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ABSTRACT

Signalingfor optimummutualinformationwith limited feed-
back of channelstateinformation is studiedfor the case
whenmultiple transmitandreceiveantennaarraysareused
to form multiple input multiple outputchannels.A simple
meansquareerrorbasedapproachfor findingnearoptimum
signalingis suggestedandits performancestudied.Prior to
limiting, thechannelestimatesareassumedperfectandde-
lay in obtainingtheseestimatesis ignoredto focuson the
effectsof limited feedback.

1. INTRODUCTION

Therecontinuesto begreatinterestin usingmultiple trans-
mit andreceive antennaarraysto form multiple input mul-
tiple output(MIMO) channelsfor wirelesscommunications
[1, 2, 3]. Onepopularapproach[3, 4] employs feedbackof
channelstateinformationsothatthesignalingcanbetuned
to thechannel.Theoptimumapproachrequiresa fairly de-
taileddescriptionof thechannel(theeigenvaluesandeigen-
vectorsof

�����
where

�
is thechannelmatrix) andso it

is of interestto studyschemesrequiring lessinformation.
Herewe proposean approachthat uses�����
	�� bits to de-
scribethe channelstateat a given time where � can be
chosenasany integer. Thusthe requireddatarateto feed-
backthechannelstateinformationcanbecontrolledby �
andtheupdateratewhich is usuallydictatedby therateof
changeof thechannel.To focusour efforts on limited � ,
we assumetheunlimited-� channelestimatefor

�
is still

perfectwhenthe signalsdesignedfor
�

actuallyarrive at
thereceiver. This assumessufficiently slow changesin the
channelrelative to therateof signaling.

2. MODEL OF MIMO CHANNEL

Consideran isolatedMIMO link with flat Rayleighfading
andadditive white Gaussiannoise. Thevectorof complex
basebandsamplesfrom thesetof ��
 receive antennasafter
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matchedfiltering is���������������������
� ��!#"�� ��$&%('
(1)

where
$ �)�+* � ����������* � , ! " is the transmittedvector,

�
is

the channelmatrix with independententriesthat areeach
zero-meancomplex Gaussianfadingcoefficientsand

' �� � � ��������� � � ��! " is the additive zero-meancomplex white
Gaussiannoisevector.

Whenthereis unlimitedfeedbackof channelstateinfor-
mationbackto thetransmitterthenthecovariancematrix -
canbechosento maximize.0/21 ��3�4�56��7 %8� - � � !�! (2)

for the given valueof
�

so that average(ergodic) mutual
informationis alsomaximized.Typically - mustalsosat-
isfy a constrainton fixed total transmitpower. We call the
optimumcovariancematrix, which maximizes(2) andsat-
isfiesthepower constraint-:9<;6= . This matrix canbe found
using Lagrangemultipliers [3, 4] and a well-known wa-
ter filling solution resultsas we now describe. First note
that

� � � �?> �A@ > with unitary > anddiagonal
@ �32BDC � �FE � ���������GE � , ! dueto

���A�
beingHermitiansymmet-

ric. Definean � =IH � = diagonalmatrix J- with thediagonal
entriesbeingJKML<L �?NPO�QSRE LUTWV �YXZ� R ��������� � = (3)

where ��*[! V �\* if *^]`_ and ��*[! V �a_ otherwise.In (3), O
is chosensothatthepower constraintb ��c � ,Led � JK L<L is ex-
actly met,where b is the largestpower allowed. Thewater
filling solutionstatesthat the signalingoptimizing mutual
informationemployscomplex Gaussiansignalingwith zero
meananda covariancematrix -:9<;6= �f> � J- > . Whenthis
optimumsignalingis used,maximumergodicmutualinfor-
mationcanbecalculatedasgihkj�lIm � � ,nLed � gporq � .0/21 	 ��O:E L !e! VWs � (4)

where �+*t! V in (4) is setto * or _ in thesamewayasfor the
correspondingterm(with thesameX ) in (3).
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Thuswe see -:9<;6= is a continuousfunctionof
�

so we
denoteit by -:9<;6= � � ! to remindus that this quantitywill
generallychangeeachtime

�
changes.Now definetheco-

variancematrixusedwith thelimited feedbackoperationas-�u � � ! . If we allow only
.0/21 	 � bits of feedbackthenfor

eachpossiblevalueof
�

we notethat -:u � � ! cantake on
oneof � different,but fixed,possiblevalueswhich wede-
noteas - ����������� -:v . Describing- u � � ! correspondsto de-
scribingthe � differentfixedcovariancematrices- ����������� -:v
anda mappingfrom eachvalueof

�
to oneof thesematri-

ces,or equivalentlyto oneof theintegersR ��������� � (thebits
thatshouldbesentasfeedback).Thuswedefine� regions
in

�
spaceas w L �xXZ� R ��������� � andwemaketheunionof

theseregionscoverthewholespace.Further, wecoordinate
thefeedbackinformationand - u � � ! sothat-:u � � !y� - L if

�?z w L � X{� R ��������� � (5)

We call thisa � �����
	�� ! -bit feedbackapproach.

