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ABSTRACT

Signalingfor optimummutualinformationwith limited feed-
back of channelstateinformationis studiedfor the case
whenmultiple transmitandreceve antennarraysareused
to form multiple input multiple outputchannels.A simple
meansquaresrrorbasedapproachor findingnearoptimum
signalingis suggesteandits performancestudied.Priorto
limiting, the channelestimatesreassumegberfectandde-
lay in obtainingtheseestimateds ignoredto focuson the
effectsof limited feedback.

1. INTRODUCTION

Therecontinuego begreatinterestin usingmultiple trans-
mit andreceve antennaarraysto form multiple input mul-
tiple output(MIMO) channeldor wirelesscommunications
[1, 2, 3]. Onepopularapproacti3, 4] employs feedbackof
channektateinformationsothatthe signalingcanbetuned
to thechannel. The optimumapproactrequiresafairly de-
taileddescriptiorof thechannelthe eigervaluesandeigen-
vectorsof HHY whereH is the channelmatrix) andsoit
is of interestto study schemesequiring lessinformation.
Herewe proposean approactthat usesiog. M bits to de-
scribethe channelstateat a given time where M canbe
chosemasary integer. Thusthe requireddatarateto feed-
backthe channektateinformationcanbe controlledby M
andthe updateratewhich is usuallydictatedby the rate of
changeof the channel. To focusour efforts on limited M,
we assumehe unlimited-M channelestimatefor H is still
perfectwhenthe signalsdesignedor H actuallyarrive at
therecever. This assumesufficiently slov changesn the
channerelative to therateof signaling.

2. MODEL OF MIMO CHANNEL

ConsideranisolatedMIMO link with flat Rayleighfading
andadditive white Gaussiamoise. The vectorof comple
basebandampledrom the setof n,. receve antennasfter
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matchediltering is
y:(yh,,,,ynr)T:HX—}-n (1)

wherex = (z1,...,z,,)T is the transmittedvector H is
the channelmatrix with independenentriesthat are each
zero-mearcomplex Gaussiarfading coeficientsandn =
(n1,...,ny,,)T is the additive zero-mearncomplex white
Gaussiamoisevector

Whenthereis unlimitedfeedbaclof channektateinfor-
mationbackto thetransmittethenthe covariancematrix S
canbechoserto maximize

log (det(I + HSHY)) 2)

for the given value of H so that average(ergodic) mutual
informationis alsomaximized. Typically S mustalsosat-
isfy a constrainton fixed total transmitpower. We call the
optimumcaovariancematrix, which maximizes(2) andsat-
isfiesthe power constraintS,,;. This matrix canbe found
using Lagrangemultipliers [3, 4] and a well-known wa-
ter filling solutionresultsaswe now describe. First note
that HFH = UX AU with unitary U anddiagonalA =
diag(A, ..., A\n,) dueto HTH beingHermitiansymmet-
ric. Defineann; x n; diagonalmatrixS with thediagonal
entriesbeing

. 1\*
SJ‘j:(u—;) , J= L ®)
J

where(z)* = z if z > 0 and(z)™ = 0 otherwiseln (3), u
is chosersothatthe power constraintp = Z?;l S;; is ex-
actly met,wherep is the largestpower allowed. Thewater
filling solution statesthat the signalingoptimizing mutual
informationemploys complex Gaussiarsignalingwith zero
meananda covariancematrix S,,; = U”SU. Whenthis
optimumsignalingis usedmaximumergodicmutualinfor-
mationcanbecalculatecas

