̃ = ΛS⊗IQ and VS̃ = VS⊗IQ.
The following theorem states our main result, for a proof see [6].
Theorem 1 Consider the constrained optimization problems in
(13) and (14) respectively. The globally optimal solution has a
structure given by

S̃V,opt = Λ̃optVS̃ (15)

where Λ̃opt ∈R
PQ×PQ. The optimal VS̃ is a matrix of the eigen-

vectors of RV , i.e VS̃ = I and Λ̃opt is the solution to

Λ̃opt = Λ̃M = arg min
Λ

S̃

tr(R†
V +

1

σ2
ΛH

S̃ ΛS̃)−1 (16)

s.t. tr(ΛH
S̃ ΛS̃) ≤ Pβ

and Λ̃opt = Λ̃C = arg max
Λ

S̃

log det(I + ΛS̃RV ΛH
S̃ ) (17)

s.t. tr(ΛH
S̃ ΛS̃) ≤ Pβ

respectively.

Since S̃V = (ST
V ⊗ IQ), from Theorem 1 the optimal transmit

signal is SV = Λopt where Λopt is the solution to

arg min
ΛS

P∑
i=1

Q∑
j=1

(
σ2RV [(i − 1)Q + j, (i − 1)Q + j]

σ2 + RV [(i − 1)Q + j, (i − 1)Q + j]βi

)

(18)
arg max

ΛS

P∑
i=1

Q∑
j=1

log

(
1 +

RV [(i − 1)Q + j, (i − 1)Q + j]βi

σ2

)

(19)

subject to the constraint
∑P

i=1 βi ≤ β, βi = |Λopt(i, i)|2, for the
MMSE and CMI criteria respectively. Thus, the optimal transmit
signal is a block diagonal signal (in the virtual domain). The opti-
mal signal structure specifies that during the P block transmission,
at each time instant i ∈ 1, . . . , P , the signal is transmitted along
the i-th transmit eigen vector with the powers specified by βi. Due
to the diagonal structure of SV , Gopt (9) and Ce (10) become di-
agonal, which enables independent processing at the receiver. The
channel estimate is given by

ĥV ((i − 1)Q + j) =(
RV [(i−1)Q+j,(i−1)Q+j] ΛH

opt(i,i)

σ2+RV [(i−1)Q+j,(i−1)Q+j] |Λopt(i,i)|2

)
· xV ((i − 1)Q + j),

for j = 1, . . . , Q; i = 1, . . . , P . From this equation, note that
the i-th transmission allows us to estimate the Q elements in the
i−th column of HV , i.e ( hV ((i−1)Q+1), . . . ,hV ((i−1)Q+
Q) ). During the block transmission, the scattering environment
is scanned sequentially to estimate each column of HV .

4.1. Water-filling solution

The constrained nonlinear optimizations in (18) and (19) are the so
called ‘water-filling’ problems and can be solved using Langrange
multipliers and using the Kuhn-Tucker conditions to verify that
the solutions are non-negative. However, for the general case of P
transmit and Q receive antennae, we have not been able to find a
closed form solution and hence it has to be obtained numerically.
In the following, we obtain approximate closed form solutions in
the low SNR and high SNR regions to obtain some insight. Closed
form solutions exist for the special cases of a MISO channel [8]
and the transmit and receive correlated channel (4) where either
ΣT or ΣR is equal to σ2I, for details see [6].

For the following discussion, we define the transmitted signal
to noise ratio (TSNR) as the ratio of the transmitted signal power to
the noise power β

σ2 and the received signal to noise ratio (RSNR)
between the i−th transmit and j−th receive angle pair as the ratio
of the received signal power to the noise power RSNR(i, j) =
RV [(i−1)Q+j,(i−1)Q+j]βi

σ2 for i = 1, . . . , P ; j = 1, . . . , Q.
Consider the high RSNR case, where RSNR(i, j) � 1. In the

following discussion, denote elements for which the high RSNR
condition is true as ‘active’ and columns which have at least one
active element as active columns. Let Qi be the number of active
elements in the i-th column (or equivalently the number of ac-
tive receive elements the i-th transmit beam couples with). Using
Langrange multipliers, it can be shown that for high RSNR case,
MMSE and CMI criteria assign power according to

MMSE : βi =

√
Qiβ∑P

i=1

√
Qi

i = 1, . . . , P,

and CMI : βi =
Qiβ∑P
i=1 Qi

i = 1, . . . , P,

respectively. Thus, the CMI (MMSE) criterion assigns power to
the transmit beams in proportion to the sum (square root of the
sum) of the active elements they couple with at the receiver. In the
extreme case, when all the elements of HV are active, then equal
power is distributed at all transmit branches for both the criteria.