3. OPTIMUM SIGNALING WITH LIMITED
FEEDBACK

Weconsiderfindingamutualinformation-optimum� �����
	�� ! -
bit feedbackapproachusinga two stepmethod. First as-
sumethe - �|��������� -:v areknown. Thenmaximizeinstan-
taneousmutualinformation(whichmaximizesergodicmu-
tual information)by choosingw L � h|�~} .0/21 ��3�4�56��7 %8� - L � � !e!I�.0/21 ��3�4�56��7 %8� -�� � � !e!��[B���(X m � (6)

Of course
�

whichareontheborder(equalityin (6)) of two
regionsw L

and w�� ( Bp��8X ) canbeassignedto eitherwithout
changingperformance.Let ��� � � ! betheprobabilityden-
sity function of

�
. The ergodic mutual informationis an

integraloverall
�

asing�hGj�m � gih .�/
1 �F324�56�F7 %(� - u � � ! � � !e! m� vnLed ���������G����� .0/21 ��3�4�56��7 %8� - L � � !�! ��� � � !#3 � (7)

and(6)maximizesthisintegralby theproperchoiceof w L �xXZ�R ��������� � .
Next assumethe regions w L �xX�� R ��������� � have been

defined.Thentheoptimum - ����������� -:v satisfy- L �\�
� 1�� � �� g�h .�/
1 �F324�56��7 %8� - � � !�!�� �?z w L m
(8)

To seethis we notethat the ergodicmutual informationis
givenbygihkj�m � g�h .�/
1 �F324�56��7 %8� -:u � � ! � � !G! m �vnLed � g�h .�/
1 �F�P�6���F7 %(� - L � � !G!�� ��z w L m

Hy� � � ¡ � �?z w L ! (9)

from which(8) clearlyfollows.
Thusonecansearchfor anoptimumsignalingapproach

by iteratively solving(6) and(8). Thuspick aninitial guess
for - ����������� -�v andthensolve(6) for theoptimumregions
given - �|��������� -�v . Thenupdate- ����������� -�v from (8) us-
ing theseregions.Thenrepeatthesestepsuntil convergence.
At eachstepmutual informationwill alwaysbe increased
sincewearealwayschoosingtheupdatedquantitiesto opti-
mizemutualinformationfor thefixedotherquantities.Thus
the resultingproceduremustconvergesincemutual infor-
mation is limited when we fix signal-to-noiseratio. The
resultingsolution,uponconvergence,mustbe a so called
person-by-personoptimumsolutionmeaningthatit is a so-
lution thatcan’t beimprovedby updatingjust theregionsor
just thecovariancematrices.However in somerarecasesit
is possiblethesolutionmaybeimprovedby updatingboth
at thesametime. On theotherhandtheoptimumsolution
will alsobeperson-by-personoptimumthusif you find all
person-by-personoptimumsolutionsyou will find the op-
timum solution. In many practicalproblemsonly a small
numberof person-by-personoptimumsolutionswill exist.
However, thereare someproblemswhere this is not the
case.An evengreaterdisadvantageto the methodjust de-
scribedis that the maximumizationin (8) doesnot appear
to have a simpleclosedform solution. Onewould have to
solve it numerically[5] whichwouldappearto bea signifi-
cantdisadvantage.

4. MEAN SQUARE ERROR APPROACH

As analternativeapproachweproposea procedurethatde-
signsthe regions and the covariancematricesin order to
minimizethemean-squarederror(let ��� � ��� l denotetheFrobe-
niusnorm) ¢ � gih ��� - 9<;6= � � !£Q -�u � � !���� 	l m
between- 9<;6= � � ! and -�u � � ! . We canexpand

¢ �
�������¤� all � �¥� -�9D;6= � � !¦Q - u � � !���� 	l ��� � � !#3 � �vnLed ��� ����� � �§� �¥� - 9D;6= � � !¦Q -:u � � !���� 	l � � � � !#3 � �vnLed � g�h ��� -�9D;6= � � !¨Q - L �0� 	l � �?z w L m � � � ¡ � �?z w L !6� (10)

Theconditionalexpectedvalue
gih �0� -�9D;6= � � !£Q - L �0� 	l � �©zw L m

in (10) canbecomputedusinganintegral over there-
gion w L

as(10)shows.
Now assume- ����������� -:v aregiven.In orderto pick the

regions w L �DX(� R ��������� � to minimize

¢
we mustassign
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eachvalueof
�

to thatregionwhichwill providethesmall-
estintegrandwhenevaluatedat thatvalueof

�
. This will

make thesumof theintegralsin (10) thesmallest.Thusw L � h��?} ��� -�9<;¤= � � !¨Q - L ��� 	l`ª ��� -:9<;6= � � !£Q -�� �0� 	l �#�[B���rX m
(11)

and
�

for which equalityoccursin any comparisoncanbe
assignedeitherway (but only to oneregion)sincethisdoes
notchangeourperformancemeasure.