BiTrh =Y B (o () ). @

where(z)* in (4) is setto z or 0 in thesameway asfor the
correspondingerm (with the samey) in (3).
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Thuswe seeS,,;; is a continuousfunctionof H sowe
denoteit by S,,:(H) to remind us that this quantity will
generallychangesachtime H changesNow definethe co-
variancematrix usedwith thelimited feedbacloperatioras
So(H). If weallow only log, M bits of feedbackhenfor
eachpossiblevalueof H we notethat S (H) cantake on
oneof M different,but fixed, possiblevalueswhich we de-
noteasS;, ... , Sx. DescribingSg (H) correspondso de-
scribingthe M differentfixedcovariancematricesSy, ... ,Sys
anda mappingfrom eachvalueof H to oneof thesematri-
ces,orequialentlyto oneof theintegersl,. .. , M (thebits
thatshouldbesentasfeedback) Thuswe defineM regions
in H spaceasR;,j = 1,... , M andwe make theunionof
theseregionscoverthewholespace Further we coordinate
thefeedbackinformationandS¢ (H) sothat

SoH)=S; if HeR, ji=1...,M (5
We call this a (logs M )-bit feedbackapproach.

3. OPTIMUM SIGNALING WITH LIMITED
FEEDBACK

We considefindingamutualinformation-optimun{log, M )-
bit feedbackapproachusing a two stepmethod. First as-
sumethe S4, ..., Sy areknown. Thenmaximizeinstan-
taneousnutualinformation(which maximizesergodicmu-
tualinformation)by choosing

R; = {H: log (det(I + HS;H)) >
log (det(I + HS;H)) Vi # j}. (6)
Of courseH whichareontheborder(equalityin (6)) of two
regionsR; andR; (i # j) canbeassignedo eitherwithout
changingperformanceLet fi (H) bethe probability den-

sity function of H. The ergodic mutualinformationis an
integral overall H asin

E{T} = E{log (det(I + HSg(H)H))}
M
= Z / . /R log (det(I + HS;H™)) fu(H)dH  (7)

and(6) maximizeghisintegral by theproperchoiceof R, j =
1,...,M.

Next assumeheregionsR;,j = 1,... , M have been
defined.ThentheoptimumSy, ... , S, satisfy

S; = arg max E{log (det(I+ HSH)) H € R;} (8)
To seethis we notethat the ergodic mutualinformationis
givenby

E{T} = E{log (det(1+ HSg(H)H"))} =

M
> E{log (det (I + HS;H"))|H € R;}
j=1

xProb(H € R;) 9)

from which (8) clearlyfollows.

ThusonecansearcHor anoptimumsignalingapproach
by iteratively solving(6) and(8). Thuspick aninitial guess
for S1,..., S andthensolve (6) for theoptimumregions
givenSy,...,Sy. ThenupdateS,, ... , Sy from (8) us-
ingtheseregions. Thenrepeathesestepauntil corvergence.
At eachstepmutualinformationwill alwaysbe increased
sincewe arealwayschoosingheupdatedjuantitiego opti-
mizemutualinformationfor thefixedotherquantities. Thus
the resultingproceduremustcornverge sincemutualinfor-
mationis limited whenwe fix signal-to-noiseratio. The
resultingsolution, upon corvergence,mustbe a so called
person-by-persoaptimumsolutionmeaningthatit is a so-
lution thatcant beimprovedby updatingusttheregionsor
justthe covariancematrices.Howeverin somerarecasest
is possiblethe solutionmay be improved by updatingboth
at the sametime. On the otherhandthe optimumsolution
will alsobe person-by-persoaptimumthusif you find all
person-by-personptimumsolutionsyou will find the op-
timum solution. In mary practicalproblemsonly a small
numberof person-by-personptimumsolutionswill exist.
However, there are someproblemswhere this is not the
case.An even greaterdisadwantageto the methodjust de-
scribedis that the maximumizationin (8) doesnot appear
to have a simpleclosedform solution. Onewould have to
solwveit numerically[5] whichwould appeato bea signifi-
cantdisadwantage.

4. MEAN SQUARE ERROR APPROACH

As analternatie approactwe proposea procedurghatde-
signsthe regions and the covariancematricesin orderto
minimizethemean-squareerror(let||-|| r denoteheFrobe-
niusnorm)

€ = E{||Sopt(H) = So(H)|[7}

betweerS,,,(H) andSg(H). We canexpand{ =

[+ [ USup(E) — SR fe(Er)aEE =

allu

M

> [+ [, VSen®D S0l - fa(enyams =

M

> E{lISop(H) = S;l|7 [H € R;} Prob(H € R;). (10)
j=1

Theconditionalexpectedvalue E{||S,:(H) — S;||%/H €
R;} in (10) canbe computedusinganintegral over there-
gionR; as(10) shows.