Consider the low RSNR case, where RSNR(i, j) � 1, ∀i, j.
Using Langrange multipliers, it can be shown that the MMSE and
CMI criteria assign all the power β to the k−th transmit beam such
that

MMSE : k = arg max
i

Q∑
j=1

R2
V [(i − 1)Q + j, (i − 1)Q + j],

and CMI : k = arg max
i

Q∑
j=1

RV [(i−1)Q+ j, (i−1)Q+ j],

respectively. Thus at low RSNR, the CMI (MMSE) criterion as-
signs all the power to that transmit angle for which the sum (sum
of squares) of the variances of the corresponding virtual receive
elements is maximum. From the extreme cases, we conclude that
the number of transmit beams to be sent and hence the block length
K depends on the SNR. For medium SNR, 1 ≤ K ≤ P and the
powers will be determined by the water filling criteria. Also note
that for i.i.d. channels, equal power will be assigned to all transmit
beams irrespective of the SNR.
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Fig. 1. Optimal power distribution for P = Q = 2 & RV = R
(1)
V .

5. INTERPRETATION AND SIMULATIONS

The optimal signal is a block of length K ≤ P and has a diago-
nal structure given by SV = ΛS . The block SV represents beams
transmitted in succession along the fixed virtual transmit angles,
with the powers given by the water filling arguments (18) and (19)
for the MMSE and CMI criteria respectively. Basically, the scat-
tering environment is scanned along the virtual transmit angles one
by one, to determine the presence of scatterers, by measuring the
signal along the receive virtual angles for each transmitted beam.
The i-th transmitted beam is used to determine the i-th column
of HV . Depending on RV and the SNR, power is assigned to
the beams by water filling, which identifies the active set of vir-
tual transmit angles. Hence the block length K, which is exactly
equal to the size of this active set, depends on the SNR and RV .
In particular, for low SNR, K = 1, while for high SNR K has
a maximum value equal to the number of active columns deter-
mined from RV (which is a maximum of P ) and for medium SNR,
1 ≤ K ≤ P . This in turn implies that at low SNR, a faster fading
rate can be tolerated than at high SNR, since fewer essential pa-
rameters need to be estimated. For high SNR, the CMI (MMSE)
criterion assigns the power to the transmit angles in proportion to
the sum (

√
sum) of the active elements they couple with at the

receiver. As the SNR decreases, the weakest transmit beam (as de-
termined by the water filling criteria) is dropped. As the SNR de-
creases, this process continues until finally the CMI (MMSE) crite-
rion assigns all the power to the strongest transmit beam, i.e one for
which the sum (sum of squares) of the variances of the correspond-
ing virtual receive elements is maximum. This is illustrated in Fig-
ures 1 - 3. In all figures, the total TSNR (in dB) along the x-axis
is given by 10 log10(β/σ2), while the y-axis shows the branch
TSNR in dB given by 10 log10(βi/σ2). Powers are show for the
two transmit angles for the MMSE and CMI criteria and the equal
power assignment is also plotted for comparison. Figure 1 shows
the power assignments for the MIMO case with P = Q = 2 and
covariance matrix is given by R

(1)
V = diag([1 0 0.01 0.05]),

where the first two elements are the variances of the elements in
the first column of HV and the next two are those of the second
column. Observe that for high SNR, the second transmit beam gets
66% (58%) power according to CMI (MMSE) criterion. The pow-
ers are reversed in Figure 2 where R

(2)
V = diag([1 0.1 0 0.05]).

Finally in Figure 3 where R
(3)
V = diag([1 0.1 0.01 0.05]),

at high SNR both branches get equal power. In all cases, as SNR
decreases the weaker beam is dropped and the stronger beam gets
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Fig. 2. Optimal power distribution for P = Q = 2 & RV = R
(2)
V .
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