Next assumethe regionsaregiven. Then it is easyto
show thattheoptimum - � �������:� - v canbefoundfrom- L � gih -�9<;¤= � � !�� �?z w L m � XZ� R ��������� � � (12)

Again thecovariancematrices- �|��������� -�v andtheregionsw L �xX{� R ��������� � areobtainedbychoosingastartingguess
andtheniteratingusing(11)andthen(12) repeatedlyto get
a person-by-personoptimumsolution. Note that oncethew L �xX«� R ��������� � and - � ��������� - v have beendesigned
we canusethedesigned- � ��������� - v andchangew L �xX��R ��������� � as per (6) to “redefinethe regions” to improve
mutualinformation.

5. NUMERICAL RESULTS

Using the procedurejust described,the resultsin Table1
wereobtained.All person-by-personsolutionsfoundgave
approximatelythesameperformanceshown in Table1. The
first columngivessignal-to-noiseratio (SNR) in dB. The
secondcolumngivesergodiccapacitywith nofeedback(co-
variancematrix is a scaledidentity matrix). The third col-
umngivesergodiccapacitywith unlimited feedback� �¬ . The fourth columngives ergodic mutual information
with limited feedbackwith � �®­ using the designap-
proachin (11)and(12),but with theregionsredefinedafter
convergenceusing(6). Thefifth columngivesthedifference
betweenthe third andfourth columnswhich is theergodic
mutualinformationdifferencebetweenusingfeedbackwith� �¯¬ and � �\­ . Wenoteimmediatelythattheergodic
mutualinformationdifferencebetweenusingfeedbackwith� �°¬ and � �f­ is nearlya constantover SNR,with
a slight decreasein this differencefor very smallandlarge
SNRs.Weconcludethatin termsof thesizeof theerrorthe� �±­ approximationis quitegoodover the full rangeof
possibleSNRs. On the otherhandsomediscussionof the
relative sizeof the error comparedto the ergodic capacity
will morecompletelydescribethe exact patternof the er-
ror versusSNR.Thus,if we comparethedifferenceshown
in the fifth columnof Table1 with the actualergodic ca-
pacity achieved when � �²¬ we seethat differenceis
a very large proportionof the actualergodic capacityfor
small SNRsbut a very small proportionof the actualer-
godiccapacityfor largeSNRs.Thustherelative lossdueto
limited � is largerfor smallSNRs.

Table2 andTable3 show similar resultsfor caseswith� �´³ and � � R�µ . Generallythe � �´­ approachin
Table1 providesergodic mutual informationperformance
whichis quitecloseto thecasewith unlimitedfeedback.As
expectedthe � ��³ and � � R�µ casesprovide perfor-
mancewhich is evencloserto thatobtainedwith � �¶¬ ,
but theperformanceof thesecasesis notthatmuchcloserso
theextra complexity andlargerupdatecommunicationrate
neededfor � �°³ or � � R�µ may not be justified. The
lastcolumnof Table2 andTable3 shows theimprovement
of � � R�µ over � �·³ is evensmallerthantheimprove-
mentof � �¸³ over � �f­ . It is alsointerestingthat in
eachcasetheimprovementis almostconstantwith SNRbut
decreasesfor smallandlargeSNR.

As in Table1, the differencebetweenthe ergodic mu-
tual informationwith feedbackusing � �¹³ or � � R�µ
andunlimitedfeedbackis closeto a constant,but theerror
decreasesslightly for small or large SNR. The comments
aboutrelativeerroralsoapplyto Table2 andTable3.

6. CONCLUSIONS

OptimumMIMO signalingwith limited feedbackwasstud-
ied. A simplified approachbasedon a meansquareerror
wassuggestedandits performancestudied.Perfectchannel
estimateswereassumedand any delay in obtainingthese
estimateswasignored.
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Table 1. Ergodicmutualinformationwith variousconstraintson feedbackanddesignrules. Thefirst columngivessignal-
to-noiseratio (SNR) in dB. The secondcolumn gives ergodic capacitywith no feedback(covariancematrix is a scaled
identity matrix). Thethird columngivesergodiccapacitywith unlimitedfeedback.Thefourth columngivesergodicmutual
informationwith limited feedbackwith � �±­ usingthedesignapproachin (11) and(12), but with the regionsredefined
afterconvergenceusing(6). Thefifth columnshowsthelossfrom using � �º­ insteadof � �»¬ .