Now assumé,, ... , Sy, aregiven.In orderto pick the
regionsR;,j = 1,..., M to minimize £ we mustassign
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eachvalueof H to thatregionwhichwill providethesmall-
estintegrandwhenevaluatedat that value of H. This will
malke the sumof theintegralsin (10) thesmallest.Thus

Rj = {H: |[Sope(H) — S;|[7 < [Sope (F) — Ss[%, Vi # j}

11)

andH for which equalityoccursin any comparisorcanbe
assigneckitherway (but only to oneregion) sincethis does
notchangeour performanceneasure.

Next assumehe regionsaregiven. Thenit is easyto
shav thattheoptimumSy, ... , S, canbefoundfrom

S; = E{Sou( HEeR;}, j=1,...,M. (12)

AgainthecovariancematricesSy, . .. , Sy, andtheregions
R;,j =1,..., M areobtainedoy choosingastartingguess
andtheniteratingusing(11) andthen(12) repeatediyto get
a person-by-personptimumsolution. Note that oncethe
Rj,j = 1,...,M andSy,...,Sy have beendesigned
we canusethe designedS,, ... , Sy andchangeR;,j =

1,..., M asper (6) to “redefinethe regions” to improve

mutualinformation.

5. NUMERICAL RESULTS

Using the procedurgust describedthe resultsin Table 1
wereobtained.All person-by-persosolutionsfound gave
approximatelythesameperformancehovnin Tablel. The
first column gives signal-to-noiseratio (SNR) in dB. The
seconcacolumngivesergodiccapacitywith nofeedbacKco-
variancematrix is a scaledidentity matrix). Thethird col-
umn givesergodic capacitywith unlimitedfeedbackM =
00. The fourth column gives ergodic mutual information
with limited feedbackwith M = 4 usingthe designap-
proachin (11) and(12), but with the regionsredefinedafter
cornvergencausing(6). Thefifth columngivesthedifference
betweerthe third andfourth columnswhich is the ergodic
mutualinformationdifferencebetweerusingfeedbackwith
M = oo andM = 4. We noteimmediatelythatthe ergodic
mutualinformationdifferencebetweerusingfeedbackwith
M = oo and M = 4 is nearlya constantover SNR, with
aslight decreasén this differencefor very smallandlarge
SNRs.We concludethatin termsof thesizeof theerrorthe
M = 4 approximationis quite goodover the full rangeof
possibleSNRs. On the otherhandsomediscussiorof the
relative size of the error comparedo the ergodic capacity
will more completelydescribethe exact patternof the er-
ror versusSNR. Thus,if we comparehe differenceshavn
in the fifth columnof Table 1 with the actualergodic ca-
pacity achis’ed when M = oo we seethat differenceis
a very large proportionof the actualergodic capacityfor
small SNRshut a very small proportionof the actualer
godiccapacityfor large SNRs.Thustherelative lossdueto
limited M is largerfor smallSNRs.

Table2 andTable3 shawv similar resultsfor caseswith
M = 8 andM = 16. Generallythe M = 4 approachin
Table 1 provides ergodic mutualinformation performance
whichis quitecloseto thecasewith unlimitedfeedback As
expectedthe M = 8 and M = 16 casesrovide perfor
mancewhich is evencloserto thatobtainedwith M = oo,
but theperformancef thesecasess notthatmuchcloserso
the extra compleity andlargerupdatecommunicatiorrate
neededor M = 8 or M = 16 may not be justified. The
lastcolumnof Table2 andTable3 shavs theimprovement
of M = 16 over M = 8 is evensmallerthantheimprove-
mentof M = 8 over M = 4. It is alsointerestingthatin
eachcaseheimprovemenis almostconstanivith SNRbut
decrease®r smallandlarge SNR.