SNR(dB) No Feedback ¼ 4|4|3 ¡ C�½�¾ � �¯¬ Feedback� �\­ ¿ ���ÁÀ QÂ¿ ���¥Ã
-10 _Ä�ÆÅ µ ­�Ç _Ä� ­�Å ­2È _Ä� É
É
­2É _Ä� _
È
_ µ
-5 _Ä�ËÊ Å2Å _ R � _
É�Å
Å _Ä� ³ ­PÊ Ç 0.1847
0 R � µ È2È
È ÅP� _
È2È R R � ³
³2_2Ç _Ä�ÆÅ R ³ µ
5 ÉÄ� É
_
­2³ ÉÄ� µ Å R È ÉÄ� ­�Å
³
³ _Ä� R È
É R
10 ÇP�ÆÇ µ ­2_ ÇP�ËÊ Å
È2Ç ÇP� µ Å2Ç É _Ä� R _ ­�Å

Table 2. Ergodicmutualinformationwith variousconstraintson feedbackanddesignrules. Thefirst columngivessignal-
to-noiseratio (SNR) in dB. The secondcolumn gives ergodic capacitywith no feedback(covariancematrix is a scaled
identity matrix). Thethird columngivesergodiccapacitywith unlimitedfeedback.Thefourth columngivesergodicmutual
informationwith limited feedbackwith � �f³ usingthedesignapproachin (11) and(12), but with the regionsredefined
afterconvergenceusing(6). Thefifth columnshowsthelossfrom using � �a³ ratherthan � �»¬ . Thelastcolumnshows
thelossfrom using � �Ì­ ratherthan � �a³ .

SNR(dB) No Feedback Feedback� �¯¬ Feedback� �a³ ¿ ���ÁÀ QÂ¿ ���¥Ã � � �a³2!¨Qº� � �º­�!
-10 _U� Å µ ­�Ç _U� ­�Å�­�È _Ä� É�Ê
Ç
Ç _U� _
­2È
­ _U� _
­ R Å
-5 _U�ÆÊ
Å
Å
_ R � _2É2Å2Å _Ä� È
É2³ µ _U� _2È
É µ _U� _2È R2R
0 R � µ È
È2È ÅÄ� _2È
È R R � È µ Ç _ _U� R É ­ R _U� _2³ ­�Ç
5 ÉU� É2_ ­�³ ÉU� µ Å R È ÉÄ�ÆÇ R2R�µ _U� R2R _2É _U� _2³2Å
³
10 ÇÄ� Ç µ ­�_ ÇÄ�ÆÊ
Å È�Ç ÇP� µ ­�³ ­ _U� _2³ R2R _U� _
­2É�Ç

Table 3. Ergodicmutualinformationwith variousconstraintson feedbackanddesignrules. Thefirst columngivessignal-
to-noiseratio (SNR) in dB. The secondcolumn gives ergodic capacitywith no feedback(covariancematrix is a scaled
identity matrix). Thethird columngivesergodiccapacitywith unlimitedfeedback.Thefourth columngivesergodicmutual
informationwith limited feedbackwith � �f³ usingthedesignapproachin (11) and(12), but with the regionsredefined
after convergenceusing(6). The fifth columnshows the lossfrom using � � R�µ ratherthan � �Í¬ . The last column
showsthelossfrom using � �Ì³ ratherthan � � R�µ .

SNR(dB) No Feedback Feedback� �¯¬ Feedback� � R�µ ¿ ���ÁÀ QÂ¿ ���¥Ã � � � R�µ !�Qº� � �\³�!
-10 0.2645 _U� ­�Å�­2È _Ä� É
È ­�Å _U� _2É
_�Ê _Ä� _ R ³�Ê
-5 0.7220 R � _2É2Å
Å _Ä� È�Ê�È µ _U� _�Ç
Å µ _Ä� _ ­ R _
0 1.6999 ÅÄ� _2È
È R ÅP� _ R ­�È _U� _2³ ­�Å _Ä� _ ­2È2È
5 3.3048 ÉU� µ Å R È ÉÄ�ÆÇ
Ç µ É _U� _ µ Ç µ _Ä� _ ­
­PÊ
10 5.5640 ÇÄ�ÆÊ
Å È2Ç ÇP� µ
µ ³2³ _U� _ µ _�Ê _Ä� _2Å _
­
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