As in Tablel, the differencebetweenthe ergodic mu-
tual informationwith feedbackusingM = 8 or M = 16
andunlimited feedbacks closeto a constantput the error
decreaseslightly for small or large SNR. The comments
aboutrelative erroralsoapplyto Table2 andTable3.

6. CONCLUSIONS

OptimumMIMO signalingwith limited feedbackvasstud-
ied. A simplified approachbasedon a meansquareerror
wassuggestedndits performancestudied.Perfectchannel
estimatesvere assumedand ary delayin obtainingthese
estimatesvasignored.
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Table 1. Ergodic mutualinformationwith variousconstrainton feedbackanddesignrules. Thefirst columngivessignal-
to-noiseratio (SNR) in dB. The secondcolumn gives ergodic capacitywith no feedback(covariancematrix is a scaled
identity matrix). Thethird columngivesergodic capacitywith unlimitedfeedback.The fourth columngivesergodicmutual
informationwith limited feedbackwith A/ = 4 usingthe designapproachn (11) and(12), but with the regionsredefined
aftercorvergenceusing(6). Thefifth columnshavsthelossfrom usingM = 4 insteadof M = oo.

SNR(dB) | No Feedback| FeedbackM = oo | Feedbackd =4 | Colz — Coly
-10 0.2645 0.4249 0.3343 0.0906
-5 0.7220 1.0322 0.8475 0.1847
0 1.6999 2.0991 1.8805 0.2186
5 3.3048 3.6219 3.4288 0.1931
10 5.5640 5.7295 5.6253 0.1042

Table 2. Ergodic mutualinformationwith variousconstrainton feedbackanddesignrules. Thefirst columngivessignal-
to-noiseratio (SNR) in dB. The secondcolumn gives ergodic capacitywith no feedback(covariancematrix is a scaled
identity matrix). Thethird columngivesergodic capacitywith unlimitedfeedback.The fourth columngivesergodicmutual
informationwith limited feedbackwith M = 8 usingthe designapproachn (11) and(12), but with the regionsredefined
aftercorvergenceusing(6). Thefifth columnshavsthelossfrom usingM = 8 ratherthan M = oco. Thelastcolumnshowvs
thelossfrom using M = 4 ratherthanM = 8.

SNR(dB) | No Feedback Feedback = co | Feedbacld =8 | Cols — Coly | (M =8) — (M =4)
-10 0.2645 0.4249 0.3755 0.0494 0.0412
-5 0.7220 1.0322 0.9386 0.0936 0.0911
0 1.6999 2.0991 1.9650 0.1341 0.0845
5 3.3048 3.6219 3.5116 0.1103 0.0828
10 5.5640 5.7295 5.6484 0.0811 0.0435

Table 3. Ergodic mutualinformationwith variousconstraintson feedbackanddesignrules. Thefirst columngivessignal-
to-noiseratio (SNR) in dB. The secondcolumn gives ergodic capacitywith no feedback(covariancematrix is a scaled
identity matrix). Thethird columngivesergodic capacitywith unlimitedfeedback.The fourth columngivesergodicmutual
informationwith limited feedbackwith M = 8 usingthe designapproachn (11) and(12), but with the regionsredefined
after corvergenceusing (6). Thefifth columnshaws the lossfrom using M = 16 ratherthan M = oc. Thelastcolumn
shavsthelossfrom usingM = 8 ratherthanM = 16.

SNR(dB) | No Feedback| Feedbackl/ = oo | Feedback/ =16 | Cols — Coly | (M =16) — (M = 8)
-10 0.2645 0.4249 0.3942 0.0307 0.0187
-5 0.7220 1.0322 0.9796 0.0526 0.0410
0 1.6999 2.0991 2.0149 0.0842 0.0499
5 3.3048 3.6219 3.5563 0.0656 0.0447
10 5.5640 5.7295 5.6688 0.0607 0.0204